Контрольно - измерительный материал по теме :Площадь. Геометрия 8 класс.
методическая разработка по геометрии (8 класс) по теме

Бобер Елена Валентиновна

Контрольно- измерительный материал по геометрии для учащихся 8 класса.Зачетная работа  представлена в виде теоретической  и практической частей  по теме: " Площадь"

Скачать:

ВложениеРазмер
Файл zachet_po_teme_ploshchad.docx44.46 КБ

Предварительный просмотр:

Вопросы к зачету по теме: « Площадь»  (8 класс. Глава VI.)

  1. Сформулируйте основные свойства площадей многоугольников.
  2. Сформулируйте и докажите теорему о вычислении площади прямоугольника.
  3. Сформулируйте и докажите теорему о вычислении площади параллелограмма.
  4. Сформулируйте и докажите теорему о вычислении площади треугольника.
  5. Какой треугольник называется прямоугольным ? Как вычислить площадь прямоугольного треугольника по его катетам?
  6. Сформулируйте теорему об отношении  площадей двух треугольников, имеющих по равному углу.
  7. Сформулируйте и докажите теорему о вычислении площади трапеции
  8. Сформулируйте и докажите теорему Пифагора.
  9. Сформулируйте  теорему,  обратную теореме Пифагора.
  10. Какие треугольники называются пифагоровыми? Приведите примеры пифагоровых треугольников.
  11. Какой  треугольник называется египетским?  Объясните.

                  Задания   к зачету по теме: « Площадь»  (8 класс. Глава VI.)

Карточка № 1

Теоретическая часть.

  1. Сформулируйте основные свойства площадей многоугольников.
  2. Сформулируйте и докажите теорему о вычислении площади прямоугольника.

                                                           Практическая часть.

  1. В прямоугольном треугольнике катеты равны 15 и 20 см. Найти площадь
  2. Найти высоты параллелограмма со сторонами 10 и 6 см, если его площадь равна

30 см.

  1. Диагонали трапеции взаимно перпендикулярны и равны 4 и 10 см. Найти площадь трапеции.
  2. Найдите площадь ромба по его диагоналям 8 и 12 см.
  3. В прямоугольнике одна сторона равна 10, другая сторона равна 14. Найдите диагональ и  площадь прямоугольника.

Карточка № 2

Теоретическая часть.

  1. Какой треугольник называется прямоугольным ? Как вычислить площадь прямоугольного треугольника по его катетам?
  2. Сформулируйте и докажите теорему о вычислении площади параллелограмма.

                                                          Практическая часть.

  1. Найти площадь прямоугольного треугольника, если его гипотенуза равна 20 см, а один из катетов 12 см.
  2. Одна из сторон параллелограмма равна 20, а опущенная на нее высота равна 23. Найдите площадь параллелограмма.
  3. Одна из боковых сторон трапеции перпендикулярна основанию.
    Найти площадь трапеции, если один из её углов равен 45, а длина боковых сторон равны 6 и 8 см.
  4. В ромбе сторона равна 10, одна из диагоналей 12 . Найдите другую диагональ и  площадь ромба.
  5. В прямоугольнике одна сторона равна 1, другая сторона равна 17. Найдите диагональ и площадь прямоугольника.

Карточка № 3

Теоретическая часть.

  1. Какие треугольники называются пифагоровыми? Приведите примеры пифагоровых треугольников.
  2.  Сформулируйте и докажите теорему о вычислении площади треугольника.

                                                         Практическая часть.

  1. Прямоугольный треугольник с катетами 5 и 12 см. Найдите площадь и периметр треугольника
  2. Одна из сторон параллелограмма равна 16, а опущенная на нее высота равна 25. Найдите площадь параллелограмма.
  3. Основания трапеции равны 4 и 25, одна из боковых сторон равна , а угол между ней и одним из оснований равен . Найдите площадь трапеции.
  4. Сторона ромба равна 29, а диагональ равна 42. Найдите площадь ромба.
  5. В прямоугольнике одна сторона равна 13, другая сторона равна 9. Найдите  диагональ и площадь прямоугольника.

