Сборник книг для подготовки к олимпиадам по экологии.
книга по экологии по теме

Келин Евгений Александрович

Данные материалы будут интересны как специалистам в области преподавания биологии и экологии, так и учащимся при подготовке к олимпиадам.

Скачать:

Предварительный просмотр:


Предварительный просмотр:

Лекция 1. ВВЕДЕНИЕ В ЭКОЛОГИЮ

Москалюк Т.А.

Список литературы

Одум Ю. Основы экологии / Пер. с англ. М.: Мир, 1975. 740 с.

Радкевич В.А. Экология. Минск: Вышэйшая школа, 1998. 159 с.

Степановских А.С. Общая экология: Учебник для вузов. М.: ЮНИТИ, 2001. 510 с.

Шилов И.А. Экология. М.: Высшая школа, 2003. 512 с.

Бигон М., Харпер Дж., Таунсенд К. Экология. Особи, популяции и сообщества / Пер. с англ. М.: Мир, 1989. В 2-х томах.

 

1. Понятие об экологии. Объект и предмет изучения общей экологии.

2. Уровни организации живой материи. Аутэкология и синэкология.

3. Положение общей экологии в системе наук. Структура общей экологии.

4. Эволюция и общая экология

1. Понятие об экологии. Объект и предмет изучения общей экологии

Экология изначально возникла как наука о среде обитания живых организмов: растений, животных (в том числе и человека), грибов, бактерий и вирусов, о взаимоотношениях между организмами и средой их обитания и о взаимоотношениях организмов друг с другом. Само же слово «экология» возникло гораздо позже в сравнении со временем появления собственно экологических знаний. Оно было введено немецким биологом Эрнстом Геккелем (1869 г.) и образовано от греческого слова «ойкос» - дом, жилище. До 30-х годов ХХ столетия общей экологии, как общепризнанной науки, еще не существовало. Долгое время экология была представлена всевозможными частными экологическими дисциплинами: экологией растений, экологией животных, экологией грибов и т.д. Эти дисциплины формировались в рамках соответствующих таксономических разделов биологии - ботаники, зоологии, микологии и др., как подразделения этих наук.

По мере накопления знаний о взаимодействии живых организмов со средой обитания исследователи поняли, что на Земле существуют своеобразные системы, состоящие из живых организмов и неживого вещества. Для них характерен высокий уровень организации, наличие прямых и обратных связей между компонентами (частями этих систем), способность к поддержанию своего состояния при всевозможных возмущениях, т.е. эти системы состоят из упорядоченно взаимодействующих и взаимозависимых компонентов, образующих единое целое. Они были названы экологическими, или экосистемами.

Экосистемы всюду вокруг нас. Там, где есть жизнь, там есть и экосистемы. А жизнь на Земле повсюду: и в толще океана на дне самых глубоких морских желобов, и в атмосфере на высоте нескольких десятков километров, и в глубоких пещерах, куда никогда не проникает луч света, и на поверхности ледников в Антарктиде и в высокой Арктике. Самая большая экосистема – биосфера, или экосфера, Земли. Она включает всю совокупность живых организмов планеты, взаимодействующих с неживой природой, и через нее проходит энергия Солнца, обеспечивая устойчивое равновесие биосферы.

Но далеко не все свойства экосистем можно охарактеризовать, изучая лишь их отдельные компоненты (высшие растения, животных, грибы, бактерии) или отдельные уровни организации (генный уровень, клеточный, или более высокий – системы организмов). Только изучая все составляющие биоты в совокупности и с учетом средообразующих факторов можно получить полные и объективные сведения об экосистемах разного ранга и предсказать ход их развития, степень устойчивости к разрушающим факторам и способность к самовосстановлению при воздействии последних.

Экосистемы и являются специфическим объектом изучения общей экологии. Таким образом, общая экология - это наука об экосистемах, которые включают в себя живые организмы и неживое вещество, с которым эти организмы постоянно взаимодействуют. По определению Всеволода Анатольевича Радкевича (1998:7) "… Экология – это наука, исследующая закономерности жизнедеятельности организмов в их естественной среде, и с учетом изменений, которые вносит в эту среду деятельность человека…". Сходное, но более точное определение экологии дает Игорь Александрович Шилов (2001:9), трактуя ее "... как науку о закономерностях формирования, развития и устойчивости биологических систем разного ранга в их взаимоотношениях со средой…". Следовательно, предметом ее исследований является макросистемы: популяции, биоценозы, экосистемы, и их динамика во времени и пространстве.

2. Уровни организации живой материи. Аутэкология и синэкология

Чтобы лучше понять содержание общей экологии, следует рассмотреть концепцию уровней организации жизни (биологический спектр).

Все уровни живой материи можно представить в виде иерархической схемы (по Ю. Одуму, 1975):

1) Генный, или молекулярный уровень. Именно с него начинают проявляться свойства живого вещества. Его системы представляют собой активные крупные молекулы – липиды, белки, углеводы, нуклеиновые кислоты, в которых идут процессы обмена веществ, связанные с фото- и хемосинтезом, формируются ДНК и РНК, отвечающие за наследственность. Предметом изучения на этом уровне являются законы передачи наследственности, а изучает их наука ГЕНЕТИКА. Сами по себе, вне органа, вне организма эти молекулы функционировать не могут.

2) Клеточный уровень. Молекулы объединяются в клетки, и только тогда в них формируются вещества, необходимые для жизнедеятельности органов и организмов. Предметом изучения на клеточном уровне служат законы превращения вещества и энергии внутри клеток. Наука – ЦИТОЛОГИЯ.

На схеме не указан тканевый уровень – на этом уровне однородные, одинакового происхождения клетки, взаимодействуя между собой, образуют ткани, изучением которых занимается ГИСТОЛОГИЯ.

3) Органный – более высокий уровень организации живого вещества, нежели предыдущие три. Органы образуются в результате взаимодействия нескольких типов тканей. На этом уровне изучаются системы разных органов: побеговые и генеративные – у растений, системы органов дыхания, пищеварения, размножения – у животных. А изучает эти системы БИОМОРФОЛОГИЯ и АНАТОМИЯ.

4) Организменный – первый, самый низший уровень из изучаемых общей экологией. В организме взаимодействие систем органов сводится в единую систему индивидуального организма. Он может существовать самостоятельно! Вне организмов жизнь не проявляется. На этом уровне изучаются жизненные циклы отдельных особей, законы образования фенотипов и генотипов. Науки – ФИЗИОЛОГИЯ, АНАТОМИЯ, ЗООЛОГИЯ, ЭВОЛЮЦИОННОЕ УЧЕНИЕ и др.

5) Популяционно-видовой – промежуточный между «организменным и надорганизменным» уровнями. Любой вид растений, животных приспосабливается к внешней среде, не как сумма отдельных особей-организмов, а как единое функциональное целое – популяция. В популяции свои законы (внутривидовые конкуренция и агрегация), свои иерархические взаимоотношения, своя структура. На данном уровне изучаются законы сохранения популяцией и ее видом генотипических признаков. Науки – СИСТЕМАТИКА, БИОЛОГИЯ и ЭКОЛОГИЯ РАСТЕНИЙ, ЖИВОТНЫХ.

6) Экосистемный, биогеоценотический – изучаются надорганизменные системы, взаимоотношения популяций, группировок, организмов внутри экосистемы, т.е. на конкретном участке с однородными условиями среды. Изучение первичной продуктивности, круговорота веществ (углерода, кислорода, фосфора, воды и пр.) в пределах биогеоценоза. Науки – ФИТОЦЕНОЛОГИЯ, БИОГЕОЦЕНОЛОГИЯ, ОБЩАЯ ЭКОЛОГИЯ.

7) Биосферный – самый высокий, рассматривается взаимоотношения между собой макроэкосистем, биогеоценозов (лес-степь, лес-болото, лес-тундра и др.), изучаются закон круговорота веществ, энергии в глобальном аспекте. Наука – ОБЩАЯ ЭКОЛОГИЯ.

Взаимодействие живого вещества (материи) с другим веществом (или энергией) на каждом уровне организации обусловливает формирование и существование определенных упорядоченных систем. Все эти системы взаимозависимы одна от другой и между уровнями организации нет резких разрывов. Невозможно даже представить существование генов вне клеток, клеток вне органов, органов вне организмов и т.д.

Учитывая тесную функциональную связь между организменным, популяционно-видовым и экосистемным уровнями и автономность существования их систем, основным содержанием общей экологии следует считать исследования взаимоотношений живых организмов (особей) между собой и со средой обитания на популяционно-биоценотическом уровне и уровнях биологических систем еще более высокого ранга (биогеоценозов и биосферы), а наименьшей единицей является организм, или особь.

В зависимости от того, какой уровень организации экосистем изучается, экология подразделяется на отрасли аутэкологию и синэкологию.

Аутэкология изучает жизненные циклы и отношение к факторам среды отдельных особей или видов. Цель ее заключается в том, чтобы выявить характер приспособления их к жизни в конкретном сообществе, их роль в экосистеме. Некоторые ученые (Радкевич, 1997) считают, что аутэкология изучает взаимоотношение с внешней средой только отдельных особей, а взаимоотношения ценопопуляций со средой изучает демэкология, взаимоотношения видов – эйдэкология.

Синэкология, она же биоценология, изучает все комплексы видов (ценопопуляций) в сообществах, т.е. экосистемы, изучает законы их совместного сосуществования в биоценозе в зависимости от условий внешней среды. Она базируется на аут-, дем- и эйдоэкологии, но ей присущ общебиологический характер, поскольку ее исследования направлены на многовидовые взаимоупорядоченные комплексы, существующие в строго определенной физико-химической среде.

Жизнедеятельность экосистем чрезвычайно сложна. Живое и неживое вещество в экосистемах структурировано и охвачено бесчисленными превращениями или процессами, в ходе которых автотрофными и хемотрофными организмами захватываются из внешней среды атомы многих химических элементов (углерод, водород, кислород, сера, фосфор, калий, кальций, магний, железо, медь и др.) и энергия, которые затем используются другими организмами: консументами (потребители растительной массы) и грибами, а потом, по мере гибели организмов-продуцентов, грибов и консументов, переходят к организмам-редуцентам, разлагающим мертвое органическое вещество и возвращающим составляющие это вещество атомы во внешнюю среду. При этом энергия химических связей организмов-продуцентов и организмов-хемосинтетиков частично используется консументами, грибами и редуцентами, а частично высвобождается во внешнюю среду в виде тепла, в виде образующихся при выделении растениями в атмосферу окислов кислорода. Или консервируются в виде химических связей сложных органических веществ, накапливающихся в почве (гумус) и литосфере (торф, бурые и каменные угли). Все процессы идут непрерывно, подчиняясь своим законам. На естественные природные процессы накладываются антропогенные. Последние, как правило, сказываются негативно на функционировании экосистем. Изучить и понять эти закономерности и есть главная задача общей экологии.

3. Положение общей экологии в системе наук. Структура общей экологии

Как же соотносятся между собой все экологические науки?

Как экосистемы образованы разными группами организмов, так и общая экология характеризуется сложной структурой, подразделяясь на множество направлений в свою очередь, состоящих из частных наук (рис.1). Сначала появились многие частные экологические дисциплины, гораздо позже – комплексные. Общая же экология формируется только сегодня и "подпитывается" всеми частными. Несмотря на нерешенность своих самых фундаментальных проблем, она переживает самый настоящий бум популярности.

Разумеется, общая экология тесно связана со всеми частными (экология растений, экология животных, микробиология, экология океана, экология человека и др.) и комплексными (геоботаника, лесоведение, почвоведение, ландшафтоведение, гидробиология, биоценология и др.) экологическими, но она не есть простая сумма этих наук. Общеизвестно, что частные науки изучают всесторонне конкретные объекты органического мира («все об одном»), а общие – весь органический мир в одном направлении («немного обо всем»). Для частных наук наиважнейшей единицей является организм или совокупность организмов одного вида, для комплексных наук – конкретные условия среды (почва, лес, вода) и взаимоотношения живых организмов с этими условиями, а для общей экологии – экосистема ранга биогеоценоза, т.е. вся совокупность видов, слагающих биоценоз, и вся совокупность факторов среды, определяющих существование данного биоценоза с учетом неизбежного антропогенного воздействия, а организм или вид – наименьшей единицей.

http://www.botsad.ru/images3/image4.jpg

Чтобы вскрыть законы взаимоотношений составных частей экосистем необходимо иметь представление о разных аспектах функционирования этих составных частей, поэтому выделение отраслей и дисциплин в общей экологии, классифицирование их также целесообразно, как и в любой другой биологической науке.

Классификации структуры общей экологии

Авторы существующих классификаций обращают внимание на сложность и многогранность общей экологии.

Какие же направления выделяются в общей экологии?

По размерам объектов изучения (экосистемные исследования) в общей экологии всеми исследователями выделяются:

• аутэкология (особи, организм и их среда),

• демэкология, или популяционная экология (популяция и ее среда),

• синэкология (биоценоз, экосистема и их среда),

• географическая (крупные геосистемы, географические процессы с участием живых систем их среды),

• глобальная экология, или мегаэкология (биосфера)

Указанные подразделения объективно отражают организацию проведения исследований на различных уровнях биологического спектра. Последние две отрасли слишком молодые и еще не имеют специальных названий или они не устоялись (мегаэкология, панэкология, биосферология).

I. Юджин Одум и В.А. Радкевич выделяют в экологии 3 основных блока: биоэкология, экосистемы и земные сферы, человек и природа.

1. Биоэкология – самое раннее направление, положения его являются фундаментальными для остальных направлений. Основу биоэкологии составляют экологии систематических, или таксономических, отделов органического мира:

• экология микроорганизмов

• экология грибов

• экология растений

• экология животных

Последние три, в свою очередь, делятся на более мелкие.

2. Экосистемы и земные сферы – самое обширное направление, в нем рассматриваются связи между живыми материями и неживыми (абиотическими) факторами, связи между организмами и сообществами в составе основных биомов (совокупности сообществ (экосистем) природных зон) суши и Мирового океана. В этот блок входят:

• лесная экология

• экология степей

• экология пустынь

• экология тундр

• экология почв

• экология атмосферы

• экология гидросферы

• экология литосферы

• космическая экология

• экология гор

• экология островов

• экология океанов и др.

3. Человек и природа – сюда входят науки, изучающие взаимосвязь и взаимодействие человека со средой обитания, и прикладная экология человека с целью связать разработки по вышеуказанным двум разделам с практическими проблемами:

• инженерная экология

• химическая экология

• промысловая экология

• сельскохозяйственная экология

• экология города

• экология и медицина

• экология и культура

• экология и право

• экология и политика

• экологическое образование и др.

II. К предыдущей классификации близка классификация Анатолия Сергеевича Степановских (2001), но она более детальная, состоит из следующих направлений, или разделов.

1. По отношению к предметам изучения:

• экология микроорганизмов

• экология грибов

• экология растений

• экология животных

• экология человека

2. По отношению к условиям среды обитания:

экология почв, почвоведение

экология атмосферы

экология гидросферы

экология литосферы

космическая экология

3. По отношению к типу растительного покрова:

лесная экология

экология степей

экология пустынь,

экология тундр и т.д.

4. По отношению к ландшафтному (географическому) положению:

экология гор,

экология островов,

экология океанов и т.д.

5. По отношению к фактору времени:

палеоэкология,

археоэкология,

историческая экология, и др.

6. С каждым годом все более актуальными становятся проблемы взаимоотношений природы и Человека, что привело к формированию такого современного направления, как экология ноосферы, или социальная экология. Ее проблемы выходят за рамки экологии, как биологической науки, и наряду с экосистемным подходом включают экономическо-хозяйственный, социальный, политический аспекты. Они представлены многочисленными "экологиями":

радиационная экология,

химическая экология,

промысловая экология

инженерная экология

экология города

сельскохозяйственная экология

экология и медицина

экология и культура

экология и право

экология и политика

экологическое образование и др.

Первый раздел классификации А.С. Степановских, за исключением «экологии человека», аналогичен разделу «Биоэкология», последний – седьмой, разделу «Человек и природа», а остальные – разделу «Экосистемы и земные сферы» классификации Ю. Одума и В.А. Радкевича.

III. И.А. Шилов выделяет 5 направлений.

1. Ландшафтная экология – одно из наиболее ранних направлений. Изучает приспособление организмов к разной географической среде, формирование биоценозов различных ландшатов, их влияние на среду обитания. Имеет исключительно высокое прикладное значение, т.к. физико-географическими условиями определяются набор видов и основные законы формирования и жизни сообществ.

2. Функциональная, или физиологическая экология – исследует механизмы, с помощью которых осуществляется адаптация (приспособление) биологических систем разного уровня к изменению условий среды. Большинство адаптивных механизмов имеют физиологическую природу и изучение важно для решения многих проблем, например при интродукции растений, в медицине, для контроля численности диких животных и др.

3. Количественная экология изучает продуктивность и структуру разных экосистем, их динамику. Ее данные являются основой для матема-тического моделирования биогеоценотических процессов, или теоретической экологии. Необходима для разработки природоохранных мероприятий, построения экологических прогнозов, профилактики эпидемий и т.д.

4. Эволюционная экология выявляет экологические закономерности эволюционного процесса, пути и формы становления видовых адаптаций, позволяет реконструировать экосистемы прошлого Земли (палеоэкология) и роль человека в их преобразовании (археоэкология).

5. Социальная экология изучает процессы, протекающие на уровне ноосферы. С возникновением новых проблем возникли и новые частные науки (социология, радиационная экология, экологическое образование, инженерная экология, космическая экология и др.). Особое положение занимает экология человека, изучающая современное положение современного человечества в глобальных экосистемах.

5. Эволюция и общая экология

Почему так поздно сформировалась, так долго формировалась и так стремительно начала развиваться общая экология? История ее отражает процесс развития жизни и цивилизации на Земле. Чтобы лучше понять это, осуществим краткий экскурс в Эволюцию жизни на Земле. Следы жизни обнаружены в самых древних горных породах, которые сформировались около 3 миллиардов лет назад. Именно тогда жили на нашей планете организмы, чьи следы запечатлены в этих породах. Эти организмы были чрезвычайно примитивными, они были одноклеточными или колониальными, не имели скелета и размножались простым делением клеток надвое, в клетках их не было сформированного ядра. Даже наружный скелет - твердый панцирь клеток - у них отсутствовал, поэтому в геологической летописи планеты сохранилось так мало следов той древнейшей жизни.

Эволюция живых организмов вначале привела к появлению живых существ с обособленным клеточным ядром и внутриклеточными органоидами - рибосомами, митохондриями и др. Для них уже было характерно бесполое и половое размножение. Доказано, что миллиард лет назад такие организмы на нашей планете населяли океан.

Примерно 600-700 миллионов лет назад появились первые позвоночные животные – рыбы, обитавшие в мировом океане и морях. Царство растений тогда было представлено многочисленными водорослями, как одноклеточными, так и многоклеточными, образующими, как и теперь, настоящие подводные леса на мелководьях.

Выход живых существ на сушу сдерживался тем, что в атмосфере Земли, вплоть до кембрийского периода, было очень мало кислорода. Из-за этого у планеты отсутствовал озоновый слой (верхний слой атмосферы, состоящий из трехатомных молекул кислорода и отдельных атомов кислорода), который поглощает жесткое космическое излучение. Дело в том, что кванты жесткого электромагнитного излучения обладают очень высокой энергией и, ударяя в органические молекулы, легко их разрушают, поглощаясь при этом и не достигая поверхности планеты. Слой воды толщиной 2-3 м может поглощать кванты жесткого излучения не хуже озонового слоя. Именно поэтому на первых этапах эволюции жизнь была только в морях и океанах и не спешила выходить на сушу. В процессе поглощения электромагнитного излучения и фотосинтеза водорослей в гидросфере и атмосфере постепенно накапливался свободный кислород.

Примерно 500 миллионов лет назад живые организмы появились и на суше. На суше эволюция живых существ проходила более быстрыми темпами. Из животных сушу сначала завоевали членистоногие. Из позвоночных животных первыми на сушу выбрались двоякодышащие рыбы, от которых произошли земноводные. Земноводные в свою очередь дали начало пресмыкающимся, от которых произошли птицы и в меловом периоде - около 70 миллионов лет назад - млекопитающие. Человек относится к классу млекопитающих (отряд приматов, семейство гоминид – человекообразные).

Первые люди, согласно последним научным данным, обитали в Африке около 3 миллионов лет назад. Они ходили прямо на двух ногах, имели ступню, не отличающуюся от ступни современного человека, и довольно развитые руки с отстоящим, как у современного человека, большим пальцем; могли издавать членораздельные звуки, пользовались огнем и изготавливали примитивные орудия, разбивая камни и кости. По мере эволюции живых организмов увеличивалось биологическое разнообразие, интенсифицировался обмен веществ, совершенствовались механизмы размножения, усложнялось поведение животных и жизненные циклы растений. Одновременно удлинялись пищевые цепи, благодаря которым, однажды захваченные живыми существами из внешней среды атомы химических элементов и энергия, все дольше не возвращались во внешнюю среду.

http://www.botsad.ru/images3/fig13.jpg

Разумеется, по мере эволюции изменялась и среда обитания живых организмов, а также и скорость ее изменений. Содержание кислорода за последний миллиард лет в атмосфере выросло с 1% до 21%. При этом резко снизилось содержание в атмосфере Земли углекислого газа - до 0,3%. Ученые выяснили, что современный состав атмосферы Земли создан и поддерживается живыми организмами.

Баланс углекислого газа между атмосферой, океаном, почвой и живыми организмами поддерживается миллионами видов живых организмов. Если он нарушится, то содержание углекислоты в атмосфере резко возрастет, усилится так называемый парниковый эффект, и атмосфера Земли начнет разогреваться. Экосистемы Земли - это фабрики, которые поддерживают этот баланс. (Схема заимствована у Н.Ф.Реймерса)

Если на Земле не будет жизни, то состояние ее атмосферы довольно скоро, буквально за несколько сотен или тысяч лет, вернется к своему безкислородному состоянию. Ведь ни на Венере, ни на Марсе свободного кислорода в атмосферах практически нет. Зато очень много углекислого газа. Вероятно, такой когда-то была и атмосфера нашей планеты.

Таким образом, эволюция жизни на Земле - проблема не только биологическая, но и экологическая. Сегодня это понимают многие ученые, в том числе и палеонтологи, изучающие жизнь в отдаленные геологические эпохи. Человечество лишь в последние десятилетия начало всерьез осознавать важность для себя экологических проблем. Именно поэтому именно в наше время возникла потребность в общей экологии. Ведь вопрос стоит однозначно - быть или не быть на Земле технократической цивилизации.

Почему же столь важно и необходимо изучение природы на уровне экосистем? Потому-что, зная законы формирования и функционирования экосистем, можно предвидеть и предупредить их разрушение в результате воздействия на них негативных факторов, предусмотреть охранные мероприятия и в итоге сохранить среду обитания человека, как вида.

Многие процессы являются общими для всех уровней. Их характеристики, установленные для одного уровня (клеточного, организменного) могут быть высокоинформативными и для других уровней (популяционного, экосистемного) и точно также одни и те же области наук м.б. общими для всех уровней организации. Но при изучении их используются разные методы, разные подходы, разные единицы учета и измерения. Соответственно и в интерпретации полученной информации по каждому уровню есть свои особенности.

 Лекция 2. ИСТОРИЯ СТАНОВЛЕНИЯ ЭКОЛОГИИ

Москалюк Т.А.

Список литературы

Степановских А.С. Общая экология: Учебник для вузов. М.: ЮНИТИ, 2001. 510 с.

Шилов И.А. Экология. М.: Высшая школа, 2003. 512 с.

Радкевич В.А. Экология. Минск: Вышэйшая школа, 1998. 159 с.

Плавильщиков Н.Н. Гомункулус. М.: Детгиз, 1958. 431 с.

 

1. Период наивной экологии – до середины 19 в. (1-5 этапы).

2. Период аутэкологических исследований (факториальная экология) – с середины 19 в. до середины 20 в. (6 этап).

3. Период синэкологических исследований – с 1936 г. до наших дней (7-8 этапы).

4. Причины отставания общей экологии от других наук.

 

Обратимся к истории экологии и экологических идей, ибо ничто так не учит, как учит история. Экология, как направление биологии, возникла в середине 10 столетия, а как самостоятельная наука – на стыке 19 и 20 столетий. Она развивалась непрерывно, но неравномерно на протяжении всей своей истории.

1. Период наивной экологии – до середины 19 в. (1-5 этапы)

Первый этап – примитивные знания, накопление фактического материала. О том, что разные виды животных связаны с определенными условиями, что их численность зависит от урожая семян и плодов, которыми они питаются, наверняка знали древние охотники уже 100-150 тыс. лет назад. О зависимости растений от внешних условий хорошо знали и первые земледельцы за много веков до новой эры (10-15 тыс. лет назад). Севооборот сельскохозяйственных культур применяли в Египте, Китае и Индии 5 тысячелетий назад. Сложнейшая и экологически выверенная система земле-делия была у индейцев майя в древней Америке. Элементы экологии отражены в эпических произ-ведениях и легендах: в древнеиндийских сказа-ниях «Махабхарта» (VI-II вв. до н.э.; сведения о повадках и образе жизни 50 животных), в рукописных книгах Китая и Вавилона (сроки посева и сбора диких и культурных растений, способы обработки земли, виды птиц и зверей).

http://www.botsad.ru/papers/m04.gif

Второй этап – продолжение накопления фактического материала античными учеными, средневековый застой. Древняя Греция: Гераклит – 530-470 лет до н.э., Гиппократ – 460-370 лет до н.э. Аристотель (384-322 лет до н.э.) создал Ликей (школу) и при нем сад. В «Истории животных» он описал более 500 видов животных, классифицируя их по образу жизни.

Еего ученик, друг и преемник Теофраст (Парацельз, он же Тиртам, 287-372) описал 500 видов растений. Самыми главными работами разностороннего ученого (его труды: "О камнях", "Об огне", "О вкусах", "Об усталости", "О приметах погоды", "Характеры", "Учебник риторики" и др.) и философа стали "Исследования о ботанике" в 9 книгах: 1 – о частях и морфологии растений, 2 – уход за садовыми деревьями, 3 – описание лесных деревьев, 4 – описание заморских растений и их болезней, 5 – о лесе и его пользе, 6 – о кустарниках и цветах, 7 – об огородных растениях и уходе за ними, 8 – о злаках, бобовых и о полеводстве, 9 – о лекарственных травах. Теофраст сделал ботанику самостоятельной наукой, отделив ее от зоологии. Потому его и называют отцом ботаники.

