Урок математики в 8 классе по теме: «Синус, косинус и тангенс острого угла прямоугольного треугольника»
методическая разработка (геометрия, 8 класс) по теме
В работе «Урок математики в 8 классе по теме: «Синус, косинус и тангенс острого угла прямоугольного треугольника» представлены развёрнутый конспект урока с использованием ИКТ, мультимедийная презентация к уроку и интерактивный кроссворд в программе Excel.
Скачать:
Вложение | Размер |
---|---|
krynina_s.i.rar | 149.65 КБ |
Предварительный просмотр:
Урок математики в 8 классе по теме: «Синус, косинус и тангенс острого угла прямоугольного треугольника»
Учитель математики МОУСОШ № 50 г. Воронежа Крынина С.И.
Цели урока:
Образовательные:
формировать понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника;
Развивающие:
развивать способности к самостоятельному планированию и организации работы; навыки коррекции собственной деятельности через применение информационных технологий; умение обобщать, абстрагировать и конкретизировать знания
Воспитательные:
воспитывать познавательный интерес к математике, информационную культуру и культуру общения, самостоятельность, способность к коллективной работе.
Оборудование: компьютерный класс, мультимедиапроектор, интерактивная доска компьютерная презентация по теме (Приложение1), индивидуальные задания на компьютере, учебное электронное пособие «Математика 5-11».
Тип урока: урок изучения и первичного закрепления новых компетенций
Методы: проблемно-поисковый, индуктивный, метод групповой работы, самостоятельной работы.
Ход урока:
Организационный момент.
Мобилизация учебной деятельности учащихся: доброжелательный настрой учителя и учащихся, быстрое включение класса в деловой ритм, организация внимания всех учащихся, полная готовность класса и оборудования к работе. Повторение правил техники безопасности работы на компьютере.
Ролевая игра: для подготовки компьютерного класса, загрузки учебного сайта, инсталлирования программ, смены дидактических материалов на компьютерах из числа учащихся выбирается подготовленный системный администратор.
I этап. Обеспечение мотивации и принятия учащимися цели учебно-познавательной деятельности, актуализация опорных знаний и умений.
1) Сообщение целей и задач урока.
2) Проверка домашнего задания: выявление факта выполнения домашнего задания у всех учащихся, обнаружение причин невыполнения домашнего задания отдельными учащимися, устранение типичных ошибок
II этап. Актуализация ЗУН, необходимых для творческого применения знаний.
Математический диктант. Метод проведения – индивидуальная работа учащихся с последующим коллективным обсуждением и записями на интерактивной доске.
1. Назовите стороны треугольника МРК.
2. Чему равна сумма углов треугольника?
3. Сформулировать теорему о соотношениях между сторонами и углами треугольника.
4.Сформулировать следствие о величине гипотенузы и катета в прямоугольном треугольнике.
5.Сформулировать свойство катета прямоугольного треугольника, лежащего против угла 30°.
III этап. Усвоение новых компетенций и способов действий
1.Ввести понятие катетов, прилежащих к противолежащему углу.
2.Ввести понятие синуса, косинуса, тангенса острого угла прямоугольного треугольника, их обозначения.
3. Доказательство основного тригонометрического равенства
Пусть АВС – прямоугольный треугольник с прямым углом С и острым углом при вершине А, равным .
В
С А
АВ – гипотенуза
ВС - катет
АС - катет
Синусом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к гипотенузе.
Косинусом острого угла в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе.
Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему.
Котангенсом острого угла в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.
Эти правила позволяют, зная одну из сторон прямоугольного треугольника и острый угол, находить две другие стороны; зная две стороны, находить острые углы.
a = c sin α a = b tg α
b = c cos α b = a ctg α
Основное тригонометрическое тождество.
sin2A + cos2A = 1
Используя формулы синуса и косинуса получаем
sin2A + cos2A =
по теореме Пифагора BC2 + AC2 = AB2, отсюда следует sin2A + cos2A = 1
Применяя основное тригонометрическое тождество и формулы синуса, косинуса и тангенса можно вычислить значения синуса, косинуса и тангенса для углов 300, 450, 600.