Карточка № 4

Теоретическая часть.

  1. Какой  треугольник называется египетским?  Объясните.
  2. Сформулируйте и докажите теорему о вычислении площади трапеции

                                                        Практическая часть.

  1. Найдите площадь равнобедренного треугольника с боковой стороной 17 см и основанием 16 см.
  2. Одна из сторон параллелограмма равна 19, а опущенная на нее высота равна 27. Найдите площадь параллелограмма
  3. Основания трапеции равны 16 и 18, одна из боковых сторон равна , а угол между ней и одним из оснований равен . Найдите площадь трапеции.
  4. Периметр ромба равен 28, а один из углов равен . Найдите площадь ромба.
  5. В прямоугольнике одна сторона равна 13, периметр равен 62. Найдите площадь прямоугольника.

Карточка № 5

Теоретическая часть.

  1. Сформулируйте теорему об отношении  площадей двух треугольников, имеющих по равному углу.
  2.  Сформулируйте и докажите теорему Пифагора.

                                                         Практическая часть.

  1. Найдите площадь правильного треугольника со стороной 8 см.
  2. Стороны параллелограмма равны 12 и 15 см. Высота проведённая к большей стороне, равна 8 см. Найти вторую высоту параллелограмма.
  3. Основания трапеции равны 21 и 22, одна из боковых сторон равна , а угол между ней и одним из оснований равен . Найдите площадь трапеции.
  4. В ромбе сторона равна 33, одна из диагоналей — , а угол, лежащий напротив этой диагонали, равен . Найдите площадь ромба.
  5. В прямоугольнике одна сторона равна 14, периметр равен 54. Найдите площадь прямоугольника.

Карточка № 6

Теоретическая часть.

  1.  Сформулируйте  теорему,  обратную теореме Пифагора.
  2. Сформулируйте и докажите теорему о вычислении площади прямоугольника.

                                                           Практическая часть.

  1. В прямоугольном треугольнике один из катетов равен , угол, лежащий напротив него, равен , а гипотенуза равна 34. Найдите площадь треугольника
  2. Диагональ параллелограмма, равная 13 см, перпендикулярна стороне равной 12 см. Найдите площадь параллелограмма.
  3. Основания трапеции равны 9 и 24, одна из боковых сторон равна , а угол между ней и одним из оснований равен . Найдите площадь трапеции.
  4. Сторона ромба равна 73, а диагональ равна 110. Найдите площадь ромба.
  5. В прямоугольнике диагональ равна 92, а угол между ней и одной из сторон равен , длина этой стороны равна 46. Найдите площадь прямоугольника.

Карточка № 7

Теоретическая часть.

  1. Сформулируйте основные свойства площадей многоугольников.  
  2. Сформулируйте и докажите теорему о вычислении площади прямоугольника.

                                                           Практическая часть.

  1. Периметр равнобедренного треугольника равен 392, а основание — 192. Найдите площадь треугольника.
  2. Стороны параллелограмма равны 12 и 15 см. Высота проведённая к большей стороне, равна 8 см. Найти вторую высоту параллелограмма.
  3. Основания трапеции равны 4 и 12, одна из боковых сторон равна , а угол между ней и одним из оснований равен . Найдите площадь трапеции
  4. Периметр ромба равен 128, а один из углов равен . Найдите площадь ромба
  5. В прямоугольнике одна сторона равна 84, а диагональ равна 91. Найдите площадь прямоугольника

Карточка № 8

Теоретическая часть.

  1. Какие треугольники называются пифагоровыми? Приведите примеры пифагоровых треугольников.  
  2. Сформулируйте и докажите теорему Пифагора.