 

 

 http://www.botsad.ru/papers/m05.gif

Древнегреческие философы во многом отождествляли растения и животных, считали, что растения могут радоваться и печалиться, органы животных отождествляли с органами растений: корни - рот и голова, стебли – ноги и живот, и т.д. Мечтали вырастить в колбе живое существо (гомункулус).

Но Теофраст был не только отцом ботаники. Большое внимание в своих трудах он уделял влиянию внешней среды на живые организмы, и именно он впервые разделил покрытосеменные растения на жизненные формы: деревья, кустарники, полукустарники и травы, с учетом зависимости от почвы и климата. Умер он в возрасте 83 лет, имея ясный ум и память. Его последние слова: "Мы умираем тогда, когда начинаем жить!".

Древний Рим: Плиний старший (23-79 лет н.э.) в своей многотомной "Философии природы" многие явления природы рассматривал с подлинно экологических позиций. Древние ученые задумывались о многом, о чем задумываемся и мы с вами.

В средние века в Европе произошел откат человеческой мысли далеко назад, церковь на несколько веков явилась тормозом развития всех естественных наук. Связь строения организмов со средой всецело приписывалась воле бога. Научные сведения содержатся в единичных работах (многотомное сочинение Венсенна де Бове (XIII век) "Зеркало вещей", "Поучение Владимира Мономаха" (XI), "О поучениях и сходствах вещей" доминиканского монаха Иоанна Сиенского (XIV)) и имеют прикладной характер; заключаются в описании целебных трав, культивируемых растений и животных. Известные ученые этого периода: Разес (850—923), Авиценна (980-1037). Но уже в позднее средневековье стали появились новые веяния в науке - Зачатки экологии. Альберт Великий (Альберт фон Больштедт, ~1193-1280 гг.) в трудах о растениях придает большое значение условиям произрастания, в частности световому фактору – "солнечному теплу", рассматривает причины "зимнего сна". Появилась информация о дальних странах (Марко Поло (XIII век), Афанасий Никитин (XV век) и его известное "Хождение за три моря").

 

http://www.botsad.ru/images3/fif2_3.jpg

Карл Линней - великий шведский ученый, создатель системы живых организмов, принципами которой мы пользуемся и сегодня

 

Третий этап – описание и систематизация колоссального фактического материала после средневекового застоя – начался с великими географическими открытиями XIV и XVI веков и колонизацией новых стран – с эпохой Возрождения. Новая географическая и биологическая информация, полученная в экспедициях, заставила переосмыслить многие религиозные догматы. Она не умещалась в той системе мира, которую проповедовала христианская религия. Путешественники из дальних стран привозили неведомых животных и семена неведомых растений. Чтобы разобраться во всем многообразии форм живых существ, необходимо было создать таксономическую систему и, таким образом, осмыслить это разнообразие. И такое осмысле-ние произошло. В первой половине XVIII века Карл Линней создал таксономическую систему животных и растений, которой ботаники пользуются и поныне.

Заслуги этого ученого перед миром столь велики, что на их перечисление не хватит и целой лекции. Его считают реформатором ботаники. Помимо бинарной номенклатуры он разработал терминологию, введя в систематику более 1000 терминов для разных органов растений и их частей. Линней много путешествовал по разным странам, сам открыл и описал более 1500 видов. Главный труд К. Линнея – "Виды растений" вышел в 1753 г., в нем приведены все известные ему растения; описания кратки и точны. Ботанический "хаос" был приведен в систему! И именно с этого времени ведется отсчет при установлении первенства в названиях отдельных видов. В основу данной работы Линней положил свои данные и все доступные ему гербарные образцы и публикации других авторов. Кроме флоры, он прекрасно знал фауну ("Фауна Швеции" 1746 г.) почвы, минералы, человеческие расы, болезни (Линней был первоклассным врачом), открыл целебные и ядовитые свойства многих растений.

 

 

 

Современники знали его и как остроумного, веселого человека. Так, в честь 3 братьев Коммелинов, двое из которых были известными ботаниками, а третий – ничем не примечательный человек, он назвал род Коммелина, у цветков которой 3 тычинки: две длинные и одна короткая. В.Л. Комаров сказал о К.Линнее: "Пока не стерта с лица Земли цивилизация, имя Линнея будет жить". Слова пророческие. Имя Линнея носят более 20 обществ, два города и гора в США, острова близ Гренландии, улицы и площади в европейских городах и др. географические объекты. В честь К. Линнея назван род – Линнея с единственным видом – «Л. северная».

Уже первые систематики: А. Цезальпин (1509-1603), Д. Рей (1623-1705), Ж. Турнефор (1656-1708), отмечали зависимость растений от условий среды и мест произрастания. Жорж Леклерк Бюффон (1707-1788) в «Естественной истории» (не проводя опытов!) писал о влиянии климата на животные организмы, Жан Батист Ламарк (1744-1829) открыл эволюцию жизни. Ламарк был последователем К. Линнея и составил классификацию животных ("Философия зоологии"), отражающую происхождение – эволюцию, животных, выбрав в качестве признаков внутреннее строение (отделил беспозвоночных от позвоночных) и строение нервной системы (бесчувственные – инфузории и полипы, чувствующие – все остальные беспозвоночные, и разумные – позвоночные). В его классификации инфузории заняли низшее место (Линней же не знал, куда их поместить). Ламарк считается предшественником Ч. Дарвина – обращая внимание на роль внешних условий в формировании строения животных (жираф – длинная шея, чтобы доставать листья деревьев, утка – перепонки, чтобы плавать, крот – передние лапы-лопаты, чтобы рыть, а глаза атрофировались – не нужны) и растений, он открыл эволюцию жизни. Альфонс де Кандоль (1806-1895) в «Ботанической географии» описывал влияние абиотических факторов на растительные организмы.

Известный английский химик Р. Бойль (1627-1691) поставил первый экологический эксперимент по влиянию низкого атмосферного давления на развитие животных, а Ф. Реди экспериментально доказал, что самозарождених сложных животных невозможно. Антони ван Левенгук, изобретший микроскоп, был первым в изучении трофических цепей и регуляции численности организмов.

http://www.botsad.ru/images3/fif2_4.jpg

Великий русский естествоиспытатель Михайло Ломоносов. В своих теоретических построениях на 100-200 лет опередил современнико

Большой вклад в развитие экологических представлений в это время внесли и российские ученые такие, как М.В. Ломоносов (1711-1765), его сподвижник С.П. Крашенинников (1711-1755), П.С. Паллас (1741-1811), И.И. Лепехин (1740-1802). И это не случайно, так как Россия в XVII веке сильно расширила свои границы, выйдя своими восточными рубежами на побережье Тихого океана.

Петр Симон Паллас в работе «Зоогеография» описал образ жизни 151 млекопитающих и 426 видов птиц и его считают одним из основателей «экологии животных». В 20 лет он защитил выдающуюся по тем временам докторскую диссертацию по гельминтам. Его пригласили в Петербург, и он сразу же – в 26 лет, стал академиком. Немец по происхождению, он более 40 лет посвятил российской науке, проводя по нескольку лет в полевых экспедициях (города Чита, Иркутск, Красноярск, Тамбов, озера Эльтон и Баскунчак, Крым). Основной специальностью Палласа была зоология. Он издал несколько монографий по млекопитающим, птицам, насекомым. При этом он обладал обширными знаниями во многих науках (сельское хоз-во, медицина, минералогия (на Енисее открыл "Палласов метеорит"), палеонтология (исследовал ископаемые остатки буйвола, мамонта, носорога), археология, этнография, филология и др.), особенно в ботанике. Он задумал издать многотомную сводку русской флоры с полным описанием и рисунками всех растений, но подготовить успел только 2 тома. Опубликовал около 170 работ. В честь Палласа назван вулкан на Курильских островах, риф у Новой Гвинеи, множество видов животных. На Дальнем Востоке имя Палласа носят желтушник, мытник, лютик и аяния.

Сходный путь в науке прошел и Степан Петрович Крашенинников. После 9-летней экспедиции на Камчатку он опубликовал "Описание земли Камчатки", вошедшее в золотой фонд естественно-исторической литературы.

М.В. Ломоносов рассматривал влияние среды на организм. Он в работе «О слоях земных» (1763) писал, что «…напрасно многие думают, что все, что мы видим, сначала создано творцом…». По останкам вымерших животных (моллюсков и насекомых) Ломоносов конструировал условия их существования в прошлом и опроверг теорию катастроф Ж. Кювье. (Религиозный Кювье считал, что исчезновение одних видов (мамонты, палеотерий, и др.) и появление других (коровы, лошади) на той же территории объяс-няяется резким изменением условий жизни и переселе-нием животных из соседних районов, не подвергшихся катастрофам).

Русский малоизвестный ученый А.А. Каверзнев (годы жизни неизвестны) издал в 1775 г. книгу «О перерождении животных», в которой с экологических позиций рассматривал вопрос об изменениях животных и сделал вывод об их едином происхождении. Другой русский исследователь – первый агроном России, А.Т. Болотов (1738-1833), изучая влияние минеральных солей на молодые яблони, разработал классификацию местообитаний растений.

Таким образом, к концу XVIII, по мере все большего накопления экологических знаний, у естествоиспытателей начал складываться особый подход к изучению явлений природы, учитывающий зависимость изменения организмов от окружающих условий. Но экологических идей как таковых еще нет. Есть только их предпосылка.

http://www.botsad.ru/images3/fif2_5.jpg

Александр Гумбольдт - великий немецкий ученый, заложивший основы биогеографии. Его заслуги перед экологией очень велики

Четвертый этап ознаменовал начало в становлении экологии. Он связан с крупными ботанико-географическими иссле-дованиями, способствовавшими дальнейшему развитию экологического мышления. В начале XIX в. выделяются в самостоятельные отрасли экология растений и экология животных. Ученые этого времени анализировали закономерности организмов и среды, взаимоотно-шения между организмами, приспособляе-мость и приспособенность. Огромную роль в развитии экологических идей сыграл немецкий ученый А. Гумбольдт (1769-1859), заложивший основы биогеографии. В книге «Идеи географии растений» (1807) он ввел ряд научных понятий, которые используются экологами и сегодня (экобиоморфа растений, ассоциация видов, формация растительности и др.).

Появились работы, в которых авторы понимают среду обитания, как совокупность действующих экологических факторов. В 1832 г. О. Декандоль обосновал необходимость выделения новой отрасли наук "Эпирреалогии". Он писал: "…Растения не выбирают условия среды, они их выдерживают или умирают. Каждый вид, живущий в определенной местности, при известных условиях представляет как бы физиологический опыт, демонстрирующий нам способ воздействия теплоты, света, влажности и столь разнообразных модификаций этих факторов…".

 

 

 

Пятый этап – становление эволюционной экологии. Профессор Московского университета Карл Францов Рулье (1814-1858) четко сформулировал мысль о том, что развитие органического мира обусловлено воздействием изменяющейся внешней среды: "…Ни одно органическое существо не живет само по себе; каждое вызывается к жизни и живет только постольку, поскольку находится во взаимодействии с относительно внешним для него миром. Это закон общения или двойственности жизненных начал, показывающий, что каждое существо получает возможность к жизни частию от себя, а частию из внешности…". Считается, что К.Ф. Рулье в своих трудах (160 работ) заложил основы экологии животных, поставил проблемы адаптации, миграции, изменчивости, ввел понятие "стация". Он ближе всех подошел к эволюционной теории Дарвина, но прожил всего 44 года... Его идеи развил ученик Н.А. Северцев (1827-1885), опубликовавший в 1855 г. работу «Периодические явления в жизни зверей, птиц и гадов Воронежской губернии». Значимость этой магистерской диссертации Н.А. Северцева для науки можно оценить тем, что через 100 лет в 1950 г. эта работа была переиздана, и она не утратила своего значения и сегодня. Важнейшей вехой в развитии экологических представлений о природе явился выход знаменитой книги Ч. Дарвина (1809-1882) о происхождении видов путем естественного отбора, жесткой конкуренции.

Это великое открытие в биологии явилось мощным толчком для развития экологических идей. У Дарвина было много последователей. Один из них – немецкий зоолог Эрнст Геккель (1834-1919). "Я докажу! " – девиз Э. Геккеля. В 8 лет прочитал Робинзона Крузо, долго грезил дикарями, приключениями. Пробивной, мечтавший и добившийся мировой славы, он добился открытия филогенетического фак-та в Йенском университете, много лет успешно изучал радиолярии, прекрасно рисовал, но мог делать выводы, не подкрепленные фактами и потому ошибочные. Им было придумано много разных терминов для классификации отделов наук; много лет он искал одноклеточный организм, давший начало всему живому; искал общий закон, который бы объяснил все явления. Вскоре после выхода в свет учения Ч. Дарвина – в 1866 г. он предложил термин для новой науки – «экология», который впоследствии получил всеобщее признание. Именно 1866 г. следует считать годом рождения экологии. В конце XIX она представляла собой науку об адаптации организмов к климатическим условиям, но лишь через 100 лет превратилась в целое мировоззрение – общую экологию. В 1895 г. датский ученый Е. Варминг (1841-1924) ввел термин «экология» в ботанику для обозначения самостоятельной научной дисциплины – экологии растений.

Таким образом, общим для периода наивной экологии, продолжавшегося с начала развития цивилизации до 1986 г., является накопление и описание колоссального фактического материала и отсутствие системного подхода в его анализе.

2. Период факториальной экологии – с середины 19 в. до середины 20 в. (6 этап)

Шестой этап. Теория Ч. Дарвина дала большой толчок развитию аутэкологического направления – изучение естественной совокупности видов, непрерывно перестраивающихся применительно к изменению условий среды, со второй половины середины XIX и до середины XX века было господствующим.

Одновременно стали проводиться исследования по надорганизменным биологическим системам. Этому способствовало формирование концепции биоценозов, как многовидовых сообществ. В 1877 г. немецкий гидробиолог К. Мебиус (1825-1908) на основе изучения устричных банок в Северном море разработал учение о биоценозе, как сообществе организмов, которые через среду обитания теснейшим образом связаны друг с другом. Именно его труд "Устрицы и устричное хозяйство" положил начало биоценологическим – экосистемным, исследованиям и в дальнейшем обогатилось методами учета количественных соотношений организмов. Термин "биоценоз" широко используется современными учеными. Учение о растительных сообществах, благодаря С.И. Коржинскому (1861-1900) и И.К. Пачоскому (1864-1942) выделилось в фитосоциологию, или фитоценологию, позднее в геоботанику. Исключительно велики заслуги В.В. Докучаева (1846-1903). Он создал учение о природных зонах и учение о почве, как особом биокосном теле (системе). Показал, что почва - это неотъемлемый компонент практически всех экосистем суши нашей планеты. Теоретические разработки В.В. Докучаева ("Учение о зонах природы") положили начало развитию геоботаники и ландшафтной экологии. Идея В.В. Докучаева о необходимости изучения не отдельных компонентов биоценозов, а связей, существующих между телами, явлениями и средой (водой, землей), между мертвой и живой природой, между растениями, животными и минеральным "царством", т.е. закономерностей функционирования природных комплексов, получила развитие в "Учении о лесе" Георгия Федоровича Морозова (1867-1920). Г.Ф. Морозов дал первое научное определение леса, как географического фактора – глобального аккумулятора солнечной энергии, влияющего на климат, почвы, на уровень кислородного и углеродного баланса планеты и регионов.

Особенно широко исследования надорганизменного уровня стали развиваться с начала XX века. Повсеместно стали создаваться разные научные общества и школы: ботаников, фитоценологов, гидробиологов, зоологов, и т.д., выпускаться журналы. 1916 г. – Ф. Клементс показал адаптивность биоценозов и адаптивный смысл этого, 1925 г. – А. Тинеманн ввел понятие "продукция", 1927 г. – Ч. Элтон выделил своеобразие биоценотических процессов, ввел понятие экологическая ниша, сформулировал правило экологических пирамид. К 30-ым годам XX столетия были созданы разные классификации растительности на основе морфологических, эколого-морфологических и динамических характеристик фитоценозов (К. Раункиер – Дания, Г. Ди Рюе – Швеция, И. Браун-Бланке – Швейцария); изучались структура, продуктивность сообществ, получены представления об экологических индикаторах (В.В. Алехин, Б.А. Келлер, А.П. Шенников).

 

http://www.botsad.ru/images3/fif2_6.jpg

Леонтий Григорьевич Раменский - великий русский геоботаник, сформулировавший закон эеологической индивидуальности видов и создавший теорию экологического континуум

В учебнике по экологии Ч. Элтона впервые отчетливо выделено направление популяционной экологии. Большой вклад в эту область внесли Е.Н. Синская (экологический и географический полиморфизм видов растений), И.Г. Серебряков (новая классификация жизнен-ных форм растений), Л.Г. Раменский (закон индивидуальности видов и теория экологи-ческого континуума экологической), М.С. Гиляров (почва – переходная среда в завоева-нии членистоногими суши), С.С. Шварц (эволюционная экология  палеэкология), и др.

В 1926 г. была опубликована книга В.И. Вернадского "Биосфера" в которой впервые показана планетарная роль биосферы, как совокупности всех видов живых организмов. В 30-40-е годы составлены новые по экологии животных (К. Фредерикс – 1930 г., Ф. Болденгеймер – 1938). В это же время вышло много монографий и учебных пособий по географии растений, экологии животных и растений.

 

3. Период синэкологических исследований – с 1936 г. до наших дней

http://www.botsad.ru/images3/fif2_8.jpg

Английский геоботаник Тенсли - один из создателей науки об экосистемах

Седьмой этап отражает новый подход к исследованиям природных систем – в основу его положено изучение процессов материально-энергетического об-мена, формирование общей экологии, как самостоятельной науки. Г. Гаузе в начале 40-х годов прошлого столетия провозгласил прин-цип конкурентного исключения, указав на важность трофических связей, как основного пути для потоков энергии через природные системы. Вслед за Гаузе, в 1935 г. английский ботаник А. Тенсли ввел понятие экосистемы, и этот год принято считать годом рождения общей экологии как науки, объектом которой являются не только отдель-ные виды и популяции видов, но и экосистемы, в которых биоценозы рассматриваются с биотопами, как единое целое.

 

Владимир Николаевич Сукачев один из создателей учения о биогеоценозах (экосистемах)

В общей экологии с этого времени четко выделились два направления – аутэкология и синэкология. В фитоценологии всеобщее признание получила парадигма дискретности растительного покрова, что объясняется стремлением к классификационным работам.

Почти одновременно с А.Тенсли, В.Н. Сукачев в 1942 г., следуя Г.Ф. Морозову, разработал систему понятий о лесном биогеоценозе, как о природной системе, однородной по всем параметрам (растительному покрову, миру животных и микроорганизмов, по поверхностной горной породе, гидрологическим, почвенным, микроклиматическим условиям, по типу взаимодействий, обмена веществом и энергией между его компонентами и между ними и другими явлениями природы).

Биогеоценоз В.Н. Сукачева – практически полный аналог экосистемы А. Тенсли. Главное в его понятии – общая идея о единстве живой и неживой природы, общности круговорота веществ и превращениях энергии, которые можно выразить через объективные количественные характеристики. В том же 1942 г. американским ученым Р. Линдеманном были изложены основные методы расчета энергетического баланса экологических систем. С этого времени экосистемные исследования являются одними из основных направлений в экологии, а количественные определения функций экосистем и их компонентов (запасы и фракционная структура растительной массы, пулы углерода и др. химических элементов, параметры трофических цепей, и др.) являются одним из основных методов, дающими возможность прогнозировать и моделировать биологические процессы. Последнее, в свою очередь, вылилось в теоретическую, или количественную, экологию, которая становится все более востребованной (изучение динамики экосистем, их продуктивности, моделирование экологических процессов исключительно важны для экологических прогнозов, разработки природоохранных мер, профилактики эпидемических ситуаций и пр.). Работа по международным экологическим программам МАБ и ЧиБ (Человек и биосфера).

Восьмой этап. В современной биосфере одним из наиболее значимых факторов, определяющих ее состояние, стала деятельность человека. Возникающие в связи с этим проблемы выходят за рамки экологии как биологической науки, приобретают направленный социальный и политический характер (движения "зеленых", борьба за охрану природы, постановка экологических вопросов в повестки дня политических организаций, и пр.). Решение их должно включать все естественные науки вкупе с хозяйственно-экономическими, социальными, политическими аспектами, что входит в задачи социальной экологии, в которой особое положение занимает экология человека (медико-биологический и социальный подходы).

Крупный российский ученый-теоретик, наш современник Н.Ф. Реймерс (1931-1993) общую экологию представил, как вершину естествознания – мегаэкологию, вокруг которой концентрируются другие научные дисциплины, связанные с актуальными проблемами цивилизации и угрозой экологического кризиса. Другой российский ученый – Н.Н. Моисеев (1917-2000), специалист в области системного анализа, моделирования и прогнозирования, математик с мировым именем считает, что дальнейшее развитие цивилизации должно происходить через коэвалюцию (совместную эволюцию) человеческого общества и биосферы – к ноосфере.

Особую и важнейшую роль в становлении и развитии экологии сыграл Владимир Иванович Вернадский – создатель учения о биосфере, намного опередивший свое время. Открытие биосферы В.И. Вернадским в начале ХХ столетия принадлежит к величайшим научным открытиям человечества, соизмеримым с теорией видообразования, законом сохранения энергии, общей теорией относительности, открытием наследственного кода у живых организмов и теорией расширяющейся Вселенной. В.И. Вернадский доказал, что жизнь на земле - явление планетарное и космическое, что биосфера - это хорошо отрегулированная за много сотен миллионов лет эволюции общепланетарная вещественно-энергетическая (биогеохимическая) система, обеспечивающая биологический круговорот химических элементов и эволюцию всех живых организмов, включая и человека. Не только составом атмосферы и гидросферы обязаны мы работе биосферы, но и сама земная кора – это продукт биосферы.

Может показаться странным утверждение о том, что В.И. Вернадский открыл биосферу. Что ее открывать? Это не микроб какой-то. Биосфера огромна, и с ней постоянно имеет дело каждый из нас. Мы живем, мы постоянно обитаем в ней. Да, мы обитаем в ней, но очень мало задумываемся о том, что этот наш хрупкий дом уникален во Вселенной, что механизмы, его поддерживающие, очень тонкие, и могут легко сломаться не только от падения большого метеорита на Землю, но и от нашего неразумного поведения.

«Спички детям не игрушка», - говорят родители и прячут подальше спички от детей, чтобы они не сделали пожар и не сожгли дом, а вместе с домом и самих себя. Современное человечество в биосфере очень напоминает этих глупеньких шаловливых детей, которым в руки попали «спички» - мощные механизмы, прогрессивные технологии. Спрятать бы подальше от шалунов эти «спички», - да некому этого сделать. Нет родителей дома, дети предоставлены самим себе.

http://www.botsad.ru/images3/fif2_9.jpg

Виктор Борисович Сочава - российский геоботаник, внесший большой вклад в развитие экологии и биогеографии 

Кроме уже упомянутых выше имен, становление экологии в первой половине и в середине ХХ века в России было связано с именами: Б.Г. Иоганзена, Г.А. Викторова, В.Н. Беклемишева, П.Д. Ярошенко, В.Г. Карпова, Г.И. Поплавской, Т.А. Работнова, Т.К. Горышиной, В.Д. Александровой, Б.А. Тихомирова, В.И. Василевича, Л.Е. Родина, Е.М. Лавренко, В.Б. Сочавы и др. Из зарубеж-ных ученых ХХ столетия следует выделить следующих: А. Пирса, В. Шелфорда, В. Мак-Дуголла, Ю. Одума, Э. Пианку, Р. Риклефса, Ф. Рамаду и др. Многие из перечисленных исследователей являются авторами моногра-фий, учебников и учебных пособий.

Здесь мы поместили портреты далеко не всех ученых, внесших большой вклад в создание и развитие науки экологии. Но вглядитесь внимательно в их лица, и вы убедитесь в том, насколько проницателен их взгляд. Они уже ушли в мир иной, а их гениальными прозрениями мы пользуемся сегодня, наши дети и внуки будут пользоваться завтра.

http://www.botsad.ru/images3/fif2_10.jpg

Евгений Михайлович Лавренко - российский геоботаник, внесший большой вклад в развитие геоботанической картографии и теорию степных экосистем

 

Нелегким был путь этих людей на Земле. Всякому, кто приносит новое и непонятное, в нашем обществе уготованы тернии. Редко, кто из этих мыслителей при жизни заслужил положенные ему лавры. Слава к ним пришла либо в конце жизни, либо после смерти. Но что им слава... Ведь они первыми проникли в неведомое, первыми увидели и поняли то, что до них не видел и не понимал никто. Все они по-настоящему были счастливыми людьми.

На занятиях и в дальнейшей своей жизни вы еще познакомитесь с работами многих из них и расскажите о них своим ученикам.

Таким образом, мы выделили восемь этапов в становлении и развитии экологии:

Первый этап – отражает примитивные знания, накапливаемые людьми, в т.ч. первобытными, в процессе тесного общения с природой и ведения натурального хозяйства. Начался за много веков до новой эры и завершился в первые века до новой веры.

Второй этап – накопление фактического материала, но уже античными учеными, средневековый застой. Период: I-III век до н.э. – XIV век н.э.

Третий этап – продолжение сбора и первые попытки систематизация колоссального фактического материала, накопленного с началом великих географических открытий и колонизацией новых стран – в эпоху Возрождения. Период: с IV по XVIII век включительно.

Четвертый этап – связан с крупными ботанико-географическими открытиями, способствовавшими дальнейшему развитию экологического мышления; предпосылка экологических идей; выделены экология растений и экология животных. Период: конец XVIII – начало XIX века.

Пятый этап – становление эволюционной экологии, углубление экологических исследований, начало изучения взаимосвязей. Период: с начала XIX века до второй половины (1866 г.) XIX века

Шестой этап – определение понятия "экология", доминирование исследований аутэкологического направления – изучение естественной совокупности видов, непрерывно перестраивающихся применительно к изменению факторов среды, т.е. факториальной аутэкологии. М.С. Гиляров называл этот этап временем факториального редукционизма. Период: со второй половины (1866 г.) XIX до середины (1936 г.) XX века.

