1 Кинематика
материал для подготовки к егэ (гиа) по физике (9 класс)

Основные материалы для подготовки к экзамену

Скачать:

ВложениеРазмер
Файл kinematika.docx208.57 КБ

Предварительный просмотр:

   Кинематика

    Основные теоретические сведения

         Оглавление:

    Система СИ

    Путь и перемещение

    Средняя скорость

    Равноускоренное прямолинейное движение

    Свободное падение по вертикали

    Горизонтальный бросок

    Бросок под углом к горизонту (с земли на землю)

    Сложение скоростей

    Равномерное движение по окружности

 

Основные теоретические сведения

К оглавлению...

Система СИ

Основные единицы измерения величин в системе СИ таковы:

  1. единица измерения длины - метр (1 м),
  2. времени - секунда (1 с),
  3. массы - килограмм (1 кг),
  4. количества вещества - моль (1 моль),
  5. температуры - кельвин (1 К),
  6. силы электрического тока - ампер (1 А),
  7. Справочно: силы света - кандела (1 кд, фактически не используется при решении школьных задач).

При выполнении расчетов в системе СИ углы измеряются в радианах.

Если в задаче по физике не указано, в каких единицах нужно дать ответ, его нужно дать в единицах системы СИ или в производных от них величинах, соответствующих той физической величине, о которой спрашивается в задаче. Например, если в задаче требуется найти скорость, и не сказано в чем ее нужно выразить, то ответ нужно дать в м/с.

Для удобства в задачах по физике часто приходится использовать дольные (уменьшающие) и кратные (увеличивающие) приставки. их можно применять к любой физической величине. Например, мм – миллиметр, кт – килотонна, нс – наносекунда, Мг – мегаграмм, ммоль – миллимоль, мкА – микроампер. Запомните, что в физике не существует двойных приставок. Например, мкг – это микрограмм, а не милликилограмм. Учтите, что при сложении и вычитании величин Вы можете оперировать только величинами одинаковой размерности. Например, килограммы можно складывать только с килограммами, из миллиметров можно вычитать только миллиметры, и так далее. При переводе величин пользуйтесь следующей таблицей.

Таблица дольных и кратных приставок в физике:

Таблица дольных и кратных приставок в физике

 

Путь и перемещение

К оглавлению...

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Всякое тело имеет определенные размеры. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать материальной точкой. Так при движении автомобиля на большие расстояния можно пренебречь его длиной, так как длина автомобиля мала по сравнению с расстояниями, которое он проходит.

Интуитивно понятно, что характеристики движения (скорость, траектория и т.д.) зависят от того, откуда мы на него смотрим. Поэтому для описания движения вводится понятие системы отсчета. Система отсчета (СО) – совокупность тела отсчета (оно считается абсолютно твердым), привязанной к нему системой координат, линейки (прибора, измеряющего расстояния), часов и синхронизатора времени.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает в данной СО некоторую линию, которую называют траекторией движения тела.

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение есть векторная величина. Перемещение может в процессе движения увеличиваться, уменьшаться и становиться равным нулю.

Пройденный путь равен длине траектории, пройденной телом за некоторое время. Путь – скалярная величина. Путь не может уменьшаться. Путь только возрастает либо остается постоянным (если тело не движется). При движении тела по криволинейной траектории модуль (длина) вектора перемещения всегда меньше пройденного пути.

При равномерном (с постоянной скоростью) движении путь L может быть найден по формуле:

Формула Путь при равномерном движении

где: v – скорость тела, t – время в течении которого оно двигалось. При решении задач по кинематике перемещение обычно находится из геометрических соображений. Часто геометрические соображения для нахождения перемещения требуют знания теоремы Пифагора.

 

Средняя скорость

К оглавлению...

Скорость – векторная величина, характеризующая быстроту перемещения тела в пространстве. Скорость бывает средней и мгновенной. Мгновенная скорость описывает движение в данный конкретный момент времени в данной конкретной точке пространства, а средняя скорость характеризует все движение в целом, в общем, не описывая подробности движения на каждом конкретном участке.