Учащимся предлагается выполнить нахождение величин самостоятельно, после чего результаты заносятся в сводную таблицу.
300 | 450 | 600 | |
sin | |||
cos | |||
tg | 1 |
IV этап. Первичная проверка понимания
Творческая работа
Решить задачу. В прямоугольном треугольнике даны гипотенуза с и острый угол α. Найти катеты, их проекции на гипотенузу и высоту, опущенную на гипотенузу.
С
А D c В
Решение.
AC = AB cos α = c cos α;
BC = AB sin α = c sin α;
BD = BC sin α = c sin² α;
AD = AC cos α = c cos² α;
СВ = AC sin α = c sin α cos α
V. Закрепление знаний и способов действий.
Решение прикладных задач
1.Найти высоту дерева, если расстояние от наблюдателя до ствола дерева равно 9м, а угол, под которым он видит макушку дерева, равен 300.
2.Найдите угол наклона Пизанской башни, если высота башни равна 60м, а камень, брошенный с верхней площадки башни, пролетает 50м.
3.Тень от вертикально стоящего шеста, высота которого 3 м, составляет 3 м.
Выразите в градусах высоту Солнца над горизонтом.
4.С какой силой F надо удерживать груз весом Р на наклонной плоскости, чтобы он не сползал вниз?
Решение.
Пусть О – центр тяжести груза, к которому приложена сила. Разложим вектор по двум взаимно перпендикулярным направлениям, как показано на рисунке. Сила перпендикулярна наклонной плоскости и не вызывает перемещения груза. Сила, удерживающая груз, должна быть равной по величине и противоположной по направлению силе. Поэтому
F = P sin α
5.Груз Р массой 1 т поддерживается двумя стержнями АВ и ВС, прикрепленными к стене при помощи шарниров. Определите силу, действующую на стержни, если ÐСАВ = 90°, а ÐАСВ= 60°.
Информационные материалы.
- Пифагор. Занимательная математика. Халамайзер А.Я. Москва
- «Высшая школа» 1994г.
- Живая математика. Перельман Я. И. Москва «Наука» 1978 г.
- Интеллектуальный пир. Серия «Клуб эрудитов» Выпуск 2. Кострома ИМЦ «Вариант» 1993 г.
- Коллекция 80000 анимаций. - www.animashky.ru
- Большая энциклопедия Кирилла и Мефодия, 8 CD-ROM, 2002 г.
- Электронные ресурсы сайта «Сеть творческих учителей»
- 8.Электронные ресурсы сайта «Фестиваль педагогических идей «Открытый урок»
- Учебное электронное пособие «Математика 5-11», Дрофа
- Учебно-методическое пособие. Взаимосвязь теории с практикой в процессе изучения математики. Возняк Г.М., Маланюк М.П. Киев. «Радянська школа»
По теме: методические разработки, презентации и конспекты
Синус, косинус и тангенс острого угла прямоугольного треугольника
Презентация к уроку геометрии в 8 классе...
8 класс Геометрия Синус, косинус и тангенс острого угла прямоугольного треугольника
8 класс Геометрия Синус, косинус и тангенс острого угла прямоугольного треугольника...
Самостоятельная работа по теме; "Синус косинус и тангенс острых углов прямоугольного треугольника"
Синус косинус и тангенс острых углов прямоугольного треугольника, построение угла...
Презентация: "Синус, косинус и тангенс острого угла прямоугольного треугольника".
Замечательная презентация по теме для первого урока....
Презентация к уроку геометрии в 8 классе по теме "Синус, косинус и тангенс острого угла"
Презентация к уроку геометрии в 8 классе по теме "Синус, косинус и тангенс острого угла" содержит вводный теоретический материал и примеры задач....
Презентация по теме "Синус, косинус и тангенс острого угла прямоугольного треугольника"
Презентация предназначена для учащихся 8 класса. В ней отражены основные тригонометрические функции, формулы, определения, связь катетов с гипотенузой. Учащиеся могут наглядно применить полученные зна...
Синус, косинус и тангенс острого угла прямоугольного треугольника.
Презентация: "Синус, косинус и тангенс острого угла прямоугольного треугольника", геометрия, 8 класс....