Седьмой этап отражает новый – системный, подход к исследованиям природных систем, формирование общей экологии, как самостоятельной фундаментальной биологической науки, доминирование синэкологического направления – изучение процессов материально-энергетического обмена, развитие количественных методов и математического моделирования. Период: 40-70 гг. XX века. Специфика этого этапа – мнение о примате конкурентных отношений в биоценозах и принижение значимости эволюционных факторов, господство парадигмы дискретности.

Восьмой этап – "экологизация" науки; становление экологических наук, учитывающих деятельность Человека, т.е. социальной и политической направленности. Возрастание интереса к изучению популяций (демэкология), динамики формирования биогеоценозов в связи с антропогенными нарушениями. Большое внимание уделяется стационарным исследованиям. Основная методология – системный анализ. Одно из главных направлений – длительный экологический мониторинг разных уровней (наземный, региональный, глобальный и пр.). Период: с 80-х годов XX века по настоящее время. Специфика – отказ от примата конкурентных взаимоотношений в ценозе; в фитоценологии смена парадигмы дискретности на парадигму континуальности; развитие методов и теории экологического мониторинга.В последнее десятилетие произошло объединение ряда тенденций последних периодов. Учеными признается как континуальность, так и дискретность растительного покрова – в природе есть и то и это, формируется новая парадигма – биологического разнообразия.

4. Причины отставания общей экологии от других наук

Обобщая вышесказанное, следует отметить, что развитие общей экологии задержалось и в XX веке. Как отмечают Н.Ф. Реймерс, А.С. Степановских, экология отстала от таких наук, как эмбриология, физиология, генетика на несколько десятилетий.

Причины отставания:

Недооценка потребности в открытии общих законов развития живого вещества; изучение взаимоотношений организмов друг с другом и со средой должно идти с учетом огромного разнообразия животного и растительного мира и их взаимозависимости. Многие направления экологии находятся на аналитической стадии.

Между науками, а, следовательно, и между учеными, существуют жесткие искусственные, в том числе психологические барьеры. Узкому специалисту удобнее и привычнее рассматривать "свои" предметы и явления вне существующих между ними взаимосвязей. Как сказал небезызвестный Козьма Прутков: «Узкий специалист подобен флюсу»! Но для всестороннего выявления особенностей экосистем необходимо изучение их коллективами разных специалистов. В первую очередь такие барьеры возведены между биологическими и небиологическими науками (социология, политика, экономика).

Отсутствие реальных перспектив развития общей экологии, существовавшее вплоть до середины прошлого столетия. Недопонимание того, что методы общей экологии отличаются от методов, используемых в смежных науках (так, нельзя в экосистеме измерять физиологические параметры в одном месте, невозможно выделив один фактор в природе, устранить измеряемой характеристикой проявление остальных) и что нельзя лабораторные методы переносить на природу.

Лишь в конце XX произошло осознание того, что деятельность человека часто не только наносит вред окружающей среде, но и угрожает самому существованию человечества. При этом в изменении структуры и динамики экосистем резко возросла роль случайных факторов, нередко приводящих к катастрофам с многочисленными человеческими жертвами. Человечество лишь в последние десятилетия начало всерьез осознавать важность для себя экологических проблем. Ведь вопрос стоит однозначно - быть или не быть на Земле технократической цивилизации. Этим и объясняется повальная экологизация, как самой науки, так и других направлений человеческой деятельности, экологизация всевозможных производств, связанных с потреблением природных ресурсов.

 Лекция 3. МЕТОДЫ ЭКОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ. БОТАНИЧЕСКИЙ МОНИТОРИНГ

Москалюк Т.А.

Список литературы

Степановских А.С. Общая экология: Учебник для вузов. М.: ЮНИТИ, 2001. 510 с.

Радкевич В.А. Экология. Минск: Вышэйшая школа, 1998. 159 с.

Бигон М., Харпер Дж., Таунсенд К. Экология. Особи, популяции и сообщества / Пер. с англ. М.: Мир, 1989. В 2-х томах.

Программа и методика биогеоценологических исследований. М.: Наука, 1974. С.14-23.

Сукачев В.Н., Зонн С.В. Методические указания к изучению типов леса. М.: Изд-во АН СССР, 1961. С.1-104.

Молчанов А.А., Смирнов В.В. Методика изучения прироста древесных растений. М.: Наука, 1967, 95 с.

Уткин А.И. Изучение лесных биогеоценозов // Программа и методика биогеоценологических исследований. М.: Наука, 1974. С. 281-317.

Крылов А.Г. Жизненные формы лесных фитоценозов. Л.: Наука, 1984. 184 с.

Галанин А.В. Лекции по экологии.

 

Методологические подходы

Методы экологических исследований

Изучение фитоценозов

Изучение зооценозов

Ботанический мониторинг. Состояние проблемы, основные понятия и элементы теории

1. Методологические подходы

Поскольку популяции и экосистемы сложены множеством организмов, поскольку на каждый организм и на их совокупности, будь то отдельная группировка, популяция или ценоз, действуют не один, а сразу несколько экологических факторов и к тому на протяжении разных отрезков времени, постольку и связи, и свойства перечисленных объектов оказываются многочисленными и разнообразными. Поэтому методологией, главным принципом всех экологических исследований является системный подход, учитывающий как особенности самих объектов исследований, так и факторов эти особенности определяющие.

В зависимости от того, что является объектом, и какова цель исследований используются разные подходы: популяционный (популяция – совокупность особей одного вида), экосистемный, эволюционный и исторический.

Популяционный подход предусматривает изучение размещения в пространстве, особенности поведения и миграции (у животных), процессов размножения (у животных) и возобновления (у растений), физиологических, биохимических, продукционных и других процессов, зависимости всех показателей от биотических и абиотических факторов. Исследования проводятся с учетом структуры и динамики (сезонной, онтогенетической, антропогенной) популяций, численности ее организмов. Популяционный подход обеспечивает теоретическую базу для прогнозирования рождаемости (в растит. сообществе – возобновления), выживания (динамики жизненного состояния) и смертности (распада, гибели). Он позволяет прогнозировать вспышки вредителей в лесном и сельском хозяйстве, позволяет выявить критическую численность вида, необходимую для его выживания.

Экосистемный подход выдвигает на первый план общность структурно-функциональной организации всех экосистем, независимо от от состава сообществ, среды и места их обитания. Основное внимание при этом подходе уделяется изучению потока энергии и циклам круговорота веществ в экосистемах, установлению функциональных связей между биологической составляющей и окружающей средой, т.е. между биотическими факторами и абиотическими. Экосистемный подход предусматривает всестороннее изучение всех популяций живых организмов сообщества (растения, микроорганизмы, животные) с учетом влияния на них ограничивающих факторов (эдафические, топографические, климатические). При этом подходе пристальное внимание уделяется анализу местообитаний, так как параметры факторов среды: физико-химические свойства почв, теплообеспеченность, влажность, освещенность, скорость ветра, и др., легко измеряются и поддаются классификации.

В качестве примера успешности экосистемного подхода к изучению биосферы можно привести итоги работы ученых из разных стран, работавших с 1964 по 1980 гг. по Международной биологической программе (МБП). Конечной целью МБП было выявление запасов и законов воспроизводства органического вещества, его качественного (фракционного) состава по всем природным зонам и в целом на планете, с тем, чтобы предотвратить возможные нарушения биологического равновесия в глобальном масштабе. Благодаря выполнению данной программы была решена актуальнейшая задача – выяснить максимально возможные нормы изъятия биомассы для нужд человечества.

Эволюционный и исторический подходы позволяют рассматривать изменения экосистем и их компонентов во времени. Эволюционный подход дает возможность понять основные закономерности, которые действовали в экосфере до того, как антропогенный фактор стал одним из определяющих. Он позволяет реконструировать экосистемы прошлого, принимая во внимание палеонтологические данные (анализ пыльцы, ископаемые остатки). В основе исторического подхода лежат изменения, обусловленные развитием цивилизации (от неолита до настоящего времени) и производствами, созданными человеком. К этим изменения относятся изменения климата, целенаправленное и случайное расселение человеком растений и животных.

Каждый из вышеуказанных подходов требует применения своих методов, специально разработанных с учетом состава объектов, условий местообитаний и поставленных задач.

2. Методы исследований

В экологии часто используются методы, применяемые в других науках, как в биологических (биогеохимия, анатомия, физиология, и др.), так и небиологических (физика, химия, геодезия, метеорология и др.). Но для выявления специфики экологических закономерностей существуют исключительно собственные – экологические методы. Они делятся на полевые, лабораторные, экспериментальные, количественные (математическое моделирование) методы.

Полевые методы имеют первостепенное значение. Они предполагают изучение популяций и сообществ в естественной среде (в природе) и позволяют установить воздействие на объект комплекса факторов, изучить общую картину развития и жизнедеятельности изучаемого объекта.

В качестве примера можно привести леса на склонах разных экспозиций, на разных почвах, на разных географических широтах. Или водные экосистемы на разной глубине в одном и том же море, на одной глубине в южных и северных морях. Все они, несмотря на различия, развиваются по одним и тем же законам, под влиянием комплекса факторов, но значения этих факторов разные и зависят от местоположения объекта исследований.

Однако в полевых исследованиях очень сложно выявить роль одного фактора, как биотического (конкуренции, аллелопатии, плодородия почв), так и абиотического (тепло, влаги, света, засоления, кислотности почв), тем более, что все факторы функционально связаны друг с другом.

Известно, что нередко ограничение одного из них сопряжено с изменением другого. Так, холодность почв с многолетней мерзлотой способствует их переувлажнению и, как следствие, анаэробиозису. В результате резко ухудшаются условия усвоения корнями растений элементов питания. В Приморье, как правило, высокая инсоляция южных склонов сопровождается высокой сухостью субстрата и формированием ксерофитных криволесий.

Исследовать роль конкретного фактора можно при постановке эксперимента в полевых или лабораторных условиях.

Экспериментальные методы отличаются от полевых тем, что организмы искусственно ставятся в условия, при которых можно дозировать размер изучаемого фактора, следовательно, можно точнее, чем при обычном наблюдении, оценить его влияние. При этом выводы, полученные в лаборатории, требуют обязательной проверки в полевых условиях.

В качестве примеров экологических экспериментов можно привести исследования функций лесозащитных полос, изучение осветления насаждений, влияния разных доз удобрений, вносимых под сельскохозяйственные культуры и т.д. Широко известен метод изучения конкурентных взаимоотношений деревьев в лесу путем ограничения определенной площади (площади питания).

Большое значение при проведении экологических исследований имеют химические и физиологические методы, т.к. они позволяют выявить роль разных компонентов экосистем, и в первую очередь, самого главного – фитоценоза, в аккумуляции и превращении вещества и энергии. Химические методы позволяют установить особенности накопления химических элементов в растениях и в целом в сообществах, особенности круговорота питания. С помощью физиологических методов можно в полевых условиях проследить физиологические процессы (фотосинтез и транспирация).

Так как все биосистемы обладают способностью к саморегуляции, т.е. к восстановлению экологического равновесия, а законы их развития имеют причинно-следственную связь, то в экологических исследованиях широкое распространение получили математические методы (математическая статистика, методы теории информации и кибернетики, теории чисел, дифференциальные и интегральные исчисления и др.) и на основе этих методов – моделирование. Моделирование биологических явлений, т.е. воспроизведение в искусственных системах процессов свойственных живой природе, получило широкое распространение в современной экологии.

Модели подразделяются на реальные (аналоговые) и знаковые.

Примеры аналоговых моделей – аппараты искусственного кровообращения, искусственная почка, протезы рук, управляемые биотоками. Аквариумы и океанариумы модели разных водоемов, теплицы – модели экосистем соответствующих природных зон.

Знаковые модели представляют собой отображение оригинала с помощью математических выражений или подробного описания и, в свою очередь, делятся на концептуальные и математические. Первые могут быть представлены текстом, схемами, научными таблицами, графиками и т.д., а вторые – формулами, уравнениями. Математические модели, особенно при наличии количественных характеристик, являются более эффективным методом изучения экосистем. Математические символы позволяют сжато описать сложные экосистемы, а уравнения дают возможность формально выразить взаимодействия различных компонентов экосистем.

Пример простейшего дифференциального уравнения, описывающего рост популяции какого-либо вида на какой-нибудь стадии ее развития (Радкевич, 1997):

dx/dt=rx,

где x – плотность популяции в момент времени t, r – скорость роста в период времени, соответствующий rt. Решением этого уравнения является функция

x=x0ert

Процесс перевода физических или биологических представлений о любой экосистеме в математические формулы и операции над ними называются системным анализом. В современной экологии реальные и знаковые модели используются параллельно, дополняя друг друга. При отсутствии реальных моделей математический подход получается отвлеченным, а при исключении математического подхода бывает трудно уловить смысл реальной модели.

Экологический мониторинг – один из главных методов изучения динамики экосистем (биогеоценозов), происходящей под воздействием естественных и антропогенных факторов. Под мониторингом понимается специальное длительное слежение за состоянием одних и тех же экосистем. Подобные исследования сопряжены с большими время- и трудозатратами, так как предусматривают детальное описание и изучение всех компонентов, составляющих биогеоценоз, и потому возможны лишь при организации стационарных работ с закладкой как временных, так и постоянных пробных площадей. Мониторинг растительного покрова должен проводиться на разных уровнях в соответствии с хорологической (пространственной) дифференциацией биосферных систем. С помощью одной пробной площади размером 1 га проводить мониторинг растительного покрова невозможно. Для равнинного геоботанического района (заповедника) необходимо заложить не менее 10-12 постоянных пробных площадей размером 1 га, а для горного района - не менее 30-40. Именно к такому выводу пришло большинство исследователей, работавших в разных регионах северной Евразии.

К сожалению, изучение процессов, а именно изучение трансформации сложных многокомпонентных систем, какими являются экосистемы и растительные сообщества – это следующий этап развития экологии. Пока что наибольшее развитие получил мониторинг растительного покрова (ботанический), но и он еще находится в начальной стадии.

3. Изучение фитоценозов

Во время летних практик очень важно, чтобы ученики получили объективное представление о природе своей малой родины, своего края, научились распознавать растения и понимать хотя бы самые общие процессы, которые происходят в сообществах. Поэтому желательно вместе с ними наблюдать и изучать природные явления, а для этого учителю необходимо самому овладеть хотя бы основными экологическими методами, знать, как и с чего следует начинать исследования.

Изучение растительного покрова – самая важная часть экологических исследований. По выражения В.М. Урусова, растения «не бегают по территории, как зайцы», их легко измерять, за ними легко наблюдать. Видовой состав, физиономический облик, структура, жизненное состояние растений и продуктивность растительных сообществ отражают все особенности условий обитания (климат, почвы, положение в рельефе), историю развития и связи между элементами сообщества, как в пространстве, так и во времени. С изучения растительности и начинается изучение экосистем.

Основной классификационной единицей растительного покрова служит ассоциация. Нет на земле двух совершенно одинаковых растительных сообществ, или фитоценозов, которые были бы идентичны, но многие из них настолько похожи между собой, чтобы без колебаний могут быть отнесены к одному типу фитоценоза или одной ассоциации. Согласно определению, разработанному отечественными геоботаниками во главе с В.Н. Сукачевым, ассоциация представляет собой совокупность однородных фитоценозов с одинаковой структурой, одинаковым составом и жизненными формами растений, со сходными взаимоотношениями организмов как друг с другом, так и со средой. Сходные ассоциации (лиственничник разнотравно-вейниковый, Л. хвощово-разнотравный и т.д.) составляются в группы (лиственничники травяные), сходные группы – в формации (лиственничная), последние – в группы формаций (горные лиственничники, долинные лиственничники), затем следуют классы формаций (хвойных лесов) и типы растительности (лесной).

Для получения объективных характеристик и количественных показателей ассоциации в ее самых типичных фитоценозах закладывают пробные площади и на них определяются все характеристики. Поэтому закладке пробных площадей предшествует очень тщательный выбор участков на основе обстоятельного изучения материалов лесоустройства и маршрутного обследования районов исследований.

Минимальный ареал ассоциации – это минимальный размер площади, на которой выявляются все виды (константы) ассоциации; минимальная площадь выявления та, на которой выявляются все особенности изучаемого сообщества. Исходя из этих условий и устанавливается размер пробных площадей.

При закладке пробных площадей обычно соблюдается второе условие, чтобы число особей эдификаторных ценопопуляций на них составляло не менее 200 экземпляров и были представлены все виды растений и все структурные элементы ценоза. Минимальный размер пробных площадей в лесу – 50х50 м2, максимальный – 50-100 м2. Для травяных сообществ размер пробных площадей меньше, чем для лесных (до 100 м2). Для пробных площадей детально описываются местоположение, состояние окружающих территорий, выявляется видовой состав, дается характеристика каждой ценопопуляции, отмечается ее фенологическая фаза. Обязательно изучаются вертикальная и горизонтальная структура сообщества.

Пробные площади могут быть временными и постоянными. На временных пробных площадях проводятся разовые учетные работы и не столь детально, как на постоянных пробных площадях (ППП). Именно последние служат для многолетнего изучения разных процессов и закономерностей развития растительности, т. е. для мониторинговых исследований. Желательно чтобы ППП были заложены во всех редких и в девственных сообществах каждой природной зоны.

При детальном изучении пространственной структуры ППП в натуре разбиваются на квадраты 10х10 м2. На каждом из них выполняется сплошной перечет древостоя и крупного подроста с указанием жизненного состояния особей. Впоследствии выбираются квадраты, наиболее отражающие строй того или иного структурного элемента (парцеллы – в трактовке Н.В. Дылиса, 1974) и по их данным рассчитываются показатели: таксационные – для древостоя (средние диаметр и высота, сумма площадей сечения стволов, разряды высот, запас древесины, относительная полнота, классы бонитета и товарности) и биометрические – для подлесочного яруса.

Древостой. На временных пробных площадях жизненное состояние растений и особенности ярусов (древостоя, подроста, кустарников, трав), описываются глазомерно; замеры диаметров (перечет) у деревьев ведутся с точностью до 4 см, высоты измеряются у 20-30 деревьев. На постоянных пробных площадях каждому дереву присваивается порядковый номер и у диаметр измеряется с точностью до 0,1 см, указывается категория, отражающая жизненное и качественное состояние дерева.

Например, по следующей шкале:

I А – господствуют в первом ярусе, лучшие по развитию, с прямыми ровными, хорошо очищенными от сучьев стволами;

I Б – растут в первом ярусе, хорошего развития, здоровые, но могут иметь незначительные изъяны ствола;

II А – растут в первом и втором ярусах, здоровые, но отстают в росте или, в силу своей молодости, еще не вышли в класс господствующих;

II Б – здоровые, с сильно развитыми кронами, суковатыми стволами;

III А – перестойные, но без признаков усыхания; самые большие;

III Б – фаутные, сомнительной жизнеспособности, усыхающие.

Для более полной информации о развитии древостоя проводится анализ хода роста модельных деревьев главной породы, определяется возраст.

Подрост выше 2 м на пробных площадях учитывается полностью. Он разбивается по группам высот с градацией 0,25 или 0,5 м. Одновременно с перечетом указываются порода и жизненное состояние растущих особей.

очень хорошей жизненности – деревце густооблиствено (густоохвоено), прирост в высоту максимальный для данной группы высот, стволик без изъянов, кора гладкая;

жизнеспособный (благонадежный) – деревце здоровое, нормально развито, но могут быть небольшие изъяны у стволика: смены вершинок, кривизна; прирост побегов снижен, кора гладкая;

сомнительной жизненности – деревце сильно угнетено, прирост по высоте очень слабый или отсутствует, кроны редкие, нередко состоят из 1-2 ветвей; много сухих побегов, частые смены вершинок, кора шершавая;

нежизнеспособный (неблагонадежный) – прироста текущего года нет, живые ветви единичны, вершинки усохшие, кора шершавая, отслаивается.

Для всех пород отбираются модельные деревца – по одному для каждой группы высот. У них определяются возраст и приросты в высоту по годам за последние пять лет, измеряются диаметры стволика на уровне шейки корня и на высоте 1,3 м, высота стволика и диаметр кроны.

Для подлеска (кустарников) определяются видовой состав, состояние и сомкнутость ценопопуляции каждого вида. Он разделяется на редкий (сомкнутость <0,3), средней густоты (0,3-0,5) и густой (сомкнутость >0,5). Для определения биометрических показателей в выделенных градациях у 50 особей всех видов измерялись длина и диаметр побегов на уровне шейки корня. У кустарников подсчитывалось количество побегов в кусте и у всех побегов измерялись диаметр и длина побега.

Подрост ниже 0,25 м, всходы и самосев древесных и кустарниковых пород учитываются по площадкам 2х2 м. Учетные площадки закладываются на пробной площади равномерно по диагонали в верхнем правом (или левом) углу каждой 10-метровой клетки. На этих же площадках учитывается и возобновление лиан. Перечет самосева подроста и кустарников ведется по высоте с точностью до 5 см с указанием жизненности особей.

Напочвенный покров отличается большой неоднородностью структуры, особенно в северных лесах и редколесьях. Как фитоценоз может состоять из нескольких ярусов, так ярус напочвенного покрова – из нескольких подъярусов, образованных растениями разных жизненных форм: кустарничками, мхами, лишайниками, травами.

Травы, в свою очередь, можно разделить на группы: злаки и осоки, мелко- или низкотравье (высота до 15-20 см, разнотравье (травы средних размеров – до 50 см), крупнотравье (выше 50 см) и папоротники. Для каждой пробной площади составляется таблица со списком видов и показателями их численности отдельно для травяно-кустарничкового подъяруса и мохово-лишайникового подъяруса (покрова). Описание напочвенного покрова нередко выполняется одновременно с картированием микрогруппировок. Названия микрогруппировкам, как и всему ценозу, присваиваются по доминирующим видам и (или) группе видов со сходными экологией и жизненной формой. Например, "разнотравно-осоковая" означает, что в группировке высоко обилие смеси из разных трав среднего размера, но обилие осоки выше. Если проективное покрытие трав было ниже 60, но выше 40% – к названию добавлялось "разреженная", если ниже 40% – редкопокровная.

Показатели численности видов и их динамика являются основными в экологических исследованиях. Численность определяется визуально и инструментально, но чаще визуально. Всегда на учетной единице: площади (дм, м2, км2, га,), длины (м, км), объема (м3, 10 дм3), времени (час, сутки) и т.д.

Основные показатели численности видов

Встречаемость (частота встречаемости, коэффициент встречаемости) – это относительное число выборок, в которых встречается вид. Если выборка состоит из 100 учетных площадок, а вид отмечен на 43, то и встречаемость равна 43%. При встречаемости 25%, вид встречается в каждой четвертой площадке учета и он случайный. Высокая встречаемость, если вид отмечен более, чем на 50% уч. пл. Обычно закладывается 50 уч. пл., но не менее 25.

Обилие – это количество особей вида на единице площади или объема. Наиболее часто используются шкалы обилия Друде и Хульта:

 

Шкала обилия Друде

Шкала обилия Хульта (балльная)

soc – очень обильно, сплошь, пр. покр. более 90%

5 – очень обильно

cop1-3 – вид обилен, по величине обилия выделяются 3 степени пр. покр. соответственно: 30-40, 50-60 и 70-80%

4 – обильно

sp – вид обычен, но сплошного покрова не образует, пр. покр. 10-20%

3 – не обильно

sol – вид растет рассеянно, пр. покр. 3-5%

2 – мало

un – вид встречается один раз, пр. покр. <1%

1 – очень мало

Покрытие – процент площади, покрываемой надземными частями растений. Процент площади, занятой основаниями растений – истинное покрытие, верхними частями – проективное. Проективное покрытие – обязательный показатель при изучении напочвенного покрова. При изучении древесно-кустарниковых ярусов синонимом пр. покр. служит сомкнутость –отношение площади проекций крон к площади занимаемого участка; в отличие от пр. покр. сомкнутость измеряется в долях от единицы. Истинное пр. покр. для древостоя – сумма площадей поперечного сечения стволов и полнота, определяется расчетным путем по данным перечета древостоя.

Биомасса – общие запасы органического вещества, накопленные к моменту учета. Выражаются в массе абсолютно-сухого, воздушно-сухого или сырого вещества. Биомасса растений – растительная масса, фитомасса; биомасса животных – зоомасса. Биомасса, ее фракционная структура, скорость накопления (продукция – прирост биомассы за определенный промежуток времени) являются важнейшими – интегральными, показателями жизнедеятельности организмов. Они дают возможность оценить роль каждого фактора и популяции в формировании биогеоценоза, оценить запасы биологических и пищевых ресурсов, сделать кратко- и долгосрочные прогнозы развития сообществ, предсказать пути их трансформации и разработать мероприятия по охране и рациональному использованию любого из ресурсов. Именно поэтому изучение биологической продуктивности и было положено в основу упомянутой выше Международной биологической программы (МБП).

При экологических исследованиях очень важна и хозяйственная оценка исследуемых территорий: запасы древесины, лекарственного сырья, пищевых и промысловых ресурсов.

В целом же часто необходимо сочетание всех перечисленных методов.

4. Изучение зооценозов

Цели и задачи экологических исследований фито- и зооценозов сходны – изучение водного и газового обмена, продуктивности, закономерностей биохимических (физиологических) процессов, темпов роста и размножения, др. показателей. Так же, как жизнь растений, жизнь животных зависит от абиотических факторов среды – тепла, влаги, света, состава воздуха и др. факторов. Но изучение животных имеет свои характерные особенности. Одна из самых характерных – изучение питания: состава и количества пищи в разное время года и разные периоды жизни животного. Большое внимание уделяется вопросам размножения (фенология размножения, половая и возрастная структура популяций, зависимость размножения от пищевых ресурсов и погодных условий) – этим определяется продолжение рода и сохранность популяции как вида. Изучение поведения животных позволяет изучить способность популяции приспосабливаться к изменению условий среды, с поведением связано состояние популяции, ее реакция на всевозможные "раздражители". Немаловажно изучение образа жизни и сезонных биоциклов для познания закономерностей миграции и размещения популяций. С этой целью проводятся радиомечение, кольцевание, маркировка краской, клеймение животных.

5. Ботанический мониторинг. Состояние проблемы, основные понятия и элементы теории

Метод ботанического (экологического) мониторинга и метод трансформации пространственных рядов во временные – методы изучения динамики экосистем.

