Рабочая программа по геометрии для 9 класса вечерней школы к учебнику А.В. Погорелова
рабочая программа по геометрии (9 класс) по теме

Рабочая программа по геметрии для 9 класса вечерней школы состоит из пояснительной записки, требований к уровню подготовки обучающихся, критерий и норм оценок знаний, умений и навыков обучающихся, календарно-тематического планирования, списка литературы.

Скачать:

ВложениеРазмер
Microsoft Office document icon rabochaya_programma_po_geometrii_pogorelov..doc136 КБ

Предварительный просмотр:

Муниципальное образовательное учреждение

районная вечерняя ( сменная)общеобразовательная школа

«Рассмотрено»                «Согласовано»                                           «Утверждаю»

на заседании МО                зам.директора по УВР                Директор МОУРВ(с)ОШ  ___

Протокол №____

Руководитель МО

«___» ________ 200__ г.        «___» ________ 200__ г.                    «___» ________ 200__ г.

РАБОЧАЯ ПРОГРАММА

по геометрии для 9 класса

вечерней школы

                                                                                           Составитель : учитель МОУРВ(с)ОШ  

                                                                                  Клыгина Татьяна Александровна

200___ 200___ уч. год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Статус документа

        Настоящая программа по геометрии для вечерней ( сменной) общеобразовательной школы 9  класса составлена на основе федерального компонента государственного стандарта основного  общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике  (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263),  «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236), примерной программы общеобразовательных учреждений по геометрии 7–9 классы,  к учебнику Погорелов А.В.Геометрия. учебник для 7-9 классов образовательных учреждений- М. Просвещение.2010г.

        Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Цель изучения:

  1. овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  2. интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  3. формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  4. воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
  5. приобретение конкретных знаний о пространстве и практически значимых умений, фор мирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи ческой культуры, для эстетического воспитания обучающихся. Изу чение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Общая характеристика учебного предмета

        Общая характеристика учебного предмета

        Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

        Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

        Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

        Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

        При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

        Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

        развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

        овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

        изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

        развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

        получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

        развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

        сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Количество учебных часов:

В год – 36 часов (1 час в неделю)

В том числе:

Контрольных работ - 4

 

Формы промежуточной и итоговой аттестации: контрольные работы, самостоятельные работы, тесты.

Уровень обучения – базовый.

Раздел

Количество часов в рабочей программе

Подобие фигур.Метрические соотношения в треугольнике.

18

Многоугольники .Площади фигур. Элементы стереометрии

18

Внесение данных изменений позволит охватить весь изучаемый материал по программе, повысить уровень обученности учащихся по предмету, а также более эффективно осуществить индивидуальный подход к обучающимся.

Срок реализации рабочей учебной программы – один учебный год.

        В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

Требования к уровню подготовки обучающихся  в 9 классе

В ходе преподавания геометрии в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овла девали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

        планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

        решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

        исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

        ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

        проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

        поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса геометрии 9 класса обучающиеся должны:

знать/понимать[1]        

  1. существо понятия математического доказательства; примеры доказательств;
  2. существо понятия алгоритма; примеры алгоритмов;
  3. как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  4. как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  5. как потребности практики привели математическую науку к необходимости расширения понятия числа;
  6. вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  7. каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
  8. смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Геометрия

уметь

  1. пользоваться языком геометрии для описания предметов окружающего мира;
  2. распознавать геометрические фигуры, различать их взаимное расположение;
  3. изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
  4. распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
  5. в простейших случаях строить сечения и развертки пространственных тел;
  6. проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
  7. вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  8. решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
  9. проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
  10. решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  1. описания реальных ситуаций на языке геометрии;
  2. расчетов, включающих простейшие тригонометрические формулы;
  3. решения геометрических задач с использованием тригонометрии
  4. решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  5. построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  1. работа выполнена полностью;
  2. в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  3. в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  1. работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  2. допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  1.  допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

  1. допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  1. работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  1. полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  2. изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  3. правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  4. показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  5. продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  6. отвечал самостоятельно, без наводящих вопросов учителя;
  7. возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  1. в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  2. допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  3. допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  1. неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
  2. имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  3. ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  4. при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  1. не раскрыто основное содержание учебного материала;
  2. обнаружено незнание учеником большей или наиболее важной части учебного материала;
  3. допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

  1. ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  1. незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
  2. незнание наименований единиц измерения;
  3. неумение выделить в ответе главное;
  4. неумение применять знания, алгоритмы для решения задач;
  5. неумение делать выводы и обобщения;
  6. неумение читать и строить графики;
  7. неумение пользоваться первоисточниками, учебником и справочниками;
  8. потеря корня или сохранение постороннего корня;
  9. отбрасывание без объяснений одного из них;
  10. равнозначные им ошибки;
  11. вычислительные ошибки, если они не являются опиской;
  12.  логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  1. неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
  2. неточность графика;
  3. нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
  4. нерациональные методы работы со справочной и другой литературой;
  5. неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  1. нерациональные приемы вычислений и преобразований;
  2. небрежное выполнение записей, чертежей, схем, графиков.