                                                         Практическая часть

  1. В треугольнике одна из сторон равна 2, а опущенная на нее высота — 17. Найдите площадь треугольника.
  2. Смежные стороны параллелограмма равны 14 см и 12 см, а его острый угол равен .Найдите площадь параллелограмма
  3. Основания трапеции равны 1 и 17, одна из боковых сторон равна , а угол между ней и одним из оснований равен . Найдите площадь трапеции.
  4. В ромбе сторона равна 38, одна из диагоналей — , а угол, лежащий напротив этой диагонали, равен . Найдите площадь ромба.
  5. В прямоугольнике одна сторона равна 52, а диагональ равна 65. Найдите площадь прямоугольника

Карточка № 9

Теоретическая часть.

  1. Сформулируйте теорему об отношении  площадей двух треугольников, имеющих по равному углу .
  2. Сформулируйте и докажите теорему о вычислении площади трапеции

                                                        Практическая часть.

  1. Периметр равнобедренного треугольника равен 216, а основание — 96. Найдите площадь треугольника
  2. Стороны параллелограмма равны 24 см и 18 см, а его площадь равна 144 см². Найдите высоты параллелограмма
  3. Найдите площадь прямоугольной трапеции, у которой две меньшие стороны равны 6 см, а больший угол равен 135°
  4. Сторона ромба равна 95, а диагональ равна 114. Найдите площадь ромба.
  5. В прямоугольнике диагональ равна 42, а угол между ней и одной из сторон равен . Найдите площадь прямоугольника.

Карточка № 10

Теоретическая часть.

  1. Какой  треугольник называется египетским?  Объясните.  
  2. Сформулируйте и докажите теорему о вычислении площади треугольника.

                                                         Практическая часть.

  1. Периметр равностороннего треугольника равен 114. Найдите его площадь
  2. Стороны параллелограмма равны 10 см и 12 см, а один из углов 150°. Найдите площадь параллелограмма
  3. Высота трапеции равна 7 см, а одно из оснований в 5 раз больше другого. Найти основания трапеции, если её площадь равна 84 см².
  4. В ромбе сторона равна 22, одна из диагоналей — , а угол, из которого выходит эта диагональ, равен . Найдите площадь ромба.
  5. В прямоугольнике диагональ равна 96, угол между ней и одной из сторон равен , длина этой стороны . Найдите площадь прямоугольника.

Карточка № 11

Теоретическая часть.

  1. Сформулируйте  теорему,  обратную теореме Пифагора.
  2. Сформулируйте и докажите теорему о вычислении площади параллелограмма.

                                                          Практическая часть.

  1. В равнобедренном треугольнике боковая сторона равна 94, а угол, лежащий напротив основания, равен . Найдите площадь треугольника.
  2. Высоты параллелограмма равны 2 см и 6 см, а его площадь равна 48 см². Найдите  длины  сторон  параллелограмма
  3. В прямоугольной трапеции основания равны 6 см и 9 см, а большая боковая сторона равны 5 см. Найти площадь трапеции.
  4. В ромбе сторона равна 54, одна из диагоналей — 54, а угол, из которого выходит эта диагональ, равен . Найдите площадь ромба.
  5. В прямоугольнике одна сторона равна 45, а диагональ равна 53. Найдите площадь прямоугольника.

Карточка № 12

Теоретическая часть.

  1. Какой треугольник называется прямоугольным ? Как вычислить площадь прямоугольного треугольника по его катетам?  
  2. Сформулируйте и докажите теорему о вычислении площади прямоугольника.

                                                           Практическая часть.

  1. Высота равностороннего треугольника равна 7. Найдите его площадь.
  2. Высоты параллелограмма равны 12 см и 9 см, а его площадь равны 36 см². Найдите  длины  сторон  параллелограмма.
  3. В равнобедренной трапеции основания равны 6 см и 14 см, а боковая сторона равна 5 см. Найти площадь трапеции.
  4. Сторона ромба равна 90, а диагональ равна 144. Найдите площадь ромба.
  5. В прямоугольнике диагональ равна 4, а угол между ней и одной из сторон равен , длина этой стороны равна 2. Найдите площадь прямоугольника.

Карточка № 13

Теоретическая часть.

  1. Сформулируйте основные свойства площадей многоугольников.  
  2. Сформулируйте и докажите теорему о вычислении площади  параллелограмма.