Ботанический мониторинг следует рассматривать как основной метод изучения динамики растительного покрова, его флоры и растительности, но до сих пор основным методом изучения динамики растительного покрова является метод трансформации пространственных рядов растительного покрова во временные. В этом случае подбираются сообщества, нарушенные в разное время и находящиеся на разной стадии восстановления. Главное условие подбора объектов исследований – сходство местообитаний, а, следовательно, и типологическое сходство их ненарушенных сообществ. Подобранные сообщества в совокупности рассматриваются как возможный ряд последовательных смен, и он интерпретируется как временной ряд изменения растительного покрова в одном месте, т.е. на одной пробной площади.

а) Почему широкое распространение получил метод трансформации пространственных рядов во временные, а не метод ботанического (экологического) мониторинга? Дело в том, что в период становления ботаники, и геоботаники в том числе, преобладал описательный и классификационный этап развития. По сравнению с такими науками, как физика и химия, он несколько затянулся. На выделение объектов и явлений, их распознавание, детальное описание и классификацию в геоботанике ушло около 200 лет. Это неудивительно, так как ботаникам приходится иметь дело с таким разнообразием объектов, явлений и процессов, которое на несколько порядков выше, чем разнообразие в точных науках. Да и сегодня еще немало «белых» флористических и геоботанических пятен, требующих простейшей инвентаризации. Особенно в Сибири и на Дальнем Востоке, где описательно-классификационный этап в самом разгаре.

Однако назрела пора перехода ко второму этапу - изучению динамики флоры и растительности, так как нерешенность именно этих проблем тормозит развитие общей и прикладной экологии. Но поскольку многолетний мониторинг, как основной метод изучения динамики, требует длительного периода наблюдений, его в какой-то мере и заменяет "метод трансформации". Последний, несомненно, сходен с методом длительного мониторинга, но в отличие от него, позволяет изучить только демутационные (восстановительные) смены растительного покрова и не позволяет установить необратимые изменения фитоценозов нет тому свидетелей и свидетельств.

б) Почему растительность, выводимая из равновесия периодическими изменениями климата, не может восстановиться полностью, т.е. до первоначального состояния? Мониторинг растительных сообществ – это мониторинг одного из компонентов локальной экосистемы. Он должен учитывать хроноинтервал исследуемой экосистемы. Хроноинтервал – время, необходимое для возвращения данной экосистемы в равновесное состояние после отклонения от него.

Для большинства лесных экосистем ранга биогеоценоза хроноинтервал составляет 150-200 лет, для степных экосистем – 50-100 лет, для луговых – 20-30 лет. Но для экосистемы целого геоботанического района (элементарная биосферная система) хроноинтервал имеет размер 1500-2000 лет. Для биосферной системы еще более высокого ранга (физико-географической области) хроноинтервал составляет время порядка 10000-20000 лет. Считается, что хроноинтервал биосферы в целом – свыше 100000 лет (Миркин, 1985; Галанин, 1993, 2000).

Исследования последних 30-40 лет показали, что для изменений климата характерна цикличность. При этом существует не один, а несколько циклов с разными периодами, где короткие циклы накладываются на более длительные.

Хорошо доказан и обоснован 11-ти летний цикл колебаний климата, который связывают с колебаниями солнечной активности. Многие авторы указывают на наличие в природе 90-100 летнего цикла. Некоторые исследователи считают, что еще существует 600-700 летний цикл, отражающийся в биосфере, в том числе и в растительном покрове.

Если мы сравним длительность этих циклов с хроноинтервалами экосистем разного ранга, то увидим, что эти временные периоды не совпадают. Следовательно, растительность, выводимая из равновесия периодическими изменениями климата, не может восстановиться полностью. Пока она восстанавливается, наступает новый цикл, равновесие сдвигается, и снова начинается сукцессия (смена).

Многие геоботаники с выводами о перманентно неравновесном состоянии растительности не согласятся – настолько мы уверовали в догмат о климаксовой растительности. Доказать, или опровергнуть вывод о невозможности климаксовой (и коренной тоже) растительности в современную эпоху можно только путем длительного мониторинга растительного покрова на постоянных пробных площадях. Но вот этой-то информации в современной геоботанике как раз и не хватает.

Основные причины слабой организации мониторинга в естественных экосистемах заповедников и других территорий

а) Почему не хватает информации для анализа динамики экосистем? Отсутствуют переописания (ревизии) постоянных пробных площадей. Геоботаниками за полтораста лет были составлены сотни тысяч геоботанических описаний, но почти все они были разовыми и не предполагали ревизии – повтора через определенные промежутки времени. Для типизации и классификации растительности этих разовых описаний было достаточно, на этом материале писались сводки, диссертации, создавались теории, в том числе и теории о динамике растительности. Закладывать и описывать постоянные пробные площади пытались на стационарах, в заповедниках. Их маркировали на местности, заводили паспорта, даже 2-3 раза переописывали. Но старел исследователь, заложивший постоянные пробные площади, уезжал, умирал, начиналась война, приходили новые сотрудники с иными интересами, и постоянные пробные площади забрасывались, терялись. Когда через 30-40 лет в этот район приходил сотрудник, заинтересованный в мониторинге растительности, то он не мог отыскать заброшенные площади и был вынужден закладывать новые.

2. Недостаточная квалификация лесоустроителей. Много постоянных пробных площадей закладывалось при лесоустройствах. Древостои на некоторые из них характеризовались весьма подробно: деревья нумеровались, измерялись, наносились на план, учитывались возобновление и подрост, но остальные ярусы растительности характеризовались поверхностно, небрежно. Флора на этих площадях выявлялась едва на 10-20%, так как специалистов флористов в таких экспедициях не было. Да и трудно себе представить, чтобы в лесоустроительной экспедиции, базирующейся в Минске, были флористы, ориентирующиеся в биоразнообразии растительного покрова и Белоруссии, и Северного Кавказа, и Южной Сибири, и Дальнего Востока. А работать сотрудникам каждой лесоустроительной экспедиции приходилось во всех районах Советского Союза. Завышенные нормативы для сотрудников лесоустроительных экспедиций и слабый контроль их работы нередко приводили к откровенной халтуре.

3. Работе по закладке, описанию и периодической ревизии постоянных пробных площадей не придается особого значения. Даже в заповедниках она не является обязательной и ведется от случая к случаю; слабо контролируется как руководством заповедников, так и органами, контролирующими работу заповедников. Отсутствует единая утвержденная и обязательная методика. Штаты научных отделов даже в биосферных заповедниках не имеют жесткого перечня обязательных специальностей. В ряде заповедников специалистов геоботаников и лесоведов в штате вообще нет. Директора заповедников и их заместители не несут никакой ответственности за потерю постоянных пробных площадей, за то, что в их заповедниках не ведется мониторинг растительности. Хотя именно мониторинг растительного и животного мира должен быть главной научной задачей заповедников.

То, что до сих пор считается главной задачей научных отделов заповедников – проведение исследований в области систематики растений и животных, физиологии, биохимии – это задача академической науки. Инвентаризация флоры, лихенобиоты и микобиоты для большинства заповедников - непосильная задача, собственными научными силами они ее выполнить не могут. Неоправданно много внимания ботаниками в заповедниках уделяется изучению редких видов в ущерб исследованиям в области мониторинга флоры и растительности на постоянных пробных площадях. Нередко научные сотрудники заповедников пытаются описывать новые для науки виды, выделять биологически активные вещества. Для этого заповедники должны приглашать ученых из академических институтов и университетов. Но вести мониторинг в рамках обязательной программы-минимум заповедники должны собственными силами.

Главные задачи изучения изменений растительного покрова

В условиях колебательных изменений климата в растительном покрове выработался специальный механизм, который позволяет экосистеме быстро перестраиваться, изменяя состав видов доминантов. В видовом составе растительного сообщества уживаются виды самого разного склада, имеющие разные пределы экологической толерантности. В одной части климатического цикла на данном участке доминируют одни виды, в другой части активизируются другие виды, а бывшие доминанты переходят в разряд сопутствующих.

Такими парами в лесах среднего Сихотэ-Алиня являются дуб монгольский и лиственница даурская, кедр корейский и ель аянская, а в лесах Хэнтей-Чикойского нагорья в Даурии – кедр корейский и лиственница, сосна обыкновенная и лиственница.

При анализе изменений растительного покрова исследователь всегда должен задаваться вопросом о направленности этих изменений. В каком случае экологическая система движется к состоянию равновесия со средой обитания, а в каком удаляется от него? Как исследователь может определить направленность изменения экосистемы и растительности как ее части? Ответить на этот вопрос можно только анализируя динамику биоразнообразия растительного сообщества. Если биоразнообразие экосистемы в ходе ее изменения снижается, следовательно, экосистема деградирует. Напротив, если биоразнообразие экосистемы увеличивается – система развивается.

Таким образом, важной для мониторинга растительности является оценка флористического биоразнообразия растительных сообществ. Проблема эта не так проста, как это представляется сегодня большинству исследователей. Чаще всего биоразнообразие отождествляется с числом видов, числом родов и семейств. При этом вряд ли кто скажет, когда разнообразие выше, когда в сообществе 20 видов одного рода, или когда в нем 5 видов, но из 2 разных родов. А когда в сообществе только 2 вида, но из 2 разных семейств, это больше, или меньше?

Проблема может быть осложнена, если мы станем рассматривать не таксоны, а экобиоморфы растений. Порой таксономически близкие виды растений принадлежат к совершенно разным экобиоморфам и, наоборот, таксономически несходные виды растений имеют сходные экобиморфы. Примеров этого можно привести множество. Геоботаники знают, что биоморфологическое разнообразие чаще всего не совпадает с таксономическим. Но именно биоморфологическое разнообразие является более важным с точки зрения функциональной структуры растительного покрова. Классификация растительности по доминантным видам и экобиоморфам растений никак не может быть заменена флористической классификацией растительности. Поголовное увлечение только флористической классификацией, несомненно, пагубно скажется на развитии теории мониторинга растительности. Описывая растительность постоянных пробных площадей, следует очень скрупулезно описывать и учитывать вертикальную надземную и подземную ярусность, фенологическую неоднородность, способы возобновления ценопопуляций растений, способы перенесения растениями неблагоприятных условий и другие биоморфологические особенности.

При мониторинге растительности следует выявлять ведущие факторы, вызывающие периодические изменения конкретных растительных сообществ.

Например, при потеплении и явной аридизации климата в Даурии за последние 30 лет, в некоторых экосистемах верхнего лесного пояса в поймах рек влажность почвы резко возросла за счет более интенсивной оттайки многолетней мерзлоты в гольцовом и подгольцовом поясах. В альпийском поясе в результате такого потепления многие относительно теплолюбивые виды стали деградировать, так как снегу стало выпадать меньше, и снеговое укрытие в местах перегибов склонов, где перезимовывали эти растения, стало незначительным. Стали гибнуть кусты кедрового стланика, сокращаться ценопопуляции пихты сибирской.

На многие поставленные вопросы могут дать ответ регулярные фенологические наблюдения на одних тех же участках за одними и теми же объектами. Именно они на основе постоянно фиксируемых состояний растений позволяют уловить момент изменения климата или перехода экосистемы из одной сукцессионной стадии в другую.

К проведениию мониторинговых наблюдений следует шире привлекать студентов и школьников, после получения ими под руководством преподавателей определенных навыков. Это позволит быстро создать базу данных для организации регионального мониторинга на достаточно большой территории, и послужит хорошей основой для расширения кругозора и повышения экологической грамотности у учащейся молодежи.

 Лекция 4. ФАКТОРЫ СРЕДЫ И ИХ ДЕЙСТВИЕ НА ОРГАНИЗМЫ И ЭКОСИСТЕМЫ

Москалюк Т.А.

Список литературы

Степановских А.С. Общая экология: Учебник для вузов. М.: ЮНИТИ, 2001. 510 с.

Радкевич В.А. Экология. Минск: Вышэйшая школа, 1998. 159 с.

Бигон М., Харпер Дж., Таунсенд К. Экология. Особи, популяции и сообщества / Пер. с англ. М.: Мир, 1989. Том 1.

Шилов И.А. Экология. М.: Высшая школа, 2003. 512 с. (СВЕТ, циклы)

Крылов А.Г. Жизненные формы лесных фитоценозов. Л.: Наука, 1984. 184 с.

Культиасов И.М. Экология растений. М.: Изд-во МГУ, 1982. 384 с. (ФОТОНАСТИИ)

 

1. Условия жизни, ресурсы и адаптации организмов

2. Классификации экологических факторов

3. Общие закономерности совместного действия факторов на организмы

а) Понятие об оптимуме

б) Понятие о толерантности

в) Закон Либиха, или закон ограничивающего фактора

г) Правило предварения

д) Принцип стациальной верности

е) Правило зональной смены ярусов

 

1. Условия жизни, ресурсы и адаптации организмов

Как было сказано во второй лекции, период со второй половины (1866 г.) XIX до середины (1936 г.) XX века (6 этап) называется периодом факториальной экологии.

Организмы – это реальные носители жизни, самостоятельные «ячейки» обмена веществ. Они потребляют из окружающей среды необходимые вещества и выделяют в нее ненужные им – продукты обмена, которые, в свою очернедь, могут быть использованы другими организмами. И не только продукты обмены, но и сами организмы, как в жизни, так и после смерти, тоже становятся пищей для других живых существ.

Все эти процессы обмена протекают в сложной, динамичной обстановке естественной среды обитания, так как находятся под постоянным воздействием комплекса факторов. Совокупность этих факторов составляют условия жизни организма. Приспособления к постоянно меняющимся – в течение суток, года, жизни – условиям жизни, или факторам среды, называются адаптациями. Адаптации проявляются на всех уровнях биологического спектра – от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Все адаптации выработаны исторически и в результате их сформировались специфические для каждой географической зоны сообщества растений и животных. Одной из главных задач экологии является изучение адаптаций организмов и экосистем к условиям жизни, или экологическим факторам.

Следует отличать понятие «условия жизни» от понятия «ресурсы». Различия между ними заключаются в том, что условия жизни обеспечивают - «обусловливают», жизнедеятельность растений и животных, они могут изменяться под их влиянием, но сами при этом не расходуются, не исчерпываются. И ни один организм не способен сделать условия жизни недоступными для другого организма.

Ресурсы организма – это все, что он потребляет, за ними стоят количественные показатели, которые могут уменьшаться – «исчерпываться» в процессе потребления. Это вещества, которыми живые организмы питаются и из которых состоят их тела (пищевые ресурсы), энергия, которая вовлекается в обменные процессы (энергетические ресурсы), и места, в которых протекают разные фазы их жизни. Некоторые факторы по отношению к организмам могут рассматриваться и как одно из условий, и как ресурс. Таковы свет, влага, соли в почвенном растворе.

2. Классификации экологических факторов

Многообразие экологических факторов еще в 1840 г. русский ученый Э.А. Эверсман в работе "Естественная история Оренбургской области" разделил на абиотические и биотические.

Абиотические факторы – это комплекс условий неорганической среды, влияющих на организмы. Рельеф и климат обусловливают большое разнообразие абиотических факторов.

Биотические факторы – это совокупность влияний одних организмов на другие в процессе их жизнедеятельности (опыление растений, затенение верхними ярусами нижних, поедание одних особей другими). В широком смысле это внутри- и межвидовые отношения организмов. К биотическим факторам относятся и антропические, роль которых год от году возрастает. Антропические факторы чаще называют антропогенными. Различия между ними заключаются в том, что антропогенные факторы управляют процессами формирования человека и не имеют отношения к влиянию на другие организмы или среду.

 

АБИОТИЧЕСКИЕ

БИОТИЧЕСКИЕ

Физические климатические – влага, свет, температура, ветер, давление, течения, продолжительность суток

Влияние растений друг на друга и на другие организмы в биоценозе (прямо или опосредованно)

Физические эдафические – влагоемкость, теплообеспеченность механический состав и проницаемость почвы

Влияние животных друг на друга и на другие организмы в биоценозе

Химические - состав воздуха, содержание в почве или воде элементов питания, соленость воздуха и воды, реакция рН

Антропические факторы – все виды человеческой деятельности

По действию их можно разделить на прямодействующие и косвенно-действующие (опосредованные, модифицирующие). Прямодействующие: свет, тепло, плодородие почв, влага (на растения), косвеннодействующие – они же, но через цепи питания – на животных.

Но то же тепло может быть косвеннодействующим фактором – на почвах с многолетней мерзлотой в муссонном климате летом наблюдается интенсивное таяние мерзлоты, но из-за недостаточной теплообеспеченности, корнеобитаемому слою свойственны переувлажнение и анаэробиозис, обусловливающие физиологическую недоступность для растений элементов питания; в континентальном сухом климате мерзлота в почвенном профиле, наоборот, в жаркую сухую погоду служит источником влаги и способствует оптимизации водного режима почв. Другие косвеннодействующие факторы: ветер (суровость погоды), течения (насыщ. кислородом), снежный покров (!).

Все экологические факторы имеют единицы измерения и определенный диапазон действия. В рамках этого диапазона и осуществляется жизнедеятельность организмов и биосистем.

Можно сгруппировать экологические факторы по времени (эволюционный, исторический), периодичности (периодический, непериодический), очередности (первичный, вторичный), происхождению (космический, абиотический, биотический, биологический, техногенный, фактор беспокойства, послепожарный и др.), среде возникновения (атмосферный, водный, геоморфологический, эдафический, физиологический, биоценотический, популяционный и др.).

3. Общие закономерности совместного действия факторов на организмы

а) Понятие об оптимуме

 

http://www.botsad.ru/images3/image5.gif

Каждый организм, каждая экосистема развивается при определенном сочетании факторов: влаги, света, тепла, наличия и состава питательных ресурсов. Все факторы действуют на организм одновременно. Для каждого организма, популяции, экосистемы существует диапазон условий среды – диапазон устойчивости (рис. 1), в рамках которого происходит жизнедеятельность объектов.

В процессе эволюции у организмов сформировались определенные требования к условиям среды. Дозы факторов, при которых организм, популя-ция или биоценоз достигают наилучшего развития и максимальной продуктивности, соответствует оптимуму условий. С изменением этой дозы в сторону уменьшения или увеличения происходит угнетение организма и чем сильнее отклонение значения факторов от оптимума, тем снижение жизнеспособности больше, вплоть до гибели организма или разрушения биоценоза. Условия, при которых жизнедеятельность максимально угнетена, но организм и биоценоз еще существуют, называются пессимальными.

 

 

 

ПРИМЕР. На севере лимитирующий фактор – тепло, на юге – влагообеспеченность. На Крайнем Севере самые производительные леса из лиственницы Каяндера разнотравные растут в поймах рек – здесь складывается благоприятный гидротермический режим и почвы во время паводков регулярно пополняются элементами питания. Самые низкопроизводительные леса – из той же лиственницы, но с покровом из сфагновых мхов, формируются на северных склонах гор в условиях постоянного переувлажнения и холодности почв. Уровень многолетней мерзлоты под моховым покровом не опускается ниже 30 см. В Южном Приморье оптимальные лесорастительные условия свойственны северным склонам в их средней части, а пессимальные – сухим южным склонам с выпуклой поверхностью.

Можно привести много примеров оптимумов и пессимумов у растений, животных и их сообществ по отношению к свету, влаге, теплообеспеченности, засоленности почв и др. факторам.

б) Понятие о толерантности

 

http://www.botsad.ru/images3/image6.gif

 

Для разных видов растений и животных пределы условий, в которых они себя хорошо чувствуют неодинаковы. Например, одни растения предпочитают очень высокую влажность, другие предпочитают засушливые местообитания. Одни виды птиц улетают в теплые края, другие – клесты, кедровки и птенцов выводят зимой. Чем шире количественные пределы условий среды обитания, при которых тот или иной организм, вид и экосистема могут существовать, тем выше степень их выносливости, или толерантности. Свойство видов адаптироваться к условиям среды называется экологической пластичностью (рис.2), а по амплитуде переносимых популяциями естественных колебаний фактора судят об экологической валентности вида.

 

 

 

Виды с узкой экологической пластичностью, т.е. способные существовать в условиях небольшого отклонения от своего оптимума, узкоспециализированные, называются стенобионтными (stenos – узкий), виды широко приспособленные, способные существовать при значительных колебаниях факторов – эврибионтные (eurys – широкий) Границы, за которыми существование невозможно, называются нижним и верхним пределами выносливости, или экологической валентности.

ПРИМЕР. Рыбы соленых и пресных водоемов – стенобионты. Трехиглая колюшка и лосось – эврибионты. Стенобионты-растения: чозения, тополь корейский – растения пойм, гигрофитные растения (калужница болотная, рогоз,), ксерофиты Приморья – сосна густоцветковая, абрикос маньчжурский, леспедеца и др. К стенобионтам можно отнести почти всех млекопитающих, в том числе и человека. Достаточно небольшого отклонения температуры воздуха (22-26°C) и воды (28-38°C) от «нормального» значения, пониженного содержания кислорода и повышенного содержания вредных веществ (хлора, паров ртути, аммиака и др.) в воздухе, чтобы вызвать резкое ухудшение его состояния.

По отношению к одному фактору вид м.б. стенобионтом, по отношению к другому – эврибионтом. В зависимости от этого выделяют прямо противоположные пары видов: стенотермный – эвритермный (по отношению к теплу), стеногидрический – эвригидрический (к влаге), стеногаленный – эвригаленный (к засоленности), стено- – эврифотный (к свету), и др.

Существуют и другие термины, характеризующие отношение видов к факторам окружающей среды. Добавление окончания «фил» (phyleo (греч.) – люблю) означает, что вид приспособился к высоким дозам фактора (термофил, гигрофил, оксифил, галлофил, хионофил), а добавление «фоб», наоборот, к низким (галлофоб, хионофоб). Вместо «термофоба» обычно употребляется «криофил», вместо «гигрофоба» – «ксерофил».

Типичные эврибионты - простейшие организмы, грибы. Из высших растений к эврибионтам можно отнести виды умеренных широт: сосну обыкновенную, лиственницу даурскую, дуб монгольский, иву Шверина, бруснику и большинство видов вересковых.

Стенобионтность вырабатывается у видов, длительное время развивающихся в относительно стабильных условиях. Чем сильнее она выражена, тем меньшим ареалом обладает вид, или его сообщество. Наиболее распространенные виды, имеют широкий диапазон толерантности ко всем факторам. Они называются космополитами. Но таких видов мало.

в) Закон Либиха, или «закон минимума», или закон ограничивающего фактора

В природе нет такого места, где бы на организм действовал один фактор. Все факторы действуют одновременно и совокупность этих действий называется констелляцией. Значения факторов не всегда равнозначны. Они могут быть все недостаточны, и тогда наблюдается общее угнетение биоты (слабое развитие растительного покрова, снижение продуктивности, изменение фракционной структуры биомассы, изменение других показателей экосистем), но чаще одни из них в достатке, даже в оптимуме, а другие – в дефиците. При этом констелляция не является простой суммой влияния факторов, т.к. степень воздействия одних факторов на организмы и популяции зависит от степени воздействия других факторов.

ПРИМЕР. При оптимальной теплообеспеченности увеличивается толерантность растений и животных к недостатку влаги и питания, а недостаток тепла сопровождается снижением потребности во влаге и повышенной потребностью в питательных элементах. Причем это наблюдается и у растений, и у животных. У растений при недостатке тепла и переувлажнении почв становятся физиологически недоступными элементы питания, и для обеспечения толерантности требуется повышенное плодородие почв. Также и у животных – чтобы усилить защитные функции организма на холоде, надо хорошо поесть. Так, всегда перед тем, как залечь в берлогу медведь накапливает подкожный жир. Реакции газообмена у рыб неодинаковы в воде разной солености. У жуков рода Blastophagus реакция на свет зависит от температуры. При температуре 25°C они ползут на свет (положительный фототропизм), при снижении ее до 20°C или увеличении до 30°C – реакция нейтральная, а при значениях ниже и выше этих пределов – прячутся.

Однако компенсаторные возможности у факторов ограничены. Нельзя ни один фактор полностью заменить другим, и если значение хотя бы одного из факторов выходит за верхний или нижний пределы выносливости компонента биоты, существование последнего становится невозможным, каковы бы благоприятны не были остальные факторы.

ПРИМЕР. Нормальное выживание пятнистого оленя в Приморье имеет место только в дубняках на южных склонах, т.к. здесь мощность снега незначительна и обеспечивает оленю достаточную кормовую базу на зимний период. Ограничивающим фактором для оленя является глубокий снег. Недостаток тепла ограничивает распространение на север большинство видов и формаций маньчжурской флоры: сосняки из сосны густоцветковой, пихта цельнолистная и ее формации распространены только в Южном Приморье. А в зоне распространения многолетней мерзлоты повсеместно господствует лиственница. Для кедрового стланика и ольховника камчатского решающими факторами распространения являются высокая влажность воздуха и условия перезимовки. Они хорошо переносят морозные зимы только при наличии мощного снежного покрова, защищающего побеги от иссушения и обморожения зимними муссонами Дальнего Востока. Эти виды образуют заросли только в прибрежных районах Охотского и Берингового морей, а в континентальных р-нах – в подгольцовом поясе на высоте не менее 1000 м/н.у.м. На ранних стадиях развития ограничивающим фактором у хвойных пород может быть избыток света. Все они, даже сосна могильная, в первые годы жизни требуют притенения.

В середине 19 века (1846 г.) немецкий агрохимик Либих вывел «закон минимума». В опыте с минеральными удобрениями он установил, что наибольшее влияние на выносливость растений оказывают те факторы, которые в данном местообитании находятся в минимуме. Он писал в 1955 г.: «Элементы, полностью отсутствующие или не находящиеся в нужном количестве, препятствуют прочим питательным соединениям произвести эффект или уменьшают их питательное действие». Это справедливо не только к элементам питания, но и к другим жизненно важным факторам. Закон Либиха применим только в условиях стационарного состояния экосистемы, т.е. когда приток вещества и энергии в систему уравновешивается их оттоком.

Фактор, уровень которого близок к пределам выносливости конкретного организма, вида и пр. компонентов биоты, называется ограничивающим. И именно к этому фактору организм приспосабливается (вырабатывает адаптации) в первую очередь. Закон ограничивающих, или лимитирующих, факторов распространяется не только на ситуацию, когда эти факторы в «минимуме», но и в «максимуме», то есть выходит за верхний предел выносливости организма (экосистемы).

В пессимальных условиях ограничивающих факторов несколько и их общее подавляющее влияние может быть выше суммарного подавляющего эффекта отдельно взятых факторов.

