Презентация "Правильные многогранники"
презентация к уроку по геометрии на тему
Предварительный просмотр:
Подписи к слайдам:
Правильные многогранники
- Сколько существует правильных многогранников? - Как они определяются, какими свойствами обладают? -Где встречаются, имеют ли практическое применение?
Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер.
«эдра» - грань «тетра» - четыре гекса» - шесть «окта» - восемь «додека» - двенадцать «икоса» - двадцать Названия этих многогранников пришли из Древней Греции и в них указано число граней.
Название правильного многогранника Вид грани Число вершин ребер граней граней, сходящихся в одной вершине Тетраэдр Правильный треугольник 4 6 4 3 Октаэдр Правильный треугольник 6 12 8 4 Икосаэдр Правильный треугольник 12 30 20 5 Куб (гексаэдр) Квадрат 8 12 6 3 Додекаэдр Правильный пятиугольник 20 30 12 3 Данные о правильных многогранниках
Вопрос (проблема): Сколько существует правильных многогранников? Как установить их количество ?
α n = ( 180 °(n -2 )) : n При каждой вершине многогранника не меньше трех плоских углов, и их сумма должна быть меньше 360 ° . Форма граней Количество граней при одной вершине Сумма плоских углов при вершине многогранника Вывод о существовании многогранника α = 3 α = 4 α = 5 α = 6 α = 3 α = 4 α = 3 α = 4 α = 3
Л. Кэрролл
Великие математики древности Архимед Евклид Пифагор
Подробно описал свойства правильных многогранников древнегреческий ученый Платон. Именно поэтому правильные многогранники называются тела Платона
тетраэдр - огонь куб - земля октаэдр - воздух икосаэдр - вода додекаэдр - вселенная
Многогранники в науках о космосе и земле
Иоганн Кеплер (1571-1630) – немецкий астроном и математик. Один из создателей современной астрономии - открыл законы движения планет (законы Кеплера )
кубок Кеплера Космический
" Экосаэдро - додекаэдровая структура Земли "
Многогранники в искусстве и архитектуре
Альбрехт Дюрер (1471-1528) «Меланхолия»
Сальвадор Дали «Тайная Вечеря»
Современные архитектурные сооружения в виде многогранников
Александрийский маяк
Кирпичный многогранник швейцарского архитектора
Современное здание в Англии
Многогранники в природе ФЕОДАРИЯ
Пирит (сернистый колчедан) Монокристалл алюмокалиевых квасцов Кристаллы красной медной руды ПРИРОДНЫЕ КРИСТАЛЛЫ
Поваренная соль состоит из кристаллов в форме куба Минерал сильвин также имеет кристаллическую решетку в форме куба. Молекулы воды имеют форму тетраэдра. Минерал куприт образует кристаллы в форме октаэдров. Кристаллы пирита имеют форму додекаэдра
Алмаз В форме октаэдра кристаллизуются алмаз, хлорид натрия, флюорит, оливин и другие вещества.
Исторически первой формой огранки , появившейся в XIV веке стал октаэдр. Алмаз Шах Масса алмаза 88,7 карата
Задача Английская королева дала указание сделать огранку вдоль ребер алмаза золотой нитью. Но огранка не была сделана, так как ювелир не сумел рассчитать максимальную длину золотой нити, а сам алмаз ему не показали. Ювелиру были сообщены следующие данные: число вершин В=54, число граней Г=48, длина наибольшего ребра L= 4мм. Найти максимальную длину золотой нити.
Правильный многогранник Число Граней Вершин Рёбер Тетраэдр 4 4 6 Куб 6 8 12 Октаэдр 8 6 12 Додекаэдр 12 20 30 Икосаэдр 20 12 30 Исследовательская работа «Формула Эйлера»
Теорема Эйлера . Для любого выпуклого многогранника В + Г - 2 = Р где В – число вершин, Г – число граней, Р – число ребер этого многогранника.
ФИЗМИНУТКА!
Задача Найдите угол между двумя ребрами правильного октаэдра, которые имеют общую вершину, но не принадлежат одной грани.
Задача Найти высоту правильного тетраэдра с ребром 12 см.
Кристалл имеет форму октаэдра, состоящего из двух правильных пирамид с общим основанием, ребро основания пирамиды 6 см. высота октаэдра 8 см. Найдите площадь боковой поверхности кристалла
Площадь поверхности Тетраэдр Икосаэдр Додекаэдр Гексаэдр Октаэдр
Задание на дом: mnogogranniki.ru Пользуясь развертками изготовить модели 1-го правильного многогранника со стороной 15 см, 1-го полуправильного многогранника
Спасибо за работу !
По теме: методические разработки, презентации и конспекты
Разработка урока по теме: Симметрия в пространстве. Правильные многогранники. Элементы симметрии правильных многогранников".
Методическое обоснование урока. Использование знаний из физики, астрономии, МХК, биологии на уроке геометрии при обобщении систематизации сведений по теме: «Симметрия в пространстве. Правил...
«Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрии правильного многогранника.»
Презентация к уроку геометрии в 10 классе по теме «Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрии правильного многогранника.»к учебнику Атанасяна Л.С....
Многогранники вокруг нас или мы внутри многогранника?
Данный материал познакомит учащихся с мнргогранным миром геометрии....
Обобщающий урок в 10 классе по теме: «Многогранники. Работа с многогранниками в программе Cabri 3D»
Интегрированный практикум по геометрии и информатике.Закрепить понятие о выпуклых многогранниках, их некоторых свойствах, выработка навыков решения задач на построение сечений многогранников в програм...
Моделирование многогранников. Правильные многогранники. Урок геометрии 10 класс.
Моделирование многогранников. Правильные многогранники» Предлагаемый сценарий урока основан на интеграции практической работы и исследовательской деятельности учащихся с мультимедийным сопровожде...
Многогранники. Вершины, ребра, грани многогранника. ТЕОРЕМА ЭЙЛЕРА.
Материал для урока геометрии....
Проект "Многогранники вокруг нас или мы внутри многогранников"
проект по теме "Многогранники вокруг нас или мы внутри многоранников" создан к Дню науки , проходящего в гимназии...