                                                           Практическая часть.

  1. В прямоугольном треугольнике один из катетов равен 10, а острый угол, прилежащий к нему, равен . Найдите площадь треугольника.
  2. Стороны параллелограмма равны 8 см и 14 см, а один из углов 30°. Найдите площадь параллелограмма
  3. Разность оснований трапеции равна 6 см, а высота равна 8 см. Найти основания трапеции, если её площадь равна 56 см².
  4. В ромбе сторона равна 10, одна из диагоналей — 10, а угол, из которого выходит эта диагональ, равен . Найдите площадь ромба.
  5. В прямоугольнике одна сторона равна 16, периметр равен 58. Найдите площадь прямоугольника.

Карточка № 14 

Теоретическая часть.

  1. Сформулируйте  теорему,  обратную теореме Пифагора.
  2. Сформулируйте и докажите теорему о вычислении площади трапеции.

                                                          Практическая часть.

  1. Сторона равностороннего треугольника равна 48. Найдите его площадь.
  2. Периметр параллелограмма равен 66 см. Два угла параллелограмма  относятся как 1:5, а стороны 2:9. Найдите площадь параллелограмма.
  3. Высота трапеции в 3 раза меньше одного из оснований и в 5 раз меньше другого. Найти основания трапеции, если её площадь равна 100 см².
  4. В ромбе сторона равна 68, одна из диагоналей — 68, а угол, лежащий напротив этой диагонали, равен . Найдите площадь ромба.
  5. В прямоугольнике одна сторона равна 15, а диагональ равна 17. Найдите площадь прямоугольника

Карточка № 15

Теоретическая часть.

  1. Какой  треугольник называется египетским?  Объясните.
  2. Сформулируйте и докажите теорему Пифагора.

                                                         Практическая часть

  1. В прямоугольном треугольнике один из катетов равен 10, а угол, лежащий напротив него, равен . Найдите площадь треугольника.
  2. Периметр параллелограмма равен 32 см. Найдите площадь параллелограмма, если один из углов на  больше прямого угла, а одна из сторон равна 6 см.
  3. Высота,  проведенная из вершины тупого угла прямоугольной трапеции, отсекает квадрат, площадь которого равна 16 см². Найти площадь трапеции, если её тупой угол равен 135°
  4. В ромбе сторона равна 16, одна из диагоналей — , а угол, из которого выходит эта диагональ, равен . Найдите площадь ромба.
  5. Расстояние от точки пересечения диагоналей  прямоугольника до одной из его сторон в 8 раз меньше этой стороны. Найдите площадь прямоугольника, если его периметр равен 80 см.

Карточка № 16

Теоретическая часть.

  1. Какой треугольник называется прямоугольным ? Как вычислить площадь прямоугольного треугольника по его катетам?
  2. Сформулируйте и докажите теорему о вычислении площади  треугольника.

                                                         Практическая часть

  1. Найдите площадь треугольника со сторонами 17, 65 и 80 см.
  2. В параллелограмме острый угол равен 30°. Биссектриса этого угла делит сторону параллелограмма на отрезки 14 см и 9 см, считая от вершины тупого угла. Найдите площадь параллелограмма
  3. Острый угол равнобокой трапеции равен 45о. Сумма длин ее боковых сторон и меньшего основания равна 18√2 см. Найдите высоту и площадь трапеции, если ее диагональ является биссектрисой угла при основании.
  4. В ромбе сторона равна 54, одна из диагоналей — 54, а угол, из которого выходит эта диагональ, равен . Найдите площадь ромба.
  5. Расстояние от точки пересечения диагоналей  прямоугольника до одной из его сторон на 8 см меньше этой стороны. Найдите площадь прямоугольника, если его периметр равен 88 см.

Карточка № 17

Теоретическая часть.

  1. Какой треугольник называется прямоугольным ? Как вычислить площадь прямоугольного треугольника по его катетам?
  2. Сформулируйте и докажите теорему  Пифагора.

