Золотое сечение
презентация к уроку (геометрия, 6 класс) по теме
Презентация представляет историю возникновения понятия Золотое сечение и его различные примеры в разных областях деятельности человека.
Скачать:
Вложение | Размер |
---|---|
zolotoe_sechenie12.pptx | 2.2 МБ |
Предварительный просмотр:
Подписи к слайдам:
Золотое сечение Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса , пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира , изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.
Зодчий Хесира . Рельеф. Начало 3 тыс. до н.э. «Портретный деревянный рельеф «Зодчий Хесира » создан в начале III тысячелетия до н.э., пятьдесят веков тому назад. Мускулистое стройное тело живет; чувствуется мерный ритм пружи-нящей поступи, орлиный профиль прекрасен. Глядя на этот рельеф, начина-ешь понимать, в чем художественный смысл « распластанности » египетских фигур. Египетские рисовальщики оценили значение плечевого пояса как кон-структивной основы туловища и раз навсегда выделили эту выразительную горизонтальность, пренебрегая тем, что она скрадывается при профильном положении фигуры. Они отобрали из фасного и профильного положения са-мые четкие, ясно читаемые аспекты, объединив их вместе с замечательной ограниченностью и при этом достигнув гармонии с двухмерной плоскостью, на которой помещено изображение.
П и р а м и д ы … Учеба Пифагора в Египте способствует тому, что он сделался одним из самых образованных людей своего времени. Здесь же Пифагор попадает в персидский плен. Согласно старинным легендам, в плену в Вавилоне Пифагор встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили Пифагора со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой
Пифагор Золотое сечение – гармоническая пропорция В математике пропорцией (лат. proportio ) называют равенство двух отношений: a : b = c : d . Отрезок прямой АВ можно разделить на две части следующими способами: на две равные части – АВ : АС = АВ : ВС ; на две неравные части в любом отношении (такие части пропорции не образуют); таким образом, когда АВ : АС = АС : ВС . Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении. Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b = b : c или с : b = b : а . Рис. 1. Геометрическое изображение золотой пропорции
Греция. Парфенон.
П Р И М Е Р Ы Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки. Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB ; CD = BC Из точки В восставляется перпендикуляр, равный половине АВ . Полученная точка С соединяется линией с точкой А . На полученной линии откладывается отрезок ВС , заканчивающийся точкой D . Отрезок AD переносится на прямую АВ . Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции. Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.
В ж и в о п и с и Красные линии - отношения " золотого сечения ". И вот что интересно: если продолжать "сечь" дальше таким же образом (в " золотой " пропорции, пополам и диагонали) - в композиции практически не находится ничего.
п р и р о д е Очень совершенна форма стрекозы, которая создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста. Многие насекомые (например, бабочки, стрекозы) в горизонтальном разрезе имеют простые асимметричные формы, основанные на золотом сечении.
К О С М О С Е Здесь космос предстает во всей красе, даже одна галактика кажется бесконечной, сразу навевая мысли о мизерности...
П о э з и и Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения. Рассмотрим, например, стихотворение А.С. Пушкина "Сапожник": Картину раз высматривал сапожник И в обуви ошибку указал; Взяв тотчас кисть, исправился художник, Вот, подбочась , сапожник продолжал: "Мне кажется, лицо немного криво ... А эта грудь не слишком ли нага? Тут Апеллес прервал нетерпеливо: "Суди, дружок, не выше сапога!" Есть у меня приятель на примете: Не ведаю, в каком бы он предмете Был знатоком, хоть строг он на словах, Но черт его несет судить о свете: Попробуй он судить о сапогах!
М У З Ы К Е Наиболее обширное исследование проявлений золотого сечения в музыке было предпринято Л.Сабанеевым. Им было изучено две тысячи произведений различных композиторов. По его мнению, временное протяжение музыкального произведения делится «некоторыми вехами», которые выделяются при восприятии музыки и облегчают созерцание формы целого. Все эти музыкальные вехи делят целое на части, как правило, по закону золотого сечения.
Золотое сечение Витрувий и император Август. Гравюра XVIII в. Витрувий сформулировал формулу архитектурного сооружения: «Прочность — польза — красота». Но что есть красота в архитектуре? В чем красота и очарование церкви Покрова на Нерли, маленькой (высота от основания до маковки — 24 метра), почти лишенной украшений, с простыми архитектурными формами? Построенная в 1165 году, она не потеряла своей привлекательности. Где кроется секрет красоты египетских пирамид, древнегреческого храма Парфенон, старой русской церкви Покрова на Нерли, Смольного собора в Петербурге, собора Парижской Богоматери в Париже? Французский зодчий 17 века Франсуа Блондель говорил: «Удовлетворение, которое мы испытываем, глядя на прекрасное произведение искусства, проистекает оттого, что в нем соблюдены правила и мера, ибо удовольствие в нас вызывает единственно лишь пропорции. Если же они отсутствуют, то, сколько бы мы ни украшали здание, эти наружные украшения не заменят нам внутреннюю красоту и привлекательность…» Тогда же родилось представление о том, что основой прекрасного является гармония. Красота и гармония стали важнейшими категориями познания, в определенной степени даже его целью, ибо в конечном итоге художник ищет истину в красоте, а ученый – красоту в истине. Исследования показывают, что поиск «правила и меры» в архитектурных сооружениях, как правило, приводят к Золотому сечению и числу Фи.
Список источников http://n-t.ru/tp/iz/zs.htm http://yandex.ru/yand http://armacolor.net/i http://ru.wikipedia.org/
По теме: методические разработки, презентации и конспекты
Исследовательская работа "Золотое сечение"
Золотое сечение в математике, биологии, искусстве...
"Золотое сечение и его использование в искусстве"
Презентация - поддержка интегрированного урока (математика + ИЗО) по теме " Золотое сечение и его использование в искусстве" с использованием интерактивной доски....
Золотое сечение в архитектуре
Презентация раскрывает тему Золотого сечения в архитектуре Древнего мира, архитектуре разных стран мира, архитектуре России и города Батайска Ростовской области. Работа может быть использована на урок...
Золотое сечение в природе
Презентация "Золотое сечение в природе": история золотого сечения, золотое сечение в живой и неживой природе, золотое сечение тела человека, филлотаксис, числа Фибоначчи в природе. Применяется на урок...
Золотое сечение в искусстве
Золотое сечение в искусстве: золотоесечение в живописи и фотографии, золотое сечение в музыке, поэзии, золотое сечение в скульптуре....
Золотое сечение в математике
Золотое сечение в математике: история золотого сечения, ряд Фибоначчи, математическая гармония, понятие "Золотое сечение", золотое сечение в геометрии: деление отрезка в золотом отношении, золотой тре...
Разработка урока по теме "Золотое сечение"
Предмет: Геометрия. Класс: 9, общеобразовательный. Тема урока: «Золотое сечение» Задачи: Дать понятия «золотого сечения», «золотого треугольника», «золотого прямоугольника», «золотой...