Календарно-тематическое планирование

Дата

Тема урока

Кол-во часов

Зачетный раздел №1 «Подобие фигур.Метрические соотношения в треугольнике».

( 18 часов)

1

Преобразование подобия.

1 ч.

2

Свойства преобразования подобия

3

Подобие фигур.

1 ч.

4

Признак подобия треугольников по двум углам

5

Признак подобия треугольников по двум сторонам и углу между ними

1ч.

6

Признак подобия треугольников по трем сторонам

1 ч.

7

Подобие прямоугольных треугольников

1ч.

8

Теорема косинусов

1 ч.

9

Решение задач на теорему косинусов.

1ч.

10

Теорема синусов

1 ч.

11

Решение задач на теорему синусов

1ч.

12

Соотношения м/у сторонами и углами треугольника.

1 ч.

13

Решение треугольников

1ч.

14

Решение геометрических задач

1 ч.

15

Самостоятельная работа

16

Подготовка к контрольной работе

17

Контрольная работа №1 по теме « Подобие фигур.Метрические соотношения в труегольнике». Зачет

1 ч.

18

Работа над ошибками

Зачетный раздел №2 «Многокгольники.площади фигур.Элементы стереометрии»

( 18 часов)

19

Ломанная. Длина ломанной . Периметр многоугольника

20

Выпуклые многоугольники.Сумма выпуклого многоугольника. Правельные многоугольники

21

Вписанные и описанные многоугольники

Формулы для радиусов вписанных и описанных многоугольников

22

Решение задач на построение некоторых правельных многоугольников

23

Подобие правильно многоугольника

24

Длина окружности

25

Радианная мера угла

26

Понятие площади.Площадь многоугольника

27

Площадь параллелограмма.

28

Площадь треугольника.Формула Герона

29

Площадь трапеции

30

Площадь подобных фигур.Площадь круга

31

Самостоятельная работаПодготовка к контрольной работе

32

Контрольная работа №2 по теме «Многоугольники , площади фигур». Зачет

33

Работа над ошибками

34

Аксиомы стереометрии.Параллельность прямых и плоскостей в пространстве.

35

Перпендикулярность прямых и плоскостей в пространстве.

36

Многогранники, тела вращения.

Обобщающая консультация

Список литературы:

  1. Федеральный компонент государственных образовательных стандартов  основного общего  образования (приказ Минобрнауки от 05.03.2004г. № 1089).
  2. Временные требования к минимуму содержания основного общего образования (утверждены приказом МО РФ от 19.05.98 № 1236).
  3. Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263)
  4. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000.
  5. Гусев В. А. Геометрия: дидакт. материалы для 9 кл. / В. А. Гу сев, А. И. Медяник. — М.: Просвещение, 2003—2008.
  6. Зив Б. Г. .Геометрия:   дидакт.   материалы  для   9 кл. / Б. Г. Зив, В. М. Мейлер. 7.
  7. М.: Просвещение, 2004—2008.

учебнику Погорелов А.В.Геометрия. учебник для 7-9 классов образовательных учреждений- М. Просвещение.2007г.

Дополнительная литература:

  1. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;
  2. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение, 2005.
  3. Гаврилова Н.Ф. Поурочные разработки по геометрии: 9 класс. – М.: ВАКО, 2005.


[1]         Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.


По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии 9 класс по учебнику Погорелова

Рабочая программа разработана на основе программы общеобразовательных учреждений. Геометрия. 7 – 9 классы / составитель: Бурмистрова Т. А. - М: Просвещение, 2008. Примерная программа по математике сос...

Рабочая программа по геометрии 7-9 кл к учебнику А.В.Погорелова (ФГОС)

Рабочая программа по геометрии для 7-9 классов по учебнику А.В.Погорелова, соответствует ФГОС....

рабочая программа по геометрии 10 класс по ФГОС учебник Атанасян, 2 часа в год

Планирование составлено на основе сборника рабочих программ «Геометрия. Программы общеобразовательных учреждений. 10-11 классы»,   составитель: Т.А. Бурмистрова   Москв...

Рабочая программа по геометрии 7 класс ФГОС к учебнику «Геометрия 7-9 классы» Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.

Рабочая программа по геометрии содержит в себе цели, задачи предмета на данном этапе изучения. Включает в себя календарный график и тематическое планирование. Рассчитана на 2 урока в неделю, то есть 6...

Рабочая программа по геометрии 8 класс ФГОС к учебнику «Геометрия 7-9 классы» Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.

Рабочая программа по геометрии содержит в себе цели и задачи, предметные результаты, тематическое планирование. Включает в себя календарный график и тематическое планирование. Рассчитана на 2 урока в ...

Рабочая программа по геометрии 9 класс ФГОС к учебнику «Геометрия 7-9 классы» Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.

Рабочая программа по геометрии содержит в себе цели и задачи, предметные результаты, тематическое планирование. Включает в себя календарный график и тематическое планирование. Рассчитана на 2 урока в ...

Рабочая программа по геометрии 10 класс ФГОС к учебнику «Геометрия 10-11 классы» Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.

Рабочая программа по геометрии содержит в себе цели и задачи, предметные результаты, тематическое планирование. Включает в себя календарный график и тематическое планирование. Рассчитана на 2 урока в ...