                                                         Практическая часть

  1. Стороны треугольника равны 8см, 10см, 12см. Найдите площадь  треугольника
  2. Стороны параллелограмма равны 24 см и 52 см, а один из углов 30°. Найдите площадь параллелограмма
  3. Боковые стороны прямоугольной трапеции равны 7 и 25 см, а меньшее основание – 2 см. Найдите площадь трапеции.
  4. В ромбе сторона равна 44, одна из диагоналей — 44, а угол, из которого выходит эта диагональ, равен . Найдите площадь ромба.
  5. Площади квадратов, построенных на сторонах прямоугольника, равны 64 см² и 121 см². Найдите площадь прямоугольника.

Карточка № 18

Теоретическая часть.

  1. Какие треугольники называются пифагоровыми? Приведите примеры пифагоровых треугольников.
  2. Сформулируйте и докажите теорему о вычислении площади  прямоугольника.

                                                         Практическая часть

  1. Площадь прямоугольного равнобедренного треугольника равна 16 см2. Найдите гипотенузу этого треугольника.
  2. Смежные стороны параллелограмма равны 28 см и 24 см, а его острый угол равен .Найдите площадь параллелограмма
  3. В равнобедренной трапеции основания равны 12 см и 20 см, а боковая сторона 5 см. Найдите площадь трапеции.
  4. В ромбе сторона равна 44, одна из диагоналей — 44, а угол, из которого выходит эта диагональ, равен . Найдите площадь ромба.
  5. Найдите площадь прямоугольника, если его периметр равен 144 см, а стороны относятся как 5:7.

Карточка № 19

Теоретическая часть.

  1. Сформулируйте  теорему,  обратную теореме Пифагора.
  2. Сформулируйте и докажите теорему о вычислении площади параллелограмма.

                                                          Практическая часть.

  1. Боковая сторона равнобедренного треугольника равна 15 см, а основание 24 см. Чему равна площадь треугольника?
  2. Высоты параллелограмма равны 5 см и 4 см, а периметр равен 42 см. Найдите площадь параллелограмма.
  3. В прямоугольной трапеции основания равны 22 и 6 см, а большая боковая сторона 20 см. Найдите площадь трапеции
  4. Одна из диагоналей ромба на 4 см больше другой, а площадь ромба равна 96 см2. Найдите стороны ромба.
  5. Найдите площадь прямоугольника, если его периметр равен 74 см, а разность сторон 17 см.

Карточка № 20

Теоретическая часть.

  1. Какой треугольник называется прямоугольным ? Как вычислить площадь прямоугольного треугольника по его катетам?
  2. Сформулируйте и докажите теорему  Пифагора.

                                                          Практическая часть.

  1. Площадь прямоугольного треугольника равна 24 м2, один катет которого в 3 раза больше другого. Найдите гипотенузу треугольника.
  2. Диагональ параллелограмма равна его стороне. Найдите площадь параллелограмма, если его большая его сторона равна 15,2 см, а один из углов равен
  3. Найдите площадь равнобедренной трапеции, у которой основания равны 16см и 18см, а боковая сторона составляет с одним из оснований угол в
  4. В ромбе сторона равна 10, одна из диагоналей —10, а угол, из которого выходит эта диагональ, равен . Найдите площадь ромба.
  5. Найти площадь квадрата, если его периметр равен 4 см.

По теме: методические разработки, презентации и конспекты

дифференцированный дидактический материал по теме "Площади" . Геометрия 8 класс

Дидактический материал содержит 3 уровня сложности, в каждом уровне 11 вариантов...

Дидактический материал по теме "Площади" геометрия 8 класс

Тест, зачёт, математический диктант, проверочная работа по теме "Площади" геометрия 8 класс...

Контрольно-измерительный материал по теме «Биология – наука о живом мире», 5 класс

        Контрольно-измерительный материал по теме «Биология – наука о живом мире» представлен в форме, отражающей специфику тестов в формате ЕГЭ (части А, ...

контрольно - измерительный материал по теме "Гидросфера", 6 класс

котнрольная работа для закрепления и контроля изученного материала по теме "Гидросфера"...