Средняя скорость пути – это отношение всего пути ко всему времени движения:

Формула Средняя скорость пути

где: Lполн – весь путь, который прошло тело, tполн – все время движения.

Средняя скорость перемещения – это отношение всего перемещения ко всему времени движения:

Формула Средняя скорость перемещения

Эта величина направлена так же, как и полное перемещение тела (то есть из начальной точки движения в конечную точку). При этом не забывайте, что полное перемещение не всегда равно алгебраической сумме перемещений на определённых этапах движения. Вектор полного перемещения равен векторной сумме перемещений на отдельных этапах движения.

  • При решении задач по кинематике не совершайте очень распространенную ошибку. Средняя скорость, как правило, не равна среднему арифметическому скоростей тела на каждом этапе движения. Среднее арифметическое получается только в некоторых частных случаях.
  • И уж тем более средняя скорость не равна одной из скоростей, с которыми двигалось тело в процессе движения, даже если эта скорость имела примерно промежуточное значение относительно других скоростей, с которыми двигалось тело.

 

Равноускоренное прямолинейное движение

К оглавлению...

Ускорение – векторная физическая величина, определяющая быстроту изменения скорости тела. Ускорением тела называют отношение изменения скорости к промежутку времени, в течение которого происходило изменение скорости:

Определение ускорения при равноускоренном движении

где: v0 – начальная скорость тела, v – конечная скорость тела (то есть спустя промежуток времени t).

Далее, если иное не указано в условии задачи, мы считаем, что если тело движется с ускорением, то это ускорение остается постоянным. Такое движение тела называется равноускоренным (или равнопеременным). При равноускоренном движении скорость тела изменяется на одинаковую величину за любые равные промежутки времени.

Равноускоренное движение бывает собственно ускоренным, когда тело увеличивает скорость движения, и замедленным, когда скорость уменьшается. Для простоты решения задач удобно для замедленного движения брать ускорение со знаком «–».

Из предыдущей формулы, следует другая более распространённая формула, описывающая изменение скорости со временем при равноускоренном движении:

Формула Зависимость скорости от времени при равноускоренном движении

Перемещение (но не путь) при равноускоренном движении рассчитывается по формулам:

Формула Перемещение при равноускоренном прямолинейном движении

Формула Перемещение при равноускоренном прямолинейном движении

Формула Перемещение при равноускоренном прямолинейном движении

В последней формуле использована одна особенность равноускоренного движения. При равноускоренном движении среднюю скорость можно рассчитывать, как среднее арифметическое начальной и конечной скоростей (этим свойством очень удобно пользоваться при решении некоторых задач):

Формула Средняя скорость при равноускоренном движении

С расчетом пути все сложнее. Если тело не меняло направления движения, то при равноускоренном прямолинейном движении путь численно равен перемещению. А если меняло – надо отдельно считать путь до остановки (момента разворота) и путь после остановки (момента разворота). А просто подстановка времени в формулы для перемещения в этом случае приведет к типичной ошибке.

Координата при равноускоренном движении изменяется по закону:

Формула Координата при равноускоренном движении

Проекция скорости при равноускоренном движении изменяется по такому закону:

Формула Проекция скорости при равноускоренном движении

Аналогичные формулы получаются для остальных координатных осей. Формула для тормозного пути тела:

Формула для тормозного пути тела

 

Свободное падение по вертикали

К оглавлению...

На все тела, находящиеся в поле тяготения Земли, действует сила тяжести. В отсутствие опоры или подвеса эта сила заставляет тела падать к поверхности Земли. Если пренебречь сопротивлением воздуха, то движение тел только под действием силы тяжести называется свободным падением. Сила тяжести сообщает любым телам, независимо от их формы, массы и размеров, одинаковое ускорение, называемое ускорением свободного падения. Вблизи поверхности Земли ускорение свободного падения составляет:

Ускорение свободного падения

Это значит, что свободное падение всех тел вблизи поверхности Земли является равноускоренным (но не обязательно прямолинейным) движением. Вначале рассмотрим простейший случай свободного падения, когда тело движется строго по вертикали. Такое движение является равноускоренным прямолинейным движением, поэтому все изученные ранее закономерности и фокусы такого движения подходят и для свободного падения. Только ускорение всегда равно ускорению свободного падения.

Традиционно при свободном падении используют направленную вертикально ось OY. Ничего страшного здесь нет. Просто надо во всех формулах вместо индекса «х» писать «у». Смысл этого индекса и правило определения знаков сохраняется. Куда направлять ось OY – Ваш выбор, зависящий от удобства решения задачи. Вариантов 2: вверх или вниз.

Приведем несколько формул, которые являются решением некоторых конкретных задач по кинематике на свободное падение по вертикали. Например, скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Формула Скорость, с которой упадет тело падающее с высоты без начальной скорости

Время падения тела с высоты h без начальной скорости:

Формула Время падения тела с высоты без начальной скорости

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v0, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Формула Максимальная высота на которую поднимется тело, брошенное вертикально вверх

Формула Время подъема тела брошенного вертикально вверх на максимальную высоту

Формула Полное время полета тела брошенного вертикально вверх (до возвращения в исходную точку)

 

Горизонтальный бросок

К оглавлению...

При горизонтальном броске с начальной скоростью v0 движение тела удобно рассматривать как два движения: равномерное вдоль оси ОХ (вдоль оси ОХ нет никаких сил препятствующих или помогающих движению) и равноускоренного движения вдоль оси OY.

Скорость в любой момент времени направлена по касательной к траектории. Ее можно разложить на две составляющие: горизонтальную и вертикальную. Горизонтальная составляющая всегда остается неизменной и равна vx = v0. А вертикальная возрастает по законам ускоренного движения vy = gt. При этом полная скорость тела может быть найдена по формулам:

Формула Полная скорость тела брошенного вертикально

Формула Полная скорость при горизонтальном броске

При этом важно понять, что время падения тела на землю никоим образом не зависит от того, с какой горизонтальной скоростью его бросили, а определяется только высотой, с которой было брошено тело. Время падения тела на землю находится по формуле:

Формула Время падения тела при горизонтальном броске

Пока тело падает, оно одновременно движется вдоль горизонтальной оси. Следовательно, дальность полета тела или расстояние, которое тело сможет пролететь вдоль оси ОХ, будет равно:

Формула Дальность полета тела при горизонтальном броске

Угол между горизонтом и скоростью тела легко найти из соотношения:

Угол между горизонтом и скоростью при горизонтальном броске

Также иногда в задачах могут спросить о моменте времени, при котором полная скорость тела будет наклонена под определенным углом к вертикали. Тогда этот угол будет находиться из соотношения:

Угол между вертикалью и скоростью при горизонтальном броске

Траектория полета тела при горизонтальном броске

Важно понять, какой именно угол фигурирует в задаче (с вертикалью или с горизонталью). Это и поможет вам выбрать правильную формулу. Если же решать эту задачу координатным методом, то общая формула для закона изменения координаты при равноускоренном движении:

Закон изменения координаты пр равноускоренном движении

Преобразуется в следующий закон движения по оси OY для тела брошенного горизонтально:

Закон изменения координаты OY для свободно падающего тела

При ее помощи мы можем найти высоту на которой будет находится тело в любой момент времени. При этом в момент падения тела на землю координата тела по оси OY будет равна нулю. Очевидно, что вдоль оси OХ тело движется равномерно, поэтому в рамках координатного метода горизонтальная координата изменятся по закону:

Закон изменения координаты OX для свободно падающего тела

 

Бросок под углом к горизонту (с земли на землю)

К оглавлению...

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Формула Максимальная высота подъема при броске под углом к горизонту

Время подъема до максимальной высоты при броске под углом к горизонту:

Формула Время подъема до максимальной высоты при броске под углом к горизонту

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Формула Дальность полета тела брошенного под углом к горизонту

Формула Полное время полета тела брошенного под углом к горизонту

Минимальная скорость тела брошенного под углом к горизонту – в наивысшей точке подъёма, и равна:

Минимальная скорость тела при броске под углом к горизонту

Максимальная скорость тела брошенного под углом к горизонту – в моменты броска и падения на землю, и равна начальной. Это утверждение верно только для броска с земли на землю. Если тело продолжает лететь ниже того уровня, с которого его бросали, то оно будет там приобретать все большую и большую скорость.

 

Сложение скоростей

К оглавлению...

Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. Таким образом, покой и движение тела относительны. Классический закон сложения скоростей:

Классический закон сложения скоростей

Таким образом, абсолютная скорость тела равна векторной сумме его скорости относительно подвижной системы координат и скорости самой подвижной системы отсчета. Или, другими словами, скорость тела в неподвижной системе отсчета равна векторной сумме скорости тела в подвижной системе отсчета и скорости подвижной системы отсчета относительно неподвижной.

 

Равномерное движение по окружности

К оглавлению...

Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.


Движение тела по окружности

Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

Определение периода вращения

Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

Определение частоты вращения

В обеих формулах: N – количество оборотов за время t. Как видно из вышеприведенных формул, период и частота величины взаимообратные:

Формулы Связь периода и частоты

При равномерном вращении скорость тела будет определяется следующим образом:

Формула Линейная скорость при равномерном движении по окружности

где: l – длина окружности или путь, пройденный телом за время равное периоду T. При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt. Очевидно, что за время равное периоду T тело пройдет угол равный 2π, следовательно при равномерном движении по окружности выполняются формулы:

Формула Угловая скорость вращения

Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

Формула Связь угла поворота и пути при равномерном движении по окружности

Связь между модулем линейной скорости v и угловой скоростью ω:

Формула Связь линейной и скорости и угловой скорости

При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением, так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

Движение тела по окружности

Модуль центростремительного ускорения связан с линейной v и угловой ω скоростями соотношениями:

Формула Центростремительное ускорение

Обратите внимание, что если тела (точки) находятся на вращающемся диске, шаре, стержне и так далее, одним словом на одном и том же вращающемся объекте, то у всех тел одинаковые период вращения, угловая скорость и частота.

 


По теме: методические разработки, презентации и конспекты

Решение задач по кинематике 9 класс

Примеры решения задач по кинематике в 9 классе...

Контрольная работа №1 по теме "Кинематика" в 10 кл

Контроль знаний по теме "Кинематика" в 10 классе на базовом уровне...

Контрольная работа по кинематике

Контрольная работа носит тематический  характер. Каждый вариант содержит  задачи разных уровней сложности. Учащийся может ознакомиться со всеми заданиями и самостоятельно выбрать уро...

Методическое пособие по физике "Решение расчетных и графических задач. Кинематика"

Настоящее пособие составленно в соответствии с программой курса физики средней школы по разделу "Кинематика", содержит: основные понятия и формулы; примеры решения типовых задач, задачи для самостояте...

План урока физики " Основы кинематики"-9кл

Цель урока  " Основы кинематики":  систематизировать знания учащихся 9 класс по равномерному и равноускоренному прямолинейному движению.    К уроку прилагается презентация, и...

Технологическая карта урока " Основы кинематики" 9кл

Технологическая карта урока " Основы кинематики"  -9кл.  позволяет планировать деятельность учащихся и учителя на различных этапах урока,  выбирать методы обучения,  формы взаимоде...

Презентация к уроку по теме " Основы кинематики"-9кл

Презентация к уроку  физики по теме  " Основы кинематики"  -9кл  позволяет включить сенсорные системы восприятия  учебного материала учащимися и добиться лучшего усвоения изуч...