ПРИМЕР с южными склонами – инсоляция усиливает сухость среды, препятствует повышению плодородия почв.

Часто ограничивающим фактор бывает на одной из стадий развития вида. Как известно, наиболее уязвимы ювенильные особи и для них ограничивающих факторов м.б. несколько. В разных географических зонах и ограничивающие факторы разные: на Крайнем Севере – чаще тепло, в южных районах – влага. Разные виды по-разному реагируют на один и тот же фактор. По реакции их взрослых особей на тот или иной фактор можно построить экологический ряд (в порядке убывания или нарастания действия фактора).

http://www.botsad.ru/images3/image7.gif

 

ПРИМЕР экологического ряда древесных пород по теневыносливости: лиственница – береза белая – осина – ивы – липа – дуб – береза даурская – ясень – клены – ольха – ильм – граб – ель – кедр – пихта. Экологический ряд типов леса (по теплообеспечнности): лиственничник (Л.) травяный – Л. зеленомошный – Л. брусничный – Л. сфагновый (рис. 3). Экологический ряд типов леса (по увлажнению): ильмовник (или ясеневник) крупнотравно-папоротниковый – дубняк (Д.) с березой разнотравный – Д. осоковый – Д. рододендроновый осоковый – Д. марьянниково-осоковый – Д. осочковый редкопокровный (рис. 4).

В пределах популяции тоже можно выделить индивидуумы наиболее и наименее чувствительные к одному и тому же фактору. Это обусловлено сочетанием наследственных (генетических) и приобретенных (фенотипических) признаков организмов. Благодаря экологической индивидуальности в популяциях существуют разные по жизнестойкости особи. Самые жизнестойкие переживают периоды неблагоприятных условий, способствуя сохранению вида в экстремальных условиях. .

 

 

 

г) Правило предварения В.В. Алехина

Установил ботаник Вас. Вас. Алехин (1951). Одни и те же сообщества в одной зоне зональные, в других – экстразональные. Во втором случае за пределами северных границ ареала они занимают наиболее благоприятные для себя местообитания, за пределами южных границ – наименее благоприятные. Это особенно проявляется на северных и южных склонах лесной зоны. На холодных северных склонах в Магаданской области растут лиственничные редины со сфагновым покровом, а на теплых южных – лиственничные мохово-лишайниковые редколесья (Чукотка) и каменноберезовые разнотравные леса (Северное Охотоморье). В юго-западных районах Приморья северные склоны заняты влажными хвойно-широколиственными лесами, а южные – сухими дубняками с редкими вкраплениями сосняков из сосны густоцветковой (могильной) и абрикосниками, на самой окраине – переходящими в лесостепные сообщества.

Выявленная закономерность имеет большое значение, т.к. позволяет достаточно точно описать растительность еще не изученных территорий и реконструировать его прежний облик в местах, где он был уничтожен.

д) Принцип стациальной верности Г.Я. Бей-Биенко

Стация – место обитания популяции вида, которому присущи экологические условия, соответствующие требованиям вида. Каждый вид имеет свой набор стаций. В пределах одной зоны и временного периода вид занимает одни стации. С переходом в другую зону или с переходом в другую возрастную стадию вид может менять стации. Правило зональной смены местообитаний установил энтомолог Григ. Яковл. Бей-Биенко (1966). В северных районах многие виды насекомых обычно ведут себя как гигрофобы, занимая более сухие, с разреженным покровом участки, а в южных они же – гигрофиты, селятся во влажных, тенистых местах, с густым растительным покровом (перелетная саранча). Другой пример – муравьи-лазии (Lasius niger, L. flavus) на влажных лугах заселяют кочки, а на сухих – в степи, предпочитают более влажные стации обитания. Зональная смена местообитаний характерна и для растений.

Так, кедровый стланик в Южном Приморье растет только в подгольцовом поясе на высоте от 1000-1100 м до 1400-1600 м над ур.м., с продвижением к северу он спускается вниз и образует в долинных лиственничниках густой подлесок. Севернее 60° с.ш. – на Южной Чукотке и Охотском побережье, восточные и юго-восточные склоны и подножия гор и холмов заняты сплошными зарослями кедрового стланика.

е) Правило зональной смены ярусов М.С. Гилярова

В разных зонах одни и те же виды занимают и разные ярусы. При продвижении на север они закономерно из верхних ярусов перебираются в нижние, более теплые, а некоторые – и в почву. Это установил почв. зоолог Меркур. Серг. Гиляров.

ПРИМЕР. Личинки жука-оленя (Lucanus cervus) в лесной зоне развиваются в разлагающемся валеже и пнях, а в степной – обитают в гнилых корнях на глубине до 1 м.

Кроме зональной (пространственной) смены местообитаний происходят и временные смены: сезонная (в течения месяца и даже одних суток при колебаниях микроклимата – в периоды засух или тайфунов, насекомые и грызуны то прячутся под защиту крон кустарников и деревьев, то выбираются на открытые места) и годичная (при отклонении погодных условий от среднегодовых норм). Благодаря смене местообитаний виды сохраняют свой экологический статус в постоянно меняющихся условиях. В то же время при успешном расселении они занимают новые местообитания, и даже меняют их. В результате начинает меняться экология и физиология особей и популяций. В таких случаях смена стаций становится одним из ведущих факторов эволюции.

Принцип стациальной верности и противоположный ему принцип зональной и вертикальной смены местообитаний указывает на сложные связи организмов со средой. Изучение их очень важно для познания экологии видов, как основы для охраны редких и полезных и борьбы с вредными видами.

Лекция 5. Абиотические факторы среды и организмы. Адаптации организмов к абиотическим факторам: свету, температуре и влаге

Москалюк Т.А.

Список литературы: Тот же, что и в лекции 4

 

1. Свет в жизни организмов

а) Спектр света и значение разного типа излучений

б) Экологические группы растений по отношению к свету

в) Свет и биоритмы

2. Температура в жизни организмов

а) Оптимум и пессимум. Сумма эффективных температур

б) Адаптации растений к тепловому режиму

в) Пойкилотермность и гомойтермность

3. Влага в жизни организмов

4. Значение других экологических факторов для живых организмов

 

Важнейшие абиотические факторы для любого организма – свет, тепло и влага. С детства знакомо: «Солнце, воздух и вода – наши лучшие друзья!». Можно сюда добавить кислород – для животного мира, и углекислый газ – для растений. Каково же влияние каждого из них на живые организмы?

1. Свет в жизни организмов

Свет не только жизненно важный, но и лимитирующий фактор, как при минимальном уровне, так и при максимальном. Под термином свет подразумевается весь диапазон солнечного излучения, представляющий поток энергии с длинами волн от 0,05 до 3000 нм (1 нанометр = 10-6мм). Количество ее колоссально: ежеминутно Земля получает 2 кал/см2 (1,39×103дж/м2×сек). Эта величина называется солнечной постоянной. Но не вся лучистая энергия достигает земной поверхности.

а) Спектр света и значение разного типа излучений

Спектр света делится на несколько областей:

<150 нм – ионизирующая радиация – < 0,1%;

150-400 нм – ультрафиолетовая радиация (УФ) – 1-10%;

400-800 нм – видимый свет – £50%;800-1000 нм – инфракрасная радиация (ИК) – £50%.

До 19% рассеивается в атмосфере (парами и пылью, молекулами газов), около 34% отражается от атмосферы (от облаков) в космическое пространство и только 47% солнечной энергии достигает биосферы.

Ионизирующее излучение почти полностью задерживается верхними слоями атмосферы. Доля ультрафиолетовых лучей составляет около 1%. Остальное количество поступающей на землю лучистой энергии распределяется практически поровну на видимую и инфракрасную части спектра. Экологическое значение невидимых лучей изучено еще слабо.

Известно, что воздействие ионизирующего излучения связано с радиоактивностью; особенно выражено в последние десятилетия в связи с техногенными загрязнениями и катастрофами и проявляется на клеточном уровне (мутагенный эффект), влияет на обмен веществ.

Ультрафиолетовые лучи в умеренных дозах стимулируют рост и размножение клеток, способствуют синтезу биологически активных веществ, витаминов, антибиотиков и тем самым повышают устойчивость к болезням. Короткие волны этого излучения (200-320 нм) обладают канцерогенным действием – предположительно через нарушение молекулы ДНК, но большая часть их тоже поглощается озоновым слоем атмосферы. До поверхности Земли доходят в основном волны длиннее 300 нм. Они обладают высокой активностью, главным образом химической, но и их значимость неодинакова. УФ с длиной волн 300-320 нм выработке витамина D, регулирующего обмен витаминами С и Р. Этим обеспечивается нормальное развитие скелета.

Наиболее велико влияние этих витаминов на растущее поколение. Многие звери по утрам выносят из нор своих детенышей на солнце (барсуки, лисы, волки). У птиц – «солнечное купание».

Передозировка УФ вредна, особенно для деления клеток, поэтому используют УФ для дезинфекции помещений. Как защита от излишних доз УФ, при длине волны 320-330 нм в коже человека и других млекопитающих образуется пигмент меланин (загар). Экранирование поверхности организма свойственно многим рыбам, икре лягушек, грызунам в степях (мошонки, мозговые оболочки и др. органы).

Инфракрасное излучение (ИК) воспринимается всеми организмами как тепло. Воздействуя на тепловые центры нервной системы животных, эти лучи регулируют окислительные процессы и двигательные реакции в отношении источников тепла.

Все лучи, оказывающие влияние на растительные организмы, особенно на фотосинтез, называются физиологически активной радиацией (ФАР). Самое большое значение для живых организмов и функционирования всей биосферы имеет видимая часть спектра, состоящая из прямой (27%) и рассеянной (16%). Вместе они называются суммарной радиацией. Только на свету идет процесс фотосинтеза растений, обеспечивающий планету главным биологическим ресурсом – органическим веществом. Фотосинтез – главное условие возникновения и развития жизни на Земле. Свет – источник энергии, используемый пигментной системой организма, в основном хлорофиллом. На свету происходит образование хлорофилла и уже с его участием осуществляется фотосинтез. В процессе сложнейших фотохимических реакций молекулы воды (или другие молекулы с элементами, заменяющими O2) расщепляются с выделением газообразного кислорода, а углекислый газ превращается в углеводы:

6CO2 + 12 H2Ohttp://www.botsad.ru/images3/image8.gif С6H12O6 + 6O2 + 6H20

Как и в зоне УФ, в зоне видимых лучей волны разной длины выполняют разные функции. Зелеными растениями наиболее активно поглощаются оранжево-красные (650-680 нм) и сине-фиолетовые (400-500 нм) лучи, меньше всего – желто-зеленые (380-400 нм). Проходя через водную среду, отфильтровываются красные и синие лучи, а остающийся зеленый свет слабо поглощается хлорофиллом. Поэтому у водорослей, вырабатываются дополнительные пигменты (фикоэритрины), позволяющие им жить в море на большой глубине и используя энергию зеленого света. Следует отметить, что определенное участие в процессе фотосинтеза принимают близкие к видимой части света УФ-лучи и далекие от нее – ИК-лучи.

Зеленые растения поглощают в среднем 755 лучистой энергии, но коэффициент использования ее на фотосинтез не превышает 10 % при низкой освещенности и 2% – при высокой. Остальная переходит в тепловую, которая затрачивается на транспирацию и другие процессы.

Из внешних факторов, помимо интенсивности и спектрального состава света, большое влияние на процесс фотосинтеза оказывают температура и уровень содержания в воздухе углерода и кислорода. Минимальная температура, при которой возможен фотосинтез, отражает приспособленность вида к температурным условиям. У многих растений она совпадает с точкой замерзания тканевых жидкостей (-1, -2°С), а у криофилов фотосинтез может идти при еще более низких температурах.

Так, в окрестностях г. Магадана у кедрового стланика фотосинтез наблюдался под снежным покровом при -7°С.

Максимальная температура фотосинтеза в среднем на 10-12° ниже точки тепловой смерти. У растений южных широт она выше. При более высокой освещенности скорость фотосинтеза увеличивается, но до определенного предела – точки насыщения, а затем снижается. У тенелюбов насыщение наступает при меньшей освещенности, чем у светолюбивых растений, и в темноте переходит за нулевой уровень.

Норма содержания углекислого газа в воздухе – 0,57 мг/л, или 0,03%. При повышении концентрации СО2 до 5-10% фотосинтез усиливается, а при более высоком его повышении – снижается. Такой реакцией на колебания содержания СО2 растения поддерживают нормальный ход фотосинтеза в разнообразных условиях внешней среды. Например, в густых травостоях суточные колебания СО2 составляют 25% от средней величины.

б) Экологические группы растений по отношению к свету

Растения делятся на световые (светолюбы – гелиофиты), теневые (тенелюбы – сциофиты, гелиофобы), теневыносливые (факультативные гелифиты).

Гелиофиты – виды открытых мест (дуб монгольский, сосна могильная, береза белая, кустистые лишайники, овсяница овечья, клевер ползучий, подсолнечник и др.), в сухих местах обычно образуют разреженный и невысокий покров. При интенсивности до 13,5%, свет оказывает стимулирующее действие на рост растений, при большей – действует угнетающе. У гелиофитов высоки траты на дыхание. Характерные признаки: листья плотные, кожистые, иногда блестящие с толстой кутикулой, хвоя утолщенная, укороченные побеги, опушение, на листьях и побегов сизый восковой налет – все это защищает лист от перегрева и интенсивному испарения. Клетки эпидермиса мелкие, паренхима образована 2 и более слоями. Соотношение хлорофилла А:В составляет 5:1. Обычны темно-зеленый цвет листьев, для трав – розеточные формы.

Особая группа гелиофитов – С-4-растения и САМ-растения (пустыни, саванны). У большинства растений в результате превращений углекислоты в процессе фотосинтеза образуются две молекулы 3-фосфо-глицериновой кислоты с 3 атомами углерода каждая. В дальнейшем через ряд промежуточных реакций в мезофилле листа образуется 3-фосфо-глицерионвый альдегид, который используется как основа для синтеза углеводов. Такой путь фотосинтеза называется С3-путь (цикл Кальвина). С4-путь определяется анатомией листа. В мезофилле листьев С4-растений имеются обкладочные клетки пучков, в которых содержится много крахмала и их хлоропласты отличаются особым строением. При фиксации СО2 в листьях образуется щавелевоуксусная кислота, которая может перейти в аспарагиновую или в яблочную кислоты, накапливаемые в обкладочных клетках пучков. Они имеют по 4 атома углерода и называются четырех-углеродными карбоновыми, или С-4-дикарбоновыми кислотами. В дальнейшем эти кислоты перерабатываются в мезофилле листа с образованием углекислоты и других веществ, вновь вовлекаемых в процесс фотосинтеза. У растений с С4-путем СО2 не выделяется наружу при фотодыхании, а вновь включается в процесс, т.е. происходит полная утилизация углекислого газа. В результате световое насыщение фотосинтеза не достигается даже при самой сильной освещенности. С-4-растения могут расти даже при закрытых устьицах и очень высокой температуре (кукуруза, сорго, сахарный тростник). Обнаружено 500 видов покрытосемянных с С4-путем, который рассматривается как своеобразная адаптация к сухому режиму с высокими температурами и инсоляцией и считается самым эффективным в создании органического вещества. Это вещество больше идет на новообразование корней, чем побегов.

САМ-растения (от Crassulaceae Acid Metabolism – «кислотный метаболизм толстянковых») – процесс поглощения углекислоты отделен от фотосинтеза. Ночью устьица листьев открыты и впускают СО2, а днем закрываются. Ночью СО2 накапливается в органических кислотах, а днем включается в последовательность реакций фотосинтеза при закрытых устьицах.

Сциофиты (теневые) – не выносят сильного освещения, растут под пологом леса при сильном затенении (лесное разнотравье, папоротники, мхи, плауны, кислица, хвощи, подрост хвойных), при выставлении на простор жизненность их резко ухудшается. Представлены в основном лесными травами. Характерные признаки: нежные тонкие листья с тонкой кутикулой, обычно матовые, неопушенные, более светлого цвета, чем у растений открытых мест, побеги вытянутые. Клетки мезофилла крупные, паренхима однослойная, стенки эпидермиса тонкие, устьиц на единицу площади меньше. Соотношение хлорофилла А:В меньше, чем у светолюбов – 3:2. Факультативные гелиофиты (теневыносливые) занимают промежуточное положение между двумя группами. Легко переносят небольшое затенение. Эффективно используют боковое освещение (рассеянное), для листьев характерно мозаичное расположение. Это большинство лесных растений (клены, липы, лианы, многие травы, кустарнички).

Индекс листовой поверхности (ИЛП) – отношение площади листовой поверхности к площади соответствующего участка поверхности. Оптимальное значение ИЛП то, при котором достигается наибольшая скорость фиксации солнечной энергии в пересчете на ед. площади. Оно непостоянно, т.к. в разное время суток, сезона высота Солнца над горизонтом, интенсивность излучения, расположение листьев в кроне меняются. Если ИЛП слишком высок – самые затененные листья и растения могут понизить ассимиляционный потенциал популяции. От удаления нижних листьев в переуплотненных посадках темпы нарастания органического вещества нарастают.

Движения растений связаны с реакцией на свет: фототропизм, фотонастии. Экологическое значение – ассимилирующие органы стараются занять положение, при котором растение будет получать оптимальное количество света. У гелиофитов листья «отворачиваются» от избыточного света, а у теневыносливых видов, наоборот, «поворачиваются» к нему.

Фототропизм вызывается оттоком ростовых гормонов – ауксинов, в затененную сторону. Изменение роста с разных сторон верхушечного побега приводит к искривлению стебля. В лесу ветви растут в направлении открытого неба. Фотонастии – рост определенных клеток в листьях или стеблях под влиянием света. При сильной освещенности сильнее растут клетки верхней поверхности – эпинастия, и боковые побеги (шалфей, хризантема, фасоль) или листья в розетках (подорожник, земляника, лапчатка) принимают горизонтальное положение, в темноте вытягиваются клетки нижней поверхности – гипонастия, и побег принимает вертикальное положение. Никтинастия – изменения положения органов в течение суток с изменением интенсивности света и тургора, листья «складываются» вертикально (комнатный цветок маранта).

Свет для животных, в т.ч. и для человека, имеет в первую очередь информационное значение. Он необходим им для ориентации в пространстве. Уже у простейших организмов имеются в клетках чувствительные к свету органеллы. Пчелы своим танцем показывают собратьям путь полета к источнику пищи. Установлено, что фигуры танца (восьмерки) совпадают с определенным направлением по отношению к Солнцу. Доказана врожденная навигационная ориентация птиц, выработанная в процессе естественного отбора в течение длительной эволюции. При весенне-осенних перелетах птицы ориентируются по звездам и Солнцу. В водной среде широко распространена биолюминесценция – способность особей (рыбы, головоногие моллюски) светиться для привлечения добычи, особей противоположного пола, отпугивания врагов и т.д. Фототаксис – у животных и одноклеточных организмов – перемещение в сторону наибольшей (положительный) или наименьшей (отрицательный) освещенности для достижения наиболее подходящего местообитания (бабочки – красные и желтые цветки, ночные бабочки летят на свет в поисках партнера, гремучие змеи чувствуют ИК). Фототаксис у растений заключается лишь в перемещении хлоропластов в цитоплазме под влиянием света.

в) Свет и биоритмы

Жизнь на планете с момента возникновения осуществлялась в условиях ритмически изменяющейся среды. Суточная и сезонная смена комплекса факторов требовала приспособления к ней всего живого. В процессе эволюции выработалась четкая соизмеримость и согласованность биологических ритмов различных форм жизни с периодами циклических изменений комплекса природных условий. И на клеточном и на биосферном уровне выработаны ритмы процессов разной длительности, и все они имеют адаптивный смысл. Он заключается в том, что ритмичность проявления жизнедеятельности организмов четко согласуется с периодами наиболее благоприятных для них условий внешней среды.

Свет – главный и постоянный первично-периодический фактор, влияющий на организмы и экосистемы с момента их зарождения. В эволюции за большинством групп живых организмов синхронность их функционирования закрепилось именно за изменением светового режима. Эти изменения наиболее устойчивы в своей динамике, автономны и не подвержены другим влияниям. Выделяют биоритмы суточные, циркадианные, сезонные, цирканнуальные.

http://www.botsad.ru/images3/image9.gif

Суточные ритмы свойственны большинству видов растений и животных. Дневные, сумеречные, ночные животные, птицы, насекомые. Сигнальным фактором начала и прекращения активности выступает режим освещения. У многих видов отмечается смена суточных ритмов в течение сезона. У песчанок (рис. 1) в середине лета наблюдается 2 пика активности в течение суток, а ранней весной и поздней осенью – по одному.

 

Циркадианные (циркадные) ритмы – проявление суточного ритма, характерного для вида в естественных условиях, в условиях неизменной освещенности. В основе их лежат наследственно закрепленные циклы эндогенных процессов. Характерная особенность – некоторое несовпадение их периода с полными астрономическими сутками. Высказана гипотеза о связи механизма суточной физиологической периодики (циркадных ритмов) со структурой генетического аппарата.

Эксперимент О. Декандоля, начало 19 в. – мимоза на ночь листья складывает, на день распускает – даже в полной темноте. У птиц и млекопитающих известны суточные циклы эндокринных желез и ферментных систем. У арктических животных суточный ритм сохраняется в течение всего полярного дня, а у других видов может нарушаться – стерлядь днем держится в придонных слоях, ночью плавает везде, но если круглые сутки светло, то она так и держится дна, а если темно – она все это время активна.

Абсолютное сохранение независимых от среды ритмов биологически невыгодно, так же как и абсолютное «подчинение» активности организмов часто меняющимся условиям. Оптимально сочетание устойчивых эндогенных ритмов с корректирующим влиянием внешних факторов.

Сезонные ритмы. Физиологические и биологические процессы у растений (процессы репродукции, запасания питательных веществ перед зимним покоем, осенняя окраска листьев, закладка почек, и др.) и большинства видов животных (брачный период, размножение, линька, спячка, миграции) проявляются сезонно, с учетом смены времен года. Конкретные погодные условия только модифицируют протекание этих циклов. Природа этих циклов, как и суточных, имеет эволюционный характер.

Цирканнуальные (цирканные) ритмы – это эндогенные биологические циклы с окологодичной периодичностью. Проявление сложно, но четко выражено влияние режима освещения. В частности на прохождении онтогенетических фаз у насекомых сказывается разная продолжительность дня.

ПРИМЕР. У шелковичного червя Bombyx mori из яиц, отложенных в короткие весенние дни, выводятся самки, яйца которых не впадают в диапаузу, а самки, выведенные из яиц длинного летнего дня, откладывают диапаузирующие яйца, обеспечивая таким образом появление весеннего поколения.

Собственный ход цирканнуальных ритмов чаще бывает несколько меньше астрономического года.

Периоды линьки у птиц в клетках составляют не 12, а 9,4-9,7 м-цев. У сусликов в неволе ритмы спячки и динамики массы тела составляют около 300 сут., а циклы активного поведения, половые циклы, в отличие от суточных фаз, не синхронизировались фотопериодом. Ослепленные бурундуки, содержащиеся в течение 6 лет при постоянной температуре и равномерном чередовании света и темноты(12С:12Т), демонстрировали динамику массы тела, двигательную активность, потребление пищи с периодом 320-340 суток.

Таким образом, для растений свет необходим в первую очередь, как ресурс, для фотосинтеза и транспирации. Для животных – для информационного обеспечения. И для тех и других – как эволюционный фактор-синхронизатор биологических ритмов.

2. Температура в жизни организмов

Главным источником тепла на Земле является солнечное излучение, поэтому свет и тепло выступают сопряжено. Тепло один из наиболее важных факторов, определяющих существование развитие и распространение организмов по Земному шару. При этом важно не только количество тепла, но и распределение его в течение суток, вегетационного сезона, года. Приход тепла к разным участкам планеты, естественно, неодинаков, с удалением от экватора не только снижается поступление его, но и увеличивается амплитуда сезонных и суточных колебаний.

Температурные пределы, в которых может протекать жизнь, составляет всего 300°, от -200°С до +100°С, но для большинства организмов и физиологических процессов этот диапазон еще уже – от 39° в море (-3,3 – +35,6°С) до 125° на суше (-70 – +55°С). Нормальное строение и работа белка осуществляются при 0-+50°С.

Значение температуры заключается в том, что она изменяет скорость протекания физико-химических реакций в клетках, а это отражается на росте, развитии, размножении, поведении и во многом определяет географическое распространение растений и животных. Согласно правилу Вант-Гоффа скорость химических реакций возрастает в 2-3 раза каждый раз при повышении температуры на 10°С, а по достижении оптимальной – начинает снижаться. Верхний (верхний биологический нуль) и нижний пределы называются, соответственно, верхней и нижней летальной температурой. При выходе изменений температуры за пределы выносливости организмов происходит их массовая гибель, т.к. происходит свертывание белка и разрушение ферментов. Так, с переходом через 50-60°С, как правило, створаживается простокваша, сваривается белок яйца, погибает камбий у растений.

Отбор и расселение видов в зонах с разной теплообеспеченностью шел в течение многих тысячелетий в направлении максимального выживания, как в условиях минимальных температур, так и в условиях максимальных. По отношению к температуре все организмы делятся на криофилы (холодолюбивые) и термофилы (теплолюбивые).

Криофилы не выносят высоких температур и могут сохранять активность клеток при -8-10°С (бактерии, грибы, моллюски, членистоногие, черви и др.). Они населяют холодные и умеренные зоны земных полушарий.

ПРИМЕР. В условиях Крайнего Севера, в Якутии деревья и кустарники не вымерзают при - 70°С. «Рекордсмен» – лиственница даурская. За полярным кругом при такой же температуре выживают лишайники, некоторые виды водорослей, ногохвостки, в Антарктиде – пингвины. Семена и споры многих растений, нематоды, коловратки переносят замораживание до температуры близкой к абсолютному нулю (271°С). Животные больших глубин переносят температуры около 0°С.

Термофилы приспособились к условиям высоких температур, обитают преимущественно в тропических районах Земли. Среди них также преобладают беспозвоночные (моллюски, членистоногие, черви и др.), многие из которых живут только в тропиках.

ПРИМЕР. Пресмыкающиеся, некоторые виды жуков, бабочек выдерживают температуру до 45-50°С. В пустыне Палестины максимальная активность у кузнечиков наблюдается при 40-градусной жаре. В горячих источниках Калифорнии при температуре 52°С обитает рыба - пятнистый ципринодон, а на Камчатке при 75-80°С живут сине-зеленые водоросли. Верблюжья колючка, кактусы переносят нагревание воздуха до 70°С.

Многие растения в тропиках не переносят низких температур и погибают при 0°С, хотя ткани их еще не заморожены. Причиной их гибели обычно является нарушение обмена веществ, которое приводит к образованию в растениях чуждых и даже вредных им продуктов, вызывающих отравление.

а) Оптимум и пессимум. Сумма эффективных температур

Оптимальные условия те, при которых все физиологические процессы в организме или экосистемах идут с максимальной эффективностью. Для большинства видов температурный оптимум находится в пределах 20-25°С, несколько сдвигаясь в ту или другую стороны: в сухих тропиках он выше – 25-28°С, в умеренных и холодных зонах ниже – 10-20°С. В ходе эволюции, приспосабливаясь не только к периодическим изменениям температуры, но и к разным по теплообеспеченности районам, растения и животные выработали в себе различную потребность к теплу в разные периоды жизни. У каждого вида свой оптимальный диапазон температур, причем и для разных процессов (роста, цветения, плодоношения и др.) имеются тоже «свои» значения оптимумов.

Известно, что физиологические процессы в тканях растений начинаются при температуре +5°С и активизируются при +10°С и выше. В приморских лесах развитие весенних видов особенно четко связаны со среднесуточными температурами от -5°С до +5°С. За день-два до перехода температур через -5°С под лесной подстилкой начинается развитие весенника звездчатого и адониса амурского, а во время перехода через 0°С - появляются первые цветущие особи. И уже при среднесуточной температуре +5°С цветут оба вида. Из-за недостатка тепла ни адонис, ни весенник не образуют сплошного покрова, растут одиночно, реже - по нескольку особей вместе. Чуть-чуть позже них - с разницей в 1-3 дня, трогаются в рост и зацветают ветреницы.

Температуры, «лежащие» между летальными и оптимальными относятся к пессимальным. В зоне пессимумов все жизненные процессы идут очень слабо и очень медленно.

Температуры, при которых происходят активные физиологические процессы, называются эффективными, значения их не выходят за пределы летальных температур. Суммы эффективных температур (ЭТ), или сумма тепла, величина постоянная для каждого вида. Ее рассчитывают по формуле:

ЭТ = (t – t1) × n,

Где t – температура окружающей среды (фактическая), t1 – температура нижнего порога развития, часто 10°С, n – продолжительность развития в днях (часах).

Выявлено, что каждая фаза развития растений и эктотермных животных наступает при определенном значении этого показателя, при условии, что и другие факторы в оптимуме. Так, цветение мать-и-мачехи наступает при сумме температур 77°С, земляники – при 500°С. Сумма эффективных температур (ЭТ) для всего жизненного цикла позволяет выявить потенциальный географический ареал любого вида, а также сделать ретроспективный анализ распространения видов в прошлом. Например, северный предел древесной растительности, в частности лиственницы Каяндера, совпадает с июльской изотермой +12°С и суммой ЭТ выше 10°С – 600°. Для ранних с/х культур сумма ЭТ составляет 750°, этого вполне достаточно для выращивания ранних сортов картофеля даже в Магаданской области. А для кедра корейского сумма ЭТ составляет 2200°, пихты цельнолистной – около 2600°, поэтому и растут оба вида в Приморье, и пихта (Abies holophylla) – только на юге края.

б) Адаптации растений к тепловому режиму

Растения не имеют постоянной температуры тела и, в отличие от животных, не могут уйти в укрытие от жары или холода. К вредному воздействию неблагоприятных температур они приспосабливаются с помощью анатомо-морфологических и физиологических механизмов. Анатомо-морфологические адаптации растений к холоду: минимизация размеров при сохранении больших размеров репродуктивных органов (ива полярная, рододендроны камчатский и Адамса, березка тощая (арктическая), филлодоце голубая, многочисленные арктические растения); формирование укороченных побегов-брахибластов (лиственницы, ивы); неопадание отмерших листьев в кронах (дуб монгольский, ива чукотская); опушение побегов и листьев (береза шерстистая, лапчатка земляниколистная, прострелы, лиственница курильская), наличие воскового налета; оплетание сосущими корнями лиственницы теплых бугорков (камни, валеж) на почвах с мерзлотой; геофилизация – погружение в субстрат нижней части растений.

Некоторые из указанных адаптаций свойственны растениям и по отношению к максимальным температурам – войлочное опушение у лоха узколистного, акации песчаной; утолщение покровной ткани и восковой налет на листьях (пониженная интенсивность транспирации); вертикальная ориентация листьев; наличие защитного пробкового слоя (изоляция камбия от перегрева). Адаптации, свойственные только термофилам - своеобразный морфологический тип растений с частично или полностью редуцированным листовым аппаратом (саксаул – Haloxylon aphyllum, разные молочаи (Euphorbia), не говоря о кактусах), очень толстый слой кутикулы (суккуленты, кактусы). В холодных районах растут, в основном многолетники, в жарких – много однолетников.

Физиологические (биохимические) адаптации: снижение интенсивности транспирации, уменьшающее теплоотдачу; накопление в клетках сахаров и других веществ, увеличивающих концентрацию клеточного сока; накопление в клетках антоцианов, обеспечивающих в холодное время сезона красный цвет и оттенки фотосинтезирующего аппарата (побеги шиповника и чозении, листья копытня, джефферсонии, адониса, ветрениц и тополя; цветки у ивы Крылова); выделение веществ, зачерняющих поверхность вокруг стволов (чозения); и др. Физиологические адаптации проявляются, прежде всего, в изменении физико-химического состава веществ в клетках и тканях.

1) Увеличение запаса пластических веществ повышает концентрацию и осмотическое давление клеточного сока, вода «связывается» в коллоиды и потому плохо испаряется и замерзает, она характеризуется большой плотностью и не может быть растворителем; в таком виде вода входит в состав макромолекул белков и нуклеиновых кислот.

2) Отложение в клетках запасных питательных веществ в виде высокоорганических соединений – масла, жира, гликогена. Они вытесняют из вакуолей воду и делают клетки более устойчивыми к замерзанию. В период подготовки к зиме происходит изменение запасных веществ: крахмал вновь превращается в сахар, но иного строения, чем летом – кроме сахарозы и фруктозы в коре хвойных деревьев появляется стахиоза и рафиноза.

http://www.botsad.ru/images3/image10.gif

3) Перераспределение в тканях энергетических веществ. У растений к зиме крахмал откладывается в корнях, масла и сахара – в надземных органах. В древесине масла откладываются во внутренних слоях, что повышает их устойчивость к сильным морозам.

О том, как работают механизмы адаптации на клеточном уровне, можно судить по отношению растений к критическим (пессимальным) температурам.

Отношение к низким температурам характеризуются:

Холодостойкостью – длительно переносят низкие положительные температуры – от +1 до +10°С. Нехолодостойки выходцы из тропиков – хлопчатник, рис, баклажаны.

Морозостойкостью – не гибнут при температуре от -1 до -7°С, хорошо переносят низкие температуры ниже 25°С. Все древесно-кустарниковые виды умеренных зон. У одних и тех же растений холодоустойчивость разных органов и в разное время года неодинакова (рис. 2). Наиболее уязвимы молодые ткани и регенеративные органы.

Льдоустойчивостью – переносят кратковременное образование льда между клетках, после оттаивания продолжают жить.

Отношение к высоким температурам характеризуется:

Жаровыносливостью – растения солнечных сухих местообитаний, способные переносить кратковременное (до получаса) повышение температуры до +60°С без повреждения тканей. Самые жаровыносливые – лишайники.

Жаростойкостью – низшие растения, живущие в термальных источниках (сине-зеленые водоросли, бактерии) стой до +90°С.

Жароустойчивость растений зависит от географического положения, сезона года, положения в рельефе. Более устойчивы к жаре южные виды. Виды умеренных и арктических зон более жароустойчивы зимой, жарких стран (средиземноморские виды) – летом. Горноальпийские виды менее жароустойчивы, чем растущие в нижележащих поясах.

в) Пойкилотермность и гомойтермность

У животных реакции на разный тепловой режим жизнеобеспечения не менее разнообразны, чем у растений. И все они направлены на регулирование уровня теплопередачи. В отличие от растений для животных характерны два типа теплообмена: пойкилотермность (poikilos – разнообразный) и гомойтермность (homois – одинаковый).

К пойкилотермным (эктотермным, устаревшее – холоднокровным) относятся все беспозвоночные, рыбы, рептилии и амфибии. Они лишены способности поддерживать постоянную температуру тела. Для пойкилотермных организмов типична низкая интенсивность обмена веществ и почти полное отсутствие механизмов теплорегуляции. В тропических странах они встречаются чаще, чем в других.

Терморегуляция осуществляется за счет особой структуры и цвета покровов, специфики поведения – отыскивают наиболее подходящие местообитания (змеи выползают на скальные выходы, ящерицы – на стволы деревьев с солнечной стороны, лягушки – на теплые камни, листья), усилением мускульной работы (в полете – на 15-20°С температуры выше окружающей среды; у шмелей на Кавказе в горах – до 38-40°С при 4-8°С воздуха); за счет общественной жизни (муравейники, термитники, ульи); разным содержанием влаги в теле и разной интенсивностью испарения влаги с поверхности тела (эти наиболее безразличны к любым изменениям температуры воздуха); и др. Устойчивость к низким температурам обеспечивается накоплением жиров, гликогена, некоторых солей. Неблагоприятные условия пойкилотермные животные переживают в неактивном состоянии – анабиозе.

Гомойтермные (эндотермные, теплокровные) – животные с высоким уровнем обменных процессов – птицы и млекопитающие, обеспечивающими поддержание постоянной температуры тела даже при значительных колебаниях температуры внешней среды. Тепло выделяется при биохимических реакциях внутри организма. Чем ниже температура среды, тем больше потери тепла и тем интенсивнее идут обменные процессы, повышается продуцирование тепла, идущего на поддержание постоянной температуры тела. Аналогичная закономерность и при повышении температуры. Но эта закономерность прослеживается лишь до определенного предела. Ресурсы организма не беспредельны. При длительном перегреве или переохлаждении он погибает.

У гомойтермных животных различают химическую и физическую терморегуляции. Химическая проявляется в продуцировании тепла, физическая – в его распределении по телу и отдаче. У животных перед наступлением холодов возрастает в тканях печени содержание гликогена, в почках – аскорбиновой кислоты. Наблюдается накопление жиров под кожей и вблизи жизненно важных органов – сердца, спинного мозга. Жиры откладываются в особой бурой жировой ткани, и при клеточном дыхании вся энергия идет не на синтез АТФ, а рассеивается по телу в виде тепла.

 

http://www.botsad.ru/images3/image3.gif

На основе физиологических процессов осуществляется терморегуляция в пределах тела: в конечностях вены и артерии подходят близко друг к другу («чудесная сеть») и артерии отдают тепло венам, возвращая его телу. В результате конечности остаются более холодными по сравнению с телом. В жару поддерживать температуру тела на постоянном уровне позволяет потоотделение, учащенное дыхание (собаки, птицы).

У экологически близких млекопитающих в холодных климатических зонах, согласно правилу Бергмана, закономерно увеличиваются размеры тела и вес внутренних органов, имеющих отношение к регулированию процессов обмена (сердце, почки, печень). Согласно правилу Аллена, в холодных зонах относительно размера тела сокращаются площади поверхностей выступающих органов (уши, носы, хвосты) по сравнению с млекопитающими более теплых зон. Правило Аллена наглядно демонстрируют размеры ушей у песца (Арктика), европейской лисы и африканской лисы-фенека (рис. 3).

 

 

 

Снижению теплопотерь способствуют опушение (как и у растений), оперение, шерстный покров, жировые отложения, темный окрас покрова (правило Глогера).

Промежуточное положение между пойкилотермными и гомойтермными организмами занимают гетеротермные (суслики, ежи, летучие мыши, медведи). В активном состоянии у этих животных поддерживается постоянная относительно высокая температура тела. В зимнее время они впадают в спячку или глубокий сон, и температура тела у них в это время мало отличается от внешней. Уровень обмена веществ снижается (Когда спишь – есть не хочется!).

Температура и влажность являются ведущими климатическими факторами и тесно взаимосвязаны между собой. При неизменном количестве воды в воздухе относительная влажность увеличивается, когда температура падает. Если воздух охлаждается до температуры ниже точки водонасыщения (100%), происходит конденсация и выпадают осадки.

3. Влага в жизни организмов

Вода – основа протоплазмы клеток, тканей, растительных и животных соков. Только при наличии воды в организме протекают процессы фотосинтеза, терморегуляции, обменных процессов. Наиболее высоко содержание воды в периоды активной жизнедеятельности (табл. 1) и в молодом возрасте.

Таблица 1

Содержание воды в различных организмах, % от массы тела

(по Б.С. Кубанцевой, 1973)

Растения

Содержание воды

Животные

Содержание воды

Водоросли

Морковь корни)

Разнотравье

Листья деревьев

Стволы деревьев

Картофель (клубни)

96-98

87-91

85-86

79-82

40-65

74-80

Губки

Моллюски

Насекомые

Ланцетник

Земноводные

Млекопитающие(мышечные ткани)

84

80-92

46-92

87

до 93

68-83

Но и в состоянии покоя растения не теряют влагу полностью. В сухих лишайниках содержится до 5-7% воды, в зерновках злаков – 12-14%. Независимо от климата и почвенных условий в течение года всегда можно выделить такие периоды в развитии растений, за исключение растений влажных тропиков, когда они испытывают дефицит влаги. При остальных благоприятных условиях он сильно сказывается на росте и развитии растений, обусловливает их низкорослость и бесплодие.

В процессе эволюции у растений и животных выработался многочисленные сложные приспособления, позволяющие поддерживать водный баланс и обеспечивать экономное расходование воды. Растения пустынь и степей приспособились к острому дефициту влаги, болотные и влажно-тропические растения – к избытку, а лесным видам необходима высокая влажность воздуха и умеренная влажность почв. Как и в отношении остальных факторов, эти приспособления-адаптации группируются в анатомо-морфологические, физиологические и поведенческие.

Источниками влаги для растений служат запасы ее в почве и атмосфере (осадки, туманы, конденсаты), для наземных животных – вода в водоемах, водяные пары в атмосфере и сочная пища. При анализе влияния влаги на живые организмы важно учитывать сезонное распределение и температурный режим среды обитания. Разные комбинации содержания воды и температуры в среде обитания создают множество разных ситуаций, благоприятных и наоборот. Соотношение температуры и влажности характеризует климат конкретной территории и важно для выбора популяцией вида стации обитания.

Влажный воздух обладает хорошей теплопроводностью. При высокой влажности в холодном воздухе у гомотермных животных усиливаются процессы метаболизма, а у пойкилотермных животных и растений они замедляются. В сухом воздухе при низкой температуре охлаждение происходит медленнее, а в сухом и жарком воздухе активизируются процессы терморегуляции, усиливается испарение с поверхности. Во влажном и жарком воздухе испарения с поверхности резко падает и высока вероятность нагрева организма до температуры воздуха (перегрев). Наиболее благоприятные условия складываются в диапазоне температур 17-23°С и в диапазоне относительной влажности воздуха 85-100%.

По отношению к влажности различают эвригигробионтные и стеногигробионтные организмы. Первые живут в широком диапазоне содержания влаги, а для вторых она должна быть либо высокой, либо низкой, либо промежуточной между первыми двумя. Это относится и к растениям и к животным, несмотря на то, что вторые имеют возможность отыскивать места с оптимальной влажностью. И те и другие могут легко переносить дефицит влаги (копытные, верблюд, варан, пищуха-сеноставка, из растений: лишайники, суккуленты, многие злаки, полыни, и т.д.), а могут и вовсе не выносить сухости (земноводные, пресмыкающиеся, ластоногие, из растений: все плавающие растения, сфагновые мхи, многие папоротники, из высших: недотрога обыкновенная – быстро теряет тургор, калужницы, адокса мускусная, и др.).

По способу регулирования водного режима своего тела растения делятся на пойкилогидрические (пойкилогидридные) и гомойгидрические (гомогидридные). У первых содержание воды в тканях непостоянно и зависит от влагообеспеченности биотопа (наземные водоросли, лишайники (!), мхи, тропические папоротники, из высших растений – пустынная осока (C. physodes). У них нет анатомических приспособлений, защищающих от испарения. У большинства отсутствуют устьица и транспирация равна испарению. Тела у них высыхают до воздушно-сухого состояния, а во влажную погоду напитываются водой и зеленеют. У вторых (большинство покрытосеменных растений) содержание воды более-менее постоянно при любой погоде – они регулируют испарение путем закрывания устьиц и складывания листьев, в оболочках клеток у них содержатся водонепроницаемые вещества (кутин, суберин).

По отношению к водному режиму экотопа (экотоп – совокупность факторов местообитания) растения делятся на влаголюбивые (гигрофиты), сухолюбивые (ксерофиты) и умеренно влаголюбивые (мезофиты).

Гигрофиты (калужницы, болотные осоки, злаки, папоротник оноклея чувствительная, белозор, росянка, недотрога обыкновенная, все бальзамины, аир, белокрыльник, рдесты, рогоз, сфагны, рис, кислица) обитают в очень влажных местах и обладают низкой засухоустойчивостью. У них всегда открыты устьица и процесс транспирации регулируется слабо. Устьца располагаются с обеих сторон, немногочисленны. Листья крупные тонкие. Потеря 15-20% запаса воды для них невосполнима. Они растут или в глубокой тени по пологом влажного леса (теневые гигрофиты) или на открытом месте на переувлажненных или покрытых водой почвах (световые гигрофиты). Для них характерны толстые слаборазветвленные корни с минимальным количеством сосущих корней. В органах обилие воздушных полостей (аэренхима) для аэрации тканей.

Мезофиты – способны непродолжительно переносить незначительные почвенную и атмосферную засухи. К ним относятся луговые и многие лесные травы (неморальные), лиственные и хвойные деревья лесов умеренной полосы, многие кустарники, большинство сельскохозяйственных культур. Устьица расположены на нижней стороне листьев. Листья большие с умеренно развитыми тканями. Благодаря регулированию устьичной транспирации, характеризуются большой пластичностью по отношению к условиям увлажнения. Могут расти вместе с гигрофитами и с ксерофитами, приобретая черты близкие той или другой группе. Для них типичны хорошо развитые корневые системы смешанного типа, с густой сетью сосущих корней.

Ксерофиты – растения сухого и жаркого климата и местообитаний – пустынь, степей, саванн, в лесной зоне – растения сухих сосняков и широколиственных лесов на крутых южных склонах. Они не выносят переувлажнения, но хорошо приспособились к длительным засухам. Для них характерны два способа преодоления засухи: активное регулирование водного баланса и способность выносить сильное иссушение тканей.

У ксерофитов очень мощные корневые системы – по массе в 9-10 раз превышают надземные органы. Они или экстенсивного типа (кустарники) – длинные (10-15 м), но мало разветвленные; достигают уровня грунтовых, или интенсивного (злаки) – охватывают небольшой объем почвы (до 1,5 м глубины) и густо ветвятся, максимально усваивая влагу. Анатомические особенности - хорошо развита водопроводящая система, сеть жилок на листовых пластинках очень густая, позволяет быстро пополнять запасы воды, израсходованной на транспирацию. Основные черты ксерофитности, некоторые из них присущи также гелиофитам и термофилам и описаны выше:

1. Мелкие, узкие, сильно редуцированные листовые пластинки – способствуют снижению транспирации (в Приморье – селагинелла, плауны).

2. Уменьшение (сбрасывание) листовой поверхности в наиболее сухие периоды вегетации (летний листопад).

3. Защита листьев от больших потерь влаги на транспирацию благодаря развитию мощных покровных тканей, наличие разных выростов, волосков, железок на эпидермисе («войлочное опушение» – у эдельвейсов).

4. Усиленное развитие мех. тканей листа, предотвращающих обвисание листьев при потере тургора.

Виды с наиболее выраженными перечисленными свойствами представлены склерофитами (от греч. «склеро» – твердый, жесткий; саксаул, чертополоъх, полыни, статице, ковыли, молочаи и др.). Устьиц много, но они при недостатке воды закрываются. Растения могут полностью терять все листья и до 15% воды. В клетках склерофитов преобладает связанная вода.

Другая большая группа ксерофитов – суккуленты (от лат. «суккулентус» - сочный, жирный), растут в жарком сухом климате там, где проходят кратковременные, но сильные обильные ливни. Во время дождей накапливают в листьях (алоэ, агавы, молодило) или стеблях (молочаи, кактус опунция) большие запасы воды, а потом медленно ее расходуют. Устьиц мало, они мелкие, в углублениях, и открываются только ночью.

В северных широтах и высоко в горах аналоги ксерофитам – психрофиты (влажные и холодные места – мхи, в некотором роде багульник болотный, андромеда) и криофиты (сухие и холодные места – лишайники, вересковые кустарнички, в т.ч. кассиопа четырехгранная, арктоус альпийский, и даже брусника). Они испытывают недостаток влаги из-за физиологической недоступности почвенной влаги, обусловленной низкими температурами почв.

Тропофиты – в жарких районах с чередованием засушливого и влажного сезонов (баобабы в Африке), растения сбрасывают листву и пребывают в состоянии глубокого покоя летом.

Эуксерофиты – растения степей с розеточной и полурозеточной ЖФ (Saxifraga omolojensis, S. nivalis, Arenaria sp. – кошачья лапка) и сильным опушением листьев. В сухих дубняках в верхней части южных склонов такая экобиоморфа характерна для полыни побегоносной (Artemisia stolonifera). Стипоксерофиты – тоже растения степных экосистем («стипо» – степь), узколистные, дерновинные злаки (вейники, типчаки, тонконог, мискантус), из с/х культур – кукуруза. Они слабо транспирируют, в сухую погоду листья сворачиваются в трубочку.

Эфемеры (весенние и осенние) – однолетние растения (незабудка песчаная, вероника весенняя, маки альпийские, в Приморье на горе Ольховая – офелия), и эфемероиды – многолетние растения (крокусы, тюльпаны, прострелы), тоже обитатели засушливых местообитаний. Они избегают летних засух в связи с особенностями жизненных циклов. В короткие сроки – за 15-30 дней, растения успевают пройти весь жизненный цикл и уйти на покой до следующей весны.

Эфемерами могут быть и животные – в Приморье бабочки-поденки, в Африке рыбы, обитающие в небольшие водоемах – африканские нотобранхи.

Среди животных тоже можно выделить три экологических группы, но из-за подвижного образа жизни они выражены неявно.

Гигрофилы – не могут накапливать и долго удерживать в тканях запасы воды – многие членистоногие: мокрицы, ногохвостки, комары, белоножки (гнус), а также наземные моллюски и амфибии. Нуждаются в постоянно выокой влажности воздуха. Мезофиллы – животные, обитающие в условиях умеренной влажности. Их большинство, как среди насекомых, так и среди млекопитающих. Ксерофилы – сухолюбы и термофилы одновременно, не переносят высокую влажность воздуха. У них хорошо развиты механизмы водообмена и функции удержания воды в теле. У пресмыкающихся отсутствуют кожные железы, из тела выделяется мочевая кислота, а не мочевина (для растворения мочевины нужно больше воды). У черепахи вода запасается в мочевом пузыре, грызуны воду получают с пищей. Верблюд, тушканчики, курдючные овцы воду получает в результате окисления жиров, при котором образуется метаболическая вода. В таблице 2 приведены примеры приспособления живых существ к жизни в пустыне.

Таблица 2

Адаптации к засушливым условиям у растений и животных (по Н. Грину и др., 1993)

Толстый стебель с большим отношением объема к поверхности Животные прячутся в норах

Адаптации

Примеры организмов

Уменьшение потери воды

Листья превращены в иглы или колючки

Cactасеае (кактусы), Euphorbiасеае (молочаи), хвойные деревья

Погруженные устьица

Рinus, Ammophila

Листья свернуты в цилиндр

Ammophila, Ledum palustrum, Rhododendron sichotensis

Сасtасеае, Euphorbiасеае (суккуленты)

Опушенные листья

Многие альпийские растения

Сбрасывание листьев при засухе

Fouguieria splendens толстянковые

Устьица открыты ночью и закрыты днем

Crassulaceae (толстянковые)

Эффективная фиксация СО2 ночью при не полностью открытых устьицах

С-4-растения, например, Zea mays

Выделение азота в виде мочевой кислоты

Насекомые, птицы и некоторые рептилии

Удлиненная петля Генле в почках

Пустынные млекопитающие, например, верблюд, пустынная крыса

Ткани выносливы к высоким температурам из-за уменьшения потоотделения или транспирации

Многие пустынные растения, верблюд

Многие мелкие пустынные млекопитающие, например, пустынная крыса

Дыхательные отверстия прикрыты клапанами

Многие насекомые

Увеличение поглощения воды

Обширная поверхностная корневая система и глубоко проникающие корни

Некоторые Сасtасеае, например, Opuntia и Euphorbiaceae; Дуб монгольский, Леспедеца

Длинные корни

Многие альпийские растения, например, эдельвейс (Leontupodium alpinum)

Прорытие ходов к воде

Термиты

Запасание воды

В слизистых клетках и в клеточных стенках

Сасtасеае и Euphorbiaceae

Вспециализированном мочевом пузыре

Пустыннаялягушка

В виде жира (вода – продукт окисления жира)

Пустынная крыса

Физиологическая устойчивость к потере воды

При видимом обезвоживании сохраняется жизнеспособность

Некоторые эпифитные папоротники и плауны, многие мохообразные и лишайники, Сагех physoides

Потеря значительной части массы тела и быстрое ее восстановление при наличии доступной воды

Lumbricus terrestris (теряет до 70% массы), верблюд (теряет до 30%)

Уклонение от проблемы

Переживают неблагоприятный период в виде семян

Эшшольция калифорнийская, Марьянник розовый

Переживают неблагоприятный период в виде луковиц и клубней

Некоторые лилии, Хохлатки

Распространение семян в расчете на то, что некоторые из них попадут в благоприятные условия

Различные растения

Поведенческие реакции избегания

Почвенные организмы, например, дождевые черви, клещи

Летняя спячка в слизистом коконе

Дождевые черви, двоякодышащие рыбы.

4. Значение других экологических факторов для живых организмов

Атмосфера. Воздух – источник кислорода для дыхания и углекислого газа для фотосинтеза. Он защищает биосферу от вредных космических излучений и способствует сохранению тепла на Земле. С атмосферой связаны биогеохимические циклы, включающие газообразные компоненты: С, О, N, H2O. Ветер играет важную роль в расселении видов, распространяя семена и споры, способствуя опылению растений.

Рельеф (топографический, или орографический, фактор) – очень важный фактор среды, хотя и косвеннодействующий. Он влияет на перераспределение света, тепла и влаги. В зависимости от высоты н.у.м., экспозиции склонов, расположения их по отношению к морю происходит смена условий местообитания, влияя на размещение растительности и животного населения. С рельефом связана высотная зональнасть

На Дальнем Востоке горный рельеф - один из ведущих природных факторов. Он служит климатическим барьером между приморскими и континентальными районами.

Прочие физические факторы среды: атмосферное электричество, огонь, шум, магнитное поле Земли, ионизирующие излучения. Из перечисленных факторов все большее значение приобретают огонь (лесные пожары), шум (транспортный, строительный, промышленный), радиоактивное излучение. Все они обусловлены увеличением влияния атропогенного фактора.

Активные, пассивные и избегающие адаптации организмов к неблагоприятным факторам среды

При всем мноогобразии форм и механизмов адаптаций живых организмов к воздействию неблагоприятных факторов среды их можно сгруппировать в три основных пути: активный, пассивный и избегание неблагоприятных воздействий. Все эти пути имеют место по отношению к любого экологическому фактору, будь то свет, тепло или влажность.

Активный путь – усиление сопротивляемости, развитие регуляторных способностей, дающих возможность пройти жизненный цикл и дать потомство, несмотря на отклонения условий среды от оптимальных. В большей степени этот путь свойствен гомойтермным организмам, но проявляется и у ряда высших растений (ускорение темпов нарастания-отмирания побегов, корней, быстрое цветение). Механизмы – преимущественно биохимические адаптации.

Пассивный путь – подчинение жизненных функций организма внешним условиям. Заключается в экономном использовании энергетических ресурсов при ухудшении условий жизни, повышении устойчивости клеток и тканей. Проявляется в снижении интенсивности обменных процессов, замедлении скорости роста и развития, летнем сбрасывании листьев, минимизации растений.… Наиболее выражен у растений и пойкилотермных животных, у млекопитающих и птиц – только у гетеротермных видов, обладающих способностью впадать в спячку.

Избегание неблагоприятных условий среды – характерно для всех живых существ. Прохождение жизненных циклов в наиболее благоприятное время года (активные процессы – в вегетационный сезон, зимой – состояние покоя). Для растений – защищенность почек возобновления и молодых тканей снежным покровом, подстилкой; отражение солнечных лучей.

Многие мелкие растения переносят низкие зимние температуры, зимуя под снегом, не имея никаких адаптивных черт в виде изменения органов или клеток. У некоторых из них адаптации проявляются не по отношению к температуре, а по отношению к защитному фактору.

ПРИМЕР – перезимовка мелких растений под слоем опада и снега; полегание с наступлением морозом ветвей кедрового стланика (Pinus pumila) на поверхность. Вторая очень интересная реакция стланика на холод. Она вызвана неравномерным развитием толщины годичных колец – более узких с нижней стороны побегов. По мере замерзания клеточного сока происходит преимущественное увеличение поверхности побега с той стороны, где кольца шире. Постепенно побег распрямляется и, принимая горизонтальное положение, ложится на землю. Весной происходит обратный процесс, но более быстрый. Аналогично, по-видимому, ведет себя и ольховник, имеющий такую же ЖФ, как и кедровый стланик.

Извилистость стволов каменных берез некоторыми исследователями тоже трактуется, как адаптация вида к холоду. «Извиваясь», ствол дерева еще какое-то время задерживается в более теплом приземном слое. Это имеет место, как на европейском Севере, так и на Севере Дальнего Востока. Следует отметить также неравномерность распускания листьев в кронах березы, и разрастание нижних ветвей, прижимающихся к поверхности и укрывающих корнеобитаемый слой.

Состояния покоя

Все растения и животные подготавливаются к зиме, при этом замедляются физиолого-биохимические процессы.

У растений прекращается рост. У древесных пород, впадающих в состояние покоя, интенсивность дыхания снижается до 1/200 – 1/400 от летнего. Органический покой характерен для плодов, клубней, почек (спящие почки). Они не прорастают, не распускаются до весны или до поры, пока не получат «сигнал» факторов среды, пока не произойдут биохимические реакции в эмбриональных клетках и тканях. Глубокий покой – наступает одновременно с органическим; степень глубины зависит от вида растений и условий осени; обеспечивает морозоустойчивость. Вынужденный покой – задержка весеннего развития из-за неблагоприятных условий.

У животных тоже несколько состояний покоя. Спячка – летняя – из-за высоких температур и дефицита воды, зимняя – из-за холода. Не всегда у млекопитающих во время зимнего сна замедляются обменные процессы – у бурых и белых медведей зимой рождаются детеныши. Анабиоз – состояние организма, при котором жизненные процессы настолько замирают, что признаки жизни отсутствуют. Организм обезвоживается и потому может переносить очень низкие температуры (до -271 °С), но при этом не происходит нарушения макромолекул в клетках. Анабиоз характерен для спор, семян, высохших лишайников, муравьев, простейших одноклеточных.

Диапауза – состояние временной пониженной физиологической активности – свойственна членистоногим. В этот период замедляются процессы обмена, повышается устойчивость к неблагприятным условиям среды. Различают зимнюю и летнюю (у дождевых червей, укольчатого шелкопряда, дубовой и ореховой павлиноглазки, листоедов) диапаузы. Может наступать на определенной стадии развития (куколки, гусеницы, яйца), длится от нескольких недель до года и часто не связана с ухудшением условий. У сумчатых может непредсказуемо задержаться развитие плода до наступления благоприятного сочетания факторов среды – ответная «спячка».

Поведенческие реакции. Все животные активно перемещаются в места с более благоприятными температурами (в жару – в тень, в холодные дни – на солнце или в укрытие), скучиваются или рассредоточиваются, во время спячки скручиваются клубком, выбирают или создают убежища с определенным климатом, проявляют активность в определенное время суток.

При понижении температуры переходят на питание более калорийной пищей (олени – лишайники, чозения; белки – семена хвойных). Для животных – разные формы поведения. В качестве примера можно привести смену стаций обитаний эктотермными видами (насекомые, членистоногие, пресмыкающиеся) в разных зонах (правило смены ярусов) и в разное время суток, эндотермными видами – обустройство жилищ, гнезд и смена места пребывания при резкой смене условий среды в течение суток, миграции при смене сезонов года.

Виды сходно реагируют на совокупность факторов, но нет видов и популяций, реагирующих на них совершенно одинаково. Может быть, они различаются по реакции всего на один фактор, и то незначительно, но и этого достаточно, чтобы занять в одном биоценозе разные местообитания – микросайты (пример ольховника и кедрового стланика). Особенно четко различия в экологических требованиях проявляются на границах ареалов, в экстремальных условиях произрастания. Этими различиями определяется избирательное отношение к заселяемым территориям и многовидовой характер сообществ. На разных почвах в разных климатических зонах формируются разные экосистемы. В свою очередь в них создаются неодинаковые условия для животных и микроорганизмов. Исторически приспосабливаясь к абиотическим факторам среды, вступая во взаимоотношения (биотические, трофические) друг с другом, растения, животные и микроорганизмы распределяются в пространстве по различным средам, формируя самые разнообразные экосистемы (биогеоценозы), в конечном итоге объединяющиеся в мегаэкосистему – биосферу Земли.

Лекция 6. СРЕДЫ ОБИТАНИЯ И ИХ ХАРАКТЕРИСТИКИ

Москалюк Т.А.

Список литературы:

Степановских А.С. Общая экология: Учебник для вузов. М.: ЮНИТИ, 2001. 510 с.

Радкевич В.А. Экология. Минск: Вышэйшая школа, 1998. 159 с.

Бигон М., Харпер Дж., Таунсенд К. Экология. Особи, популяции и сообщества / Пер. с англ. М.: Мир, 1989. В 2-х томах.

Шилов И.А. Экология. М.: Высшая школа, 2003. 512 с. (комменсализм, МУТУАЛИЗМ)

 

Водная среда обитания

Наземно-воздушная среда обитания

Почва, как среда обитания

Организм, как среда обитания

Биологические ритмы

Жизненные формы

 

В процессе исторического развития живые организмы освоили четыре среды обитания. Первая – вода. В воде жизнь зародилась и развивалась многие миллионы лет. Вторая – наземно-воздушная – на суше и в атмосфере возникли и бурно адаптировались к новым условиям растения и животные. Постепенно преобразуя верхний слой суши - литосферы, они создали третью среду обитания – почву, а сами стали четвертой средой обитания.

Водная среда обитания - гидросфера

http://www.botsad.ru/images3/image11.gif

Вода покрывает 71% площади земного шара и составляет1/800 часть объема суши или 1370 м3. Основная масса воды сосредоточена в морях и океанах – 94-98%, в полярных льдах содержится около 1,2% воды и совсем малая доля – менее 0,5%, в пресных водах рек, озер и болот. Соотношения эти постоянны, хотя в природе, не переставая, идет круго-ворот воды (рис. 1).

 

В водной среде обитает около 150 000 видов животных и 10 000 растений, что составляет соответственно всего 7 и 8 % от общего числа видов Земли. На основании этого был сделан вывод о том, что на суше эволюция шла намного интенсивнее, чем в воде.

 

http://www.botsad.ru/images3/image12.gif

В морях-океанах, как в горах, выражена вертикальная зональность. Особенно сильно различаются по экологии пелагиаль – вся толща воды, и бенталь – дно.

Толща воды – пелагиаль, по вертикали делится на несколько зон: эпипелигеаль, батипелигеаль, абиссопелигиаль и ультраабиссопелигиаль (рис. 2).

В зависимости от крутизны спуска и глубины на дне тоже выделяют несколько зон, которым соответствуют указанные зоны пелагиали:

- литоральная – кромка берега, заливаемая во время приливов.

- супралиторальная – часть берега выше верхней приливной черты, куда долетают брызги прибоя.

- сублиторальная – плавное понижение суши до 200м.

- батиальная – крутое понижение суши (материковый склон),

- абиссальная – плавное понижение дна океанского ложа; глубина обеих зон вместе достигает 3-6 км.

- ультраабиссальная – глубоководные впадины от 6 до 10 км.

Экологические группы гидробионтов. Наибольшим разнообразием жизни отличаются теплые моря и океаны (40000 видов животных) в области экватора и тропиках, к северу и югу происходит обеднение флоры и фауны морей в сотни раз. Что касается распределения организмов непосредственно в море, то основная масса их сосредоточена в поверхностных слоях (эпипелагиаль) и в сублиторальной зоне. В зависимости от способа передвижения и пребывания в определенных слоях, морские обитатели подразделяются на три экологические группы: нектон, планктон и бентос.

Нектон (nektos – плавающий) - активно передвигающиеся крупные животные, способные преодолевать большие расстояния и сильные течения: рыбы, кальмары, ластоногие, киты. В пресных водоемах к нектону относятся и земноводные и множество насекомых.

Планктон (planktos – блуждающий, парящий) – совокупность растений (фитопланктон: диатомовые, зеленые и сине-зеленые (только пресные водоемы) водоросли, растительные жгутиконосцы, перидинеи и др.) и мелких животных организмов (зоопланктон: мелкие ракообразные, из более крупных – крылоногие моллюски, медузы, гребневики, некоторые черви), обитающих на разной глубине, но не способных к активным передвижениям и к противостоянию течениям. В состав планктона входят и личинки животных, образуя особую группу – нейстон. Это пассивно плавающее «временное» население самого верхнего слоя воды, представленное разными животными (десятиногие, усоногие и веслоногие ракообразные, иглокожие, полихеты, рыбы, моллюски и др.) в личиночной стадии. Личинки, взрослея, переходят в нижние слои пелагели. Выше нейстона располагается плейстон – это организмы, у которых верхняя часть тела растет над водой, а нижняя – в воде (ряска – Lemma, сифонофоры и др.). Планктон играет важную роль в трофических связях биосферы, т.к. является пищей для многих водных обитателей, в том числе основным кормом для усатых китов (Myatcoceti).

Бентос (benthos – глубина) – гидробионты дна. Представлен в основном прикрепленными или медленно передвигающимися животными (зообентос: фораминефоры, рыбы, губки, кишечнополостные, черви, плеченогие моллюски, асцидии, и др.), более многочисленными на мелководье. На мелководье в бентос входят и растения (фитобентос: диатомовые, зеленые, бурые, красные водоросли, бактерии). На глубине, где нет света, фитобентос отсутствует. У побережий встречаются цветковые растения зостера, рупия. Наиболее богаты фитобентосом каменистые участки дна.

В озерах зообентос менее обилен и разнообразен, чем в море. Его образуют простейшие (инфузории, дафнии), пиявки, моллюски, личинки насекомых и др. Фитобентос озер образован свободно плавающими диатомеями, зелеными и сине-зелеными водорослями; бурые и красные водоросли отсутствуют.

Укореняющиеся прибрежные растения в озерах образуют четко выраженные пояса, видовой состав и облик которых согласуются с условиями среды в пограничной зоне «суша-вода». В воде у самого берега растут гидрофиты – полупогруженные в воду растения (стрелолист, белокрыльник, камыши, рогоз, осоки, трищетинник, тростник). Они сменяются гидатофитами – растениями, погруженными в воду, но с плавающими листьями (лотос, ряски, кубышки, чилим, такла) и – далее – полностью погруженными (рдесты, элодея, хара). К гидатофитам относятся и плавающие на поверхности растения (ряска).

Высокая плотность водной среды определяет особый состав и характер изменения жизнеобеспечивающих факторов. Одни из них те же, что и на суше – тепло, свет, другие специфические: давление воды (с глубиной увеличивается на 1 атм. на каждые 10 м), содержание кислорода, состав солей, кислотность. Благодаря высокой плотности среды, значения тепла и света с градиентом высоты изменяются гораздо быстрее, чем на суше.

Тепловой режим. Для водной среды характерен меньший приход тепла, т.к. значительная часть его отражается, и не менее значительная часть расходуется на испарение. Согласуясь с динамикой наземных температур, температура воды обладает меньшими колебаниями суточных и сезонных температур. Более того, водоемы существенно выравнивают ход температур в атмосфере прибрежных районов. При отсутствии ледового панциря моря в холодное время года оказывают отепляющее действие на прилегающие территории суши, летом – охлаждающее и увлажняющее.

Диапазон значений температуры воды в Мировом океане составляет 38° (от -2 до +36°С), в пресных водоемах – 26° (от -0,9 до +25°С). С глубиной температура воды резко падает. До 50 м наблюдаются суточные колебания температуры, до 400 – сезонные, глубже она становится постоянной, опускаясь до +1-3°С (в Заполярье близка к 0°С). Поскольку температурный режим в водоемах сравнительно стабилен, их обитателям свойственна стенотермность. Незначительные колебания температуры в ту или иную сторону сопровождается существенными изменениями в водных экосистемах.

Примеры: «биологический взрыв» в дельте Волги из-за понижения уровня Каспийского моря – разрастание зарослей лотоса (Nelumba kaspium), в южном Приморье – зарастание белокрыльником стариц рек (Комаровка, Илистая и др.) по берегам которых вырублена и сожжена древесная растительность.

В связи с разной степенью прогревания верхних и нижних слоев в течение года, приливами и отливами, течениями, штормами происходит постоянное перемешивание водных слоев. Роль перемешивания воды для водных обитателей (гидробионтов) исключительно велика, т.к. при этом выравнивается распределение кислорода и питательных веществ внутри водоемов, обеспечивая обменные процессы между организмами и средой.

http://www.botsad.ru/images3/image13.gif

В стоячих водоемах (озерах) умеренных широт весной и осенью имеет место вертикальное перемешивание, и в эти сезоны температура во всем водоеме становится однородной, т.е. наступает гомотермия. Летом и зимой в результате резкого усиления прогревания или охлаждения верхних слоев перемешивание воды прекращается. Это явление называется температурной дихотомией, а период временного застоя – стагнацией (летней или зимней). Летом более легкие теплые слои остаются на поверхности, располагаясь над тяжелыми холодными (рис. 3). Зимой, наоборот, в придонном слое более теплая вода, так как непосредственно подо льдом температура поверхностных вод меньше +4°С и они в силу физико-химических свойств воды становятся более легкими, чем вода с температурой выше +4°С.

В периоды стагнаций четко выделяются три слоя: верхний (эпилимнион) с наиболее резкими сезонными колебаниями температуры воды, средний (металимнион или термоклин), в котором происходит резкий скачок температур, и придонный (гиполимнион), в котором температура в течение года изменяется слабо. В периоды стагнаций в толще воды образуется дефицит кислорода – летом в придонной части, а зимой и в верхней, вследствие чего в зимний период нередко происходят заморы рыбы.

Световой режим. Интенсивность света в воде сильно ослаблена из-за его отражения поверхностью и поглощения самой водой. Это сильно сказывается на развитии фотосинтезирующих растений. Чем меньше прозрачность воды, тем сильнее поглощается свет. Прозрачность воды лимитируется минеральными взвесями, планктоном. Уменьшается она при бурном развитии мелких организмов летом, а в умеренных и северных широтах – еще и зимой, после установления ледового покрова и укрытия его сверху снегом.

В океанах, где вода очень прозрачна, на глубину 140 м проникает 1% световой радиации, а в небольших озерах на глубине 2 м проникает всего лишь десятые доли процента. Лучи разных частей спектра поглощаются в воде неодинаково, вначале поглощаются красные лучи. С глубиной становится все темнее, и цвет воды становится вначале зеленым, затем голубым, синим и в конце – сине-фиолетовым, переходя в полный мрак. Соответственно меняют цвет и гидробионты, адаптирующиеся не только к составу света, но и к его недостатку – хроматическая адаптация. В светлых зонах, на мелководьях, преобладают зеленые водоросли (Chlorophyta), хлорофилл которых поглощают красные лучи, c глубиной они сменяются бурыми (Phaephyta) и далее красными (Rhodophyta). На больших глубинах фитобентос отсутствует.

К недостатку света растения приспособились развитием хроматофоров крупных размеров, обеспечивающих низкую точку компенсации фотосинтеза, а также увеличением площади ассимилирующих органов (индекса листовой поверхности). Для глубоководных водорослей типичны сильно рассеченные листья, пластинки листьев тонкие, просвечивающиеся. Для полупогруженных и плавающих растений характерна гетерофиллия – листья над водой такие же, как у наземных растений, имеют цельную пластинку, развит устьичный аппарат, а в воде листья очень тонкие, состоят из узких нитевидных долей.

Гетерофиллия: кубышки, кувшинки, стрелолист, чилим (водяной орех).

Животные, как и растения, закономерно меняют свою окраску с глубиной. В верхних слоях они ярко окрашены в разные цвета, в сумеречной зоне (морской окунь, кораллы, ракообразные) окрашены в цвета с красным оттенком – удобнее скрываться от врагов. Глубоководные виды лишены пигментов.

Характерными свойствами водной среды, отличными от суши, являются высокая плотность, подвижность, кислотность, способность растворения газов и солей. Для всех этих условий у гидробионтов исторически выработаны соответствующие приспособления-адаптации.

Каковы приспособления гидробионтов к высокой плотности воды?

Воде свойственна высокая плотность (1 г/см3, что в 800 раз больше плотности воздуха) и вязкость.

1) У растений очень слабо развиты или вовсе отсутствуют механические ткани – им опора сама вода. Большинству свойственна плавучесть, за счет воздухоносных межклеточных полостей. Характерно активное вегетативное размножение, развитие гидрохории – вынос цветоносов над водой и распространение пыльцы, семян и спор поверхностными течениями.

2) У живущих в толще воды и активно плавающих животных тело имеет обтекаемую форму и смазано слизью, уменьшающей трение при передвижении. Развиты приспособления для повышения плавучести: скопления жира в тканях, плавательные пузыри у рыб, воздухоносные полости у сифонофор. У пассивно плавающих животных увеличивается удельная поверхность тела за счет выростов, шипов, придатков; тело уплощается, происходит редукция скелетных органов. Разные способы передвижения: изгибание тела, с помощью жгутиков, ресничек, реактивный способ передвижения (головомоллюски).

У придонных животных исчезает или слабо развит скелет, увеличиваются размеры тела, обычна редукция зрения, развитие осязательных органов.

Каковы приспособления гидробионтов к подвижности воды?

Характерная черта водной среды – подвижность. Она обусловлена приливами и отливами, морскими течениями, штормами, разными уровнями высотных отметок русел рек.

1) В проточных водоемах растения прочно прикрепляются к неподвижным подводным предметам. Донная поверхность для них в первую очередь – субстрат. Это зеленые (Cladophora) и диатомовые (Diatomeae) водоросли, водяные мхи. Мхи даже образуют плотный покров на быстрых перекатах рек. В прибойно-отливной полосе морей и многие животные имеют приспособления для прикрепления ко дну (брюхоногие моллюски, усоногие раки), или же прячутся в расщелинах.

2) У рыб проточных вод тело в поперечнике круглое, а у рыб, обитающих у дна, как и у придонных беспозвоночных животных, тело плоское. У многих на брюшной стороне есть органы фиксации к подводным предметам.

Каковы приспособления гидробионтов к солености воды?

Природным водоемам свойствен определенный химический состав. Преобладают карбонаты, сульфаты, хлориды. В пресных водоемах концентрация солей не более 0,5 г/, в морях – от 12 до 35 г/л (промилле – десятые доли процента). При солености более 40 промилле водоем называют гипергалинным или пересоленным.

1) В пресной воде (гипотоническая среда) хорошо выражены процессы осморегуляции. Гидробионты вынуждены постоянно удалять проникающую в них воду, они гомойосмотичны (инфузории каждые 2-3 минуты «прокачивают» через себя количество воды, равное ее весу). В соленой воде (изотоническая среда) концентрация солей в телах и тканях гидробионтов одинакова (изотонична) с концентрацией солей, растворенных в воде – они пойкилоосмотичны. Поэтому у обитателей соленых водоемов осморегуляторные функции не развиты, и они не смогли заселить пресные водоемы.

2) Водные растения способны поглощать воду и питательные вещества из воды – «бульона», всей поверхностью, поэтому у них сильно расчленены листья и слабо развиты проводящие ткани и корни. Корни служат в основном для прикрепления к подводному субстрату. У большинства растений пресных водоемов есть корни.

Типично морские и типично пресноводные виды – стеногалинные, не переносят значительных изменений в солености воды. Эвригалинных видов немного. Они обычны в солоноватых водах (пресноводный судак, щука, лещ, кефаль, приморские лососи).

Каково отношение гидробионтов к составу газов в воде?

В воде кислород важнейший экологический фактор. Источник его – атмосфера и фотосинтезирующие растения. При перемешивании воды, особенно в проточных водоемах и при уменьшении температуры содержание кислорода возрастает. Некоторые рыбы очень чувствительны к дефициту кислорода (форель, гольян, хариус) и потому предпочитают холодные горные реки и ручьи. Другие рыбы (карась, сазан, плотва) неприхотливы к содержанию кислорода и могут жить на дне глубоких водоемов. Многие водяные насекомые, личинки комаров, легочные моллюски тоже толерантны к содержанию кислорода в воде, потому-что они время от времени поднимаются к поверхности и заглатывают свежий воздух.

Углекислого газа в воде достаточно – почти в 700 раз больше, чем в воздухе. Он используется в фотосинтезе растений и идет на формирование известковых скелетных образований животных (раковины моллюсков, покровы ракообразных, каркасы радиолярий и др.).

Каково отношение гидробионтов к кислотности?

В пресноводных водоемах кислотность воды, или концентрация водородных ионов, варьирует гораздо сильнее, чем в морских – от pH=3,7-4,7 (кислые) до pH=7,8 (щелочные). Кислотностью воды определяется во многом видовой состав растений гидробионтов. В кислых водах болот растут сфагновые мхи и живут в обилии раковинные корненожки, но нет моллюсков-беззубок (Unio), редко встречаются другие моллюски. В щелочной среде развиваются многие виды рдестов, элодея. Большинство пресноводных рыб живут в диапазоне pH от 5 до 9 и массово гибнут за пределами этих значений.

Кислотность морской воды убывает с глубиной.

Об экологической пластичности гидробионтов. Пресноводные растения и животные экологически более пластичны (эвритермны, эвригаленны), чем морские, обитатели прибрежных зон более пластичны (эвритермны), чем глубоководные. Есть виды, обладающие узкой экологической пластичностью по отношению к одному фактору (лотос – стенотермный вид, рачок артемия (Artimia solina) – стеногаленный) и широкой – по отношению к другим. Более пластичны организмы в отношении тех факторов, которые более изменчивы. И именно они распространены более широко (элодея, корненожки Cyphoderia ampulla). Зависит пластичность и от возраста и фазы развития.

Наземно-воздушная среда обитания

В ходе эволюции эта среда была освоена позже, чем водная. Ее особенность заключается в том, что она газообразная, поэтому характеризуется низкими влажностью, плотностью и давлением, высоким содержанием кислорода. В ходе эволюции у живых организмов выработались необходимые анатомо-морфологические, физиологические, поведенческие и другие адаптации.

Животные в наземно-воздушной среде передвигаются по почве или по воздуху (птицы, насекомые), а растения укореняются в почве. В связи с этим, у животных появились легкие и трахеи, а у растений – устьичный аппарат, т.е. органы, которыми сухопутные обитатели планеты усваивают кислород прямо из воздуха. Сильное развитие получили скелетные органы, обеспечивающие автономность передвижения по суше и поддерживающие тела со всеми его органами в условиях незначительной плотности среды, в тысячи раз меньшей по сравнению с водой. Экологические факторы в наземно-воздушной среде отличаются от других сред обитания высокой интенсивностью света, значительными колебаниями температуры и влажности воздуха, корреляцией всех факторов с географическим положением, сменой сезонов года и времени суток. Воздействия их на организмы неразрывно связано с движением воздуха и положения относительно морей и океанов и сильно отличаются от воздействия в водной среде (табл. 1).

Таблица 5

Условия обитания организмов воздушной и водной среды

(по Д. Ф. Мордухай-Болтовскому, 1974)

Условия (факторы) обитания

Значение условий для организмов

 

воздушной среды

водной среды

Влажность

Очень важное (часто в дефиците)

Не имеет (всегда в избытке)

Плотность

Незначительное(за исключением почвы)

Большое по сравнению с ее ролью для обитателей воздушной среды

Давление

Почти не имеет

Большое (может достигать 1000 атмосфер)

Температура

Существенное (колеблется в очень больших пределах – от -80 до +1ОО°С и более)

Меньшее по сравнению со значением для обитателей воздушной среды (колеблется гораздо меньше, обычно от -2 до +40°С)

Кислород

Несущественное(большей частью в избытке)

Существенное (часто в дефиците)

Взвешенные вещества

Неважное; не используются в пищу (главным образом минеральные)

Важное (источник пищи, особенно органические вещества)

Растворенные вещества в окружающей среде

В некоторой степени (имеют значение только в почвенных растворах)

Важное (в определенном количестве необходимы)

У животных и растений суши выработались свои, не менее оригинальные адаптации на неблагоприятные факторы среды: сложное строение тела и его покровов, периодичность и ритмика жизненных циклов, механизмы терморегуляции и пр. Выработалась целенаправленная подвижность животных в поисках пищи, появились переносимые ветром споры, семена и пыльца растений, а также растения и животные, жизнь которых всецело связана с воздушной средой. Сформировалась исключительно тесная функциональная, ресурсная и механическая взаимосвязь с почвой.

Многие из адаптаций были рассмотрены нами выше, в качестве примеров при характеристике абиотических факторов среды. Поэтому сейчас повторяться нет смысла, т.б., что к ним мы вернемся еще на практических занятиях

Почва как среда обитания

Земля - единственная из планет имеет почву (эдасфера, педосфера)– особенную, верхнюю оболочку суши. Эта оболочка сформировалась в исторически обозримое время – она ровесница сухопутной жизни на планете. Впервые на вопрос о происхождении почвы ответил М.В. Ломоносов ("О слоях земли"): "…почва произошла от согнития животных и растительных тел … долготою времени…". А великий русский ученый Вас. Вас. Докучаев (1899: 16) впервые назвал почву самостоятельным природным телом и доказал, что почва есть "…такое же самостоятельное естественноисторическое тело, как любое растение, любое животное, любой минерал … оно есть результат, функция совокупной, взаимной деятельности климата данной местности, ее растительных и животных организмов, рельефа и возраста страны…, наконец, подпочвы, т.е. грунтовых материнских горных пород. … Все эти агенты-почвообразователи, в сущности, совершенно равнозначные величины и принимают равноправное участие в образовании нормальной почвы…".

И уже современный известный ученый почвовед Н.А. Качинский ("Почва, ее свойства и жизнь", 1975) дает следующее определение почвы: "Под почвой надо понимать все поверхностные слои горных пород, переработанные и измененные совместным воздействием климата (свет, тепло, воздух, вода), растительных и животных организмов".

Основными структурными элементами почвы являются: минеральная основа, органическое вещество, воздух и вода.

Минеральная основа (скелет) (50-60% всей почвы) – это неорганическое вещество, образовавшееся в результате подстилающей горной (материнской, почвообразующей) породы в результате ее выветривания. Размеры скелетных частиц: от валунов и камней до мельчайших песчинок и илистых частиц. Физико-химические свойства почв обусловлены в основном составом почвообразующих пород.

От соотношения в почве глины и песка, размеров фрагментов, зависят проницаемость и пористость почвы, обеспечивающие циркуляцию, как воды, так и воздуха. В умеренном климате идеально, если почва образована равными количествами глины и песка, т.е. представляет суглинок. В этом случае почвам не грозит ни переувлажнение, не пересыхание. И то и другое одинаково губительно как для растений, так для и животных.

Органическое вещество – до 10% почвы, образуется из отмершей биомассы (растительная масса – опад листьев, ветвей и корней, валежные стволы, ветошь травы, организмы погибших животных), измельченной и переработанной в почвенный гумус микроорганизмами и определенными группами животных и растений. Более простые элементы, образовавшиеся в результате разложения органики, вновь усваиваются растениями и вовлекаются в биологический круговорот.

Воздух (15-25%) в почве содержится в полостях – порах, между органическими и минеральными частицами. При отсутствии (тяжелые глинистые почвы) или заполнении пор водой (во время подтоплений, таяния мерзлоты) в почве ухудшается аэрация и складываются анаэробные условия. В таких условиях тормозятся физиологические процессы организмов, потребляющих кислород – аэробов, разложение органики идет медленно. Постепенно накапливаясь, они образуют торф. Большие запасы торфа характерны для болот, заболоченных лесов, тундровых сообществ. Торфонакопление особенно выражено в северных регионах, где холодность и переувлажнение почв взаимообусловливают и дополняют друг друга.

Вода (25-30%) в почве представлена 4 типами: гравитационной, гигроскопической (связанной), капиллярной и парообразной.

Гравитационная – подвижная вода, занимают широкие промежутки между частицами почвы, просачивается вниз под собственной тяжестью до уровня грунтовых вод. Легко усваивается растениями.

Гигроскопическая, или связанная – адсорбируется вокруг коллоидных частиц (глина, кварц) почвы и удерживается в виде тонкой пленки за счет водородных связей. Освобождается от них при высокой температуре (102-105°С). Растениям она недоступна, не испаряется. В глинистых почвах такой воды до 15%, в песчаных – 5%.

Капиллярная – удерживается вокруг почвенных частиц силой поверхностного натяжения. По узким порам и каналам – капиллярам, поднимается от уровня грунтовых вод или расходится от полостей с гравитационной водой. Лучше удерживается глинистыми почвами, легко испаряется. Растения легко поглощают ее.

Парообразная – занимает все свободные от воды поры. Испаряется в первую очередь.

Осуществляется постоянный обмен поверхностных почвенных и грунтовых вод, как звено общего круговорот воды в природе, меняющий скорость и направление в зависимости от сезона года и погодных условий.

Строение почвенного профиля

Строение почв неоднородно как по горизонтали, так и по вертикали. Горизонтальная неоднородность почв отражает неоднородность размещения почвообразующих пород, положения в рельефе, особенности климата и согласуется с распределением по территории растительного покрова. Для каждой такой неоднородности (типа почв) характерна своя вертикальная неоднородность, или почвенный профиль, формирующийся в результате вертикальной миграции воды, органических и минеральных веществ. Этот профиль представляет собой совокупность слоев, или горизонтов. Все процессы почвообразования протекают в профиле с обязательным учетом его расчленения на горизонты.

Независимо от типа почвы в ее профиле выделяют три основных горизонта, различающиеся по морфологическим и химическим свойствам между собой и между аналогичными горизонтами в других почвах:

1. Перегнойно-аккумулятивный горизонт А. В нем накапливается и преобразуется органическое вещество. После преобразования часть элементов из этого горизонта выносится с водой в нижележащие.

Этот горизонт наиболее сложный и важный из всего почвенного профиля по своей биологической роли. Он состоит из лесной подстилки – А0, образованной наземным опадом (отмершая органика слабой степени разложенности на поверхности почвы). По составу и мощности подстилки можно судить об экологических функциях растительного сообщества, его происхождении, стадии развития. Ниже подстилки располагается темноокрашенный гумусовый горизонт – А1, образованный измельченными, разной степени разложения остатками растительной массы и массы животных. В деструкции остатков участвуют позвоночные животные (фитофаги, сапрофаги, копрофаги, хищники, некрофаги). По мере измельчения органические частицы поступают в следующий нижний горизонт – элювиальный (А2). В нем происходит химическое разложение гумуса на простые элементы.

2. Иллювиальный, или горизонт вмывания В. В нем оседают и преобразуются в почвенные растворы соединения, вынесенные из горизонта А. Это гуминовые кислоты и их соли, вступающие в реакцию с корой выветривания и усваиваемые корнями растений.

3. Материнская (подстилающая) порода (кора выветривания), или горизонт С. Из этого горизонта – тоже после преобразования – минеральные вещества переходят в почву.

Экологические группы почвенных организмов

http://www.botsad.ru/images3/image14.gif

Исходя из степени подвижности и размеров, вся почвенная фауна сгруппирована в следующие три экологические группы:

Микробиотип, или микробиота (не путать с эндемиком Приморья – растением микробиотой перекрестнопарной!): организмы, представляющие промежуточное звено между растительными и животными организмами (бактерии, зеленые и сине-зеленые водоросли, грибы, простейшие одноклеточные). Это водные организмы, но мельче обитающих в воде. Живут в порах почвы, заполненных водой – микроводоемах. Основное звено детритной пищевой цепи. Могут высыхать, а с возобновлением достаточной влажности вновь оживают.

Мезобиотип, или мезобиота – совокупность мелких, легко извлекающихся из почвы подвижных насекомых (нематоды, клещи (Oribatei), мелкие личинки, ногохвостки (Collembola) и др. Очень многочисленны – до миллионов особей на 1м2. Питаются детритом, бактериями. Пользуются естественными полостями в почве, сами не роют себе ходов. При снижении влажности уходят вглубь. Приспособления от высыхания: защитные чешуйки, сплошной толстый панцирь. "Паводки" мезобиота пережидает в пузырьках почвенного воздуха.

Макробиотип, или макробиота – крупные насекомые, дождевые черви, подвижные членистоногие, живущие между подстилкой и почвой, другие животные, вплоть до роющих млекопитащих (кроты, землеройки). Преобладают дождевые черви (до 300 шт/м2).

Каждому типу почв и каждому горизонту соответствует свой комплекс живых организмов, участвующих в утилизации органики – эдафон. Наиболее многочисленным и сложным составом живых организмов обладают верхние – органогенные слои-горизонты (рис. 4). В иллювиальном обитают только бактерии (серобактерии, азотфиксирующие), не нуждающиеся в кислороде.

По степени связи со средой обитания в эдафоне выделяются три группы:

Геобионты – постоянные обитатели почвы (дождевые черви (Lymbricidae), многие первичнобескрылые насекомые (Apterigota)), из млекопитающих кроты, слепыши.

Геофилы – животные, у которых часть цикла развития проходит в другой среде, а часть – в почве. Это большинство летающих насекомых (саранчовые, жуки, комары-долгоножки, медведки, многие бабочки). Одни в почве проходят фазу личинки, другие – фазу куколки.

Геоксены – животные, иногда посещающие почву в качестве укрытия или убежища. К ним относятся все млекопитающие, живущие в норах, многие насекомые (таракановые (Blattodea), полужесткокрылые (Hemiptera), некоторые виды жуков).

Особая группа – псаммофиты и псаммофилы (мраморные хрущи, муравьиные львы); адаптированы к сыпучим пескам в пустынях. Приспособления к жизни в подвижной, сухой среде у растений (саксаул, песчаная акация, овсяница песчаная и др.): придаточные корни, спящие почки на корнях. Первые начинают расти при засыпании песком, вторые при сдувании песка. От заноса песком спасаются быстрым ростом, редукцией листьев. Плодам присуща летучесть, пружинистость. От засухи предохраняют песчаные чехлы на корнях, опробковение коры, сильно развитые корни. Приспособления к жизни в подвижной, сухой среде у животных (указаны выше, где рассматривался тепловой и влажный режимы): минируют пески – раздвигают их телом. У роющих животных лапы-лыжи – с наростами, с волосяным покровом.

Почва – промежуточная среда между водой (температурный режим, низкое содержание кислорода, насыщенность водяными парами, наличие воды и солей в ней) и воздухом (воздушные полости, резкие изменения влажности и температуры в верхних слоях). Для многих членистоногих почва была средой, через которую они смогли перейти от водного к наземному образу жизни.

Основными показателями свойств почвы, отражающими возможность ее быть средой обитания для живых организмов, являются гидротермический режим и аэрация. Или влажность, температура и структура почвы. Все три показателя тесно связаны между собой. С повышением влажности повышается теплопроводность и ухудшается аэрация почв. Чем выше температура, тем сильнее идет испарение. Непосредственно с этими показателями связаны понятия физической и физиологической сухости почв.

Физическая сухость обычна место при атмосферных засухах, в связи с резким сокращением поступления воды из-за долгого отсутствия осадков.

В Приморье такие периоды характерны для поздней весны и особенно сильно выражены на склонах южных экспозиций. Причем при одинаковом положении в рельефе и прочих сходных условиях произрастания, чем лучше развит растительный покров, тем быстрее наступает состояние физической сухости.

Физиологическая сухость – более сложное явление, оно обусловлено неблагоприятными условиями среды. Заключается в физиологической недоступности воды при достаточном, и даже избыточном ее количестве в почве. Как правило, физиологически недоступной становится вода при низких температурах, высоких засоленности или кислотности почв, наличии токсических веществ, недостатке кислорода. Одновременно недоступными становятся и растворимые в воде элементы питания: фосфор, сера, кальций, калий и др.

Из-за холодности почв, и обусловленными ею переувлажнением и высокой кислотностью, физиологически недоступны корнесобственным растениям большие запасы воды и минеральных солей во многих экосистемах тундры и северотаежных лесов. Этим объясняется сильное угнетение в них высших растений и широкое распространение лишайников и мхов, особенно сфагновых.

Одним из важных приспособлений к суровым условиям в эдасфере является микоризное питание. Практически все деревья имеют связь с грибами-микоризообразователями. Каждому виду дерева соответствует свой микоризообразующий вид гриба. За счет микоризы увеличивается активная поверхность корневых систем, а выделения гриба корнями высших растений легко усваиваются.

Как сказал В.В. Докучаев "…Почвенные зоны являются и зонами естественноисторическими: тут очевидна теснейшая связь климата, почвы, животных и растительных организмов…". Это хорошо видно на примере почвенного покрова в лесных районах на севере и юге Дальнего Востока

Характерной особенностью почв Дальнего Востока, формирующихся в условиях муссонного, т.е. очень влажного климата, является сильное вымывание элементов из элювиального горизонта. Но в северных и южных районах региона этот процесс неодинаков из-за разной теплообеспеченности местообитаний. Почвообразование на Крайнем Севере происходит в условиях короткого периода вегетации (не более 120 дней), и повсеместного распространения вечной мерзлоты. Недостаток тепла, часто сопровождается переувлажнением почв, низкой химической активностью выветривания почвообразующих пород и замедленным разложением органики. Жизнедеятельность почвенных микроорганизмов сильно угнетена, а усвоение питательных элементов корнями растений – заторможено. В результате северные ценозы отличаются низкой продуктивностью – запасы древесины в основных типах лиственничных редколесий не превышают 150 м2/га. При этом накопление отмершей органики превалирует над ее разложением, вследствие чего формируются мощные торфянистые и гумусовые горизонты, в профиле высоко содержание гумуса. Так, в северных лиственничниках мощность лесной подстилки достигает 10-12 см, а запасы недифференцированной массы в почве – до 53% от общего запаса биомассы насаждения. Одновременно идет вынос элементов за пределы профиля, а при близком залегании мерзлоты они аккумулируются в иллювиальном горизонте. В почвообразовании, как во всех холодных областях северного полушария, ведущий процесс – подзолообразовательный. Зональными почвами на северном побережье Охотского моря являются Al-Fe-гумусовые подзолы, в континентальных районах – подбуры. Во всех районах Северо-Востока обычны торфяные почвы с многолетней мерзлотой в профиле. Для зональных почв характерна резкая дифференциация горизонтов по цвету.

В южных районах климат имеет черты, сходные с климатом влажных субтропиков. Ведущими факторами почвообразования в Приморье на фоне высокой влажности воздуха служат временно-избыточное (пульсирующее) увлажнение и продолжительный (200 дн), очень теплый вегетационный период. Ими обусловливается ускорение делювиальных процессов (выветривание первичных минералов) и очень быстрое разложение отмершей органики на простые химические элементы. Последние не выносятся за пределы системы, а перехватываются растениями и почвенной фауной. В смешанных широколиственных лесах на юге Приморья за лето "перерабатывается" до 70% годичного опада, а мощность подстилки не превышает 1,5-3 см. Между горизонтами почвенного профиля зональных бурых почв границы выражены слабо.

При достаточном количестве тепла главную роль в почвообразовании играет гидрологический режим. Все ландшафты Приморского края известный дальневосточный ученый-почвовед Г.И. Иванов разделил на ландшафты быстрого, слабо сдержанного и затрудненного водообмена.

В ландшафтах быстрого водообмена ведущим является буроземообразовательный процесс. Почвы этих ландшафтов, они же и зональные – бурые лесные под хвойно-широколиственными и широколиственными лесами и буро-таежные – под хвойными, отличаются очень высокой продуктивностью. Так, запасы древостоев в чернопихтово-широколиственных лесах, занимающих нижние и средние частях северных склонов на слабоскелетных суглинках достигают 1000 м3/га. Бурые почвы отличаются слабо выраженной дифференциацией генетического профиля.

В ландшафтах слабо сдержанного водообмена буроземообразование сопровождается оподзоливанием. В профиле почв, помимо гумусового и иллювиального горизонтов, выделяется осветленный элювиальный и появляются признаки дифференциации профиля. Им присущи слабокислая реакция среды и высокое содержание гумуса в верхней части профиля. Продуктивность этих почв меньше - запасы древостоев на них снижаются до 500 м3/га.

В ландшафтах затрудненного водообмена из-за систематического сильного переувлажнения в почвах создаются анаэробные условия, развиваются процессы оглеения и оторфованности гумусового слоя, Для них наиболее типичны буро-таежные глеево-оподзоленные, торфянисто- и торфяно-глеевые почвы под пихтово-еловыми лесами, буро-таежные торфянистые и торфяно-оподзоленные – под лиственничниками. Из-за слабой аэрации снижаются биологическая активность, увеличивается мощность органогенных горизонтов. Профиль резко разграничен на гумусовый, элювиальный и иллювиальный горизонты.

Поскольку каждому типу почв, каждой почвенной зоне свойственны свои особенности, то и организмы отличаются избирательностью по отношению к этим условиям. По облику растительного покрова можно судить о влажности, кислотности, теплообеспеченности, засоленности, составе материнской породы и прочих характеристиках почвенного покрова.

Не только флора и структура растительности, но и фауна, за исключением микро- и мезофауны, специфична для разных почв. Например, около 20 видов жуков – галофилы, обитают только в почвах с повышенной соленостью. Даже дождевые черви наибольшей численности достигают во влажных, теплых, с мощным органогенным слоем почвах.

Организм как среда обитания

Между организмами существуют не только трофические, но и топические связи. Результатом их является создание одним организмом определенных экологических условий для другого, или по выражению В.К. Беклемишева "кондиционирование" среды. Под пологом леса формируется свой микроклимат, благоприятный для жизни многих животных и микроорганизмов. Здесь меньше амплитуда температурных колебаний, более высокая влажность, ослаблена сила ветра по сравнению с открытым пространством. На деревьях находится среда обитания для лиан ( в лесах Южного Приморья) и эпифитных лишайников (высокогорные и северные районы Дальнего Востока), в дуплах и расщелинах стволов устраивают жилища птицы и змеи.

Для животных и растений, которые поселяются на или внутри другого организма, последний является средой обитания или жизни. Взаимоотношения между ними называются симбиозом (symbiosis –совместная жизнь). Различают несколько форм симбиотических отношений, основные: комменсализм, паразитизм и мутуализм.

Комменсализм – тесная связь между организмами, при которой хозяин не получает ни пользы, ни вреда. Пример – лишайники на деревьях.

Паразитизм – самая распространенная форма симбиоза. Организм хозяина является стацией обитания, биотопом для организма-паразита. Паразитизм отличается от хищничества тем, что пищей хищнику служат много жертв, а паразит живет за счет одного или нескольких хозяев и редко убивает их сразу.

Паразитизм – древний образ жизни. Внутриклеточные паразиты обнаружены у простейших (бактерии, сине-зеленые водоросли) и одноклеточных эукариотов (диатомовые, красные и зеленые водоросли, амебы, радиолярии). А среди многоклеточных организмов нет ни одного, который не имел бы в своем теле (реже – на теле) паразитов. Чем сложнее строение организма и его органов, тем более разнообразнее условия, в которых могут проживать его сожители (и тем они многочисленнее).

Английский ученый А.Е. Шитли писал, что каждая птица – представляет собой настоящий летающий зоопарк. Перья служат пищей клещам-пухоедам, кожа – блохам, вшам, москитам. Во внутренних органах множество разных червей, в крови – бактерий. В свою очередь перечисленные паразиты тоже служат средой жизни для других, более мелких паразитов – это гиперпаразитизм. Автор сказки о Гулливере, Джонатан Свифт удачно отразил данное явление в высказывании:

Под микроскопом он открыл, что на блохе,

Живет блоху кусающая блошка;

На блошке той – блошинка-крошка,

В блошинку же вонзает зуб сердито

Блошиночка… и так ad infinitum, т.е. без конца

Более половины всех видов на Земле относятся к паразитам. Все паразиты делятся на две группы:

Эктопаразиты – наружные паразиты, обитающие на поверхности тела хозяина и внедряющиеся в него органами питания, присосками (пиявки) или гаусториями (растения). Эктопаразиты животных: клещи, пиявки, блохи, клопы; эктопаразиты растений: повилики (Cuscuta), омела, Петров крест, и др.

Эндопаразиты – паразиты, живущие внутри тела хозяина (гельминты, бактерии, вирусы, простейшие). У растений-эндопаразитов только органы размножения выходят наружу, как у видов рода Rafflesia, или гнездовки клобучковой – Neottianthe cucullata (сем. Орхидные), пучкоцвета трубкоцветкового (Phacellanthus tubiflorus) и вертляницы одноцветковой (Monotropa uniflora) в приморских лесах. То же самое наблюдается у дереворазрушающих грибов (трутовики, кожист. губки, опенок и др.)

Многие паразиты полностью утратили связь с внешним миром, и вступают в отношения с ним через своего хозяина. Каковы эти условия для хозяина, таковы они в итоге и для паразитирующих на нем организмов. Но между паразитом и хозяином существуют сложные внутренние взаимоотношения. Реагируя на выделения паразитов, организм хозяина вырабатывает защитные реакции – активный иммунитет. В крови вырабатываются белковые антитела, подавляющие жизнедеятельность паразитов. Выработка их стимулируется токсинами паразита и препятствует повторному заражению (гуморальный иммунитет). Если организм здоров, то проникновение в его организм патогенным организмам затруднено.

Так, хвойные деревья вырабатывают смолу, розоцветные – камедь, затягивающую механические повреждения. Они заселяются стволовыми вредителями и поражаются гнилями только в ослабленном состоянии. У многих особей в месте вторжения вредителей, образуются капсулы, изолирующие паразитов: галлы, разрастания побегов ("ведьмины метлы") – у растений, зооцицидии – у животных. В свою очередь на реакцию хозяина паразит вырабатывает свою защитную реакцию. Они стимулируют образование галл с камерой внутри – для защиты самих паразитов. Известны примеры выработки ферментов, облегчающих проникновение в тело хозяина и получение и него нужного вещества (безболезненные укусы кровососов и долгая несвертываемость крови после него)

Преимущества паразитизма:

- у паразитов нет проблем с поиском пищи; это дает им возможность быстрого роста, достижения больших размеров и высокого потенциала размножения;

- организм хозяина служит надежной защитой от неблагоприятных условий среды; нет опасности высыхания, изменения температурного, солевого и осмотического режимов.

У всех паразитов в процессе эволюции произошли анатомо-морфологические и физиологические изменения, заключающиеся в упрощении, вплоть до полной редукции отдельных органов. У ряда растений (заразиха, Петров крест, пучкоцвет, вертляница) редуцирован фотосинтетический аппарат и корни, листья представлены прозрачными чешуйками, а корни напоминают гифы грибов. У паразитов-животных редуцируются органы передвижения (крылья – у вшей), у живущих внутри кишечника и тканей (гельминтов) нет органов дыхания, зрения, конечностей, нет пигментации.

Примеры крайнего упрощения организации эндопаразитов. У ленточных червей, живущих в кишечнике млекопитающих и всасывающих пищу всей поверхностью, нет органов пищеварения. У саккулины из ракообразных, паразитирующей на крабах, внутренние органы представлены мантией, половыми железами и неразвитой нервной системы; тело саккулины состоит из небольшого мешочка, тонкие выросты которого пронизывают все тело и органы краба. У раффлезии, растущей на корнях лианы циссус, из всех надземных органов только огромный цветок.

Различают стационарный паразитизм и временный. При стационарном паразитизме симбиоз между особями длится долго, иногда всю жизнь. Паразиты могут быть постоянными, связанными с одним хозяином, и не переходят на другие виды, и периодическими – для прохождения полного цикла развития им необходим и промежуточный хозяин, в котором паразит проходит личиночную стадию (ленточные черви: свиной и бычий цепни, рыбы-сосальщики, иксодовые клещи – переносчики вируса клещевого энцефалита). При временном паразитизме паразиты лишь часть жизни связывают с хозяином (комары, гнус, овода, постельные клопы).

Выход из тела хозяина наружу чреват гибелью изнеженного, неприспособленного паразита. Но он необходим для размножения, и связанного с этим поиска нового хозяина. "Ячейки" размножения – цисты, пережидают период нахождения вне тела хозяина за счет толстой оболочки.

Паразитируют не только растение на растении и животное на животном, но существует паразитизм и между растением и животным. Сосущие насекомые – все паразиты, вредители. Наносят большой ущерб сельскому (тли, белокрылки, паутинный клещ и др.) и лесному (пилильщики, тли, побеговьюны) хозяйству.

Мутуализм – взаимоотношения, когда получают выгоду оба живых организма, или вида, т.е., когда в популяции одного из двух вида особи растут и (или) выживают и (или) размножаются в присутствии другого вида лучше, чем без него.

Виды получаемых преимуществ различны. Часто один из партнеров использует другого в качестве пищевого ресурса, взамен обеспечивает ему защиту от врагов или благоприятные условия для жизни (грибы-микоризообразователи и высшие растения). Вид, выигрывающий в пище, освобождает партнера от паразитов (рыбы-чистильщики), опыляет семена (клевер и шмели, пчелы и многие растения), или распространяет семена (птицы и ягодные растения, муравьи и джефферсония сомнительная, бурундуки и кедровый стланик, мелкие грызуны и аризема амурская, белка-летяга и орешки липы). В кишечнике очень большого количества животных, в том числе человека, содержится микрофлора, необходимая им для нормальной жизнедеятельности. При этом речь идет не об альтруизме между организмами, а о взаимной выгоде.

Примеры. Поведенческие взаимосвязи: обоюдная польза. Медоуказчик (птица) и капский медоед (зверь) в Африке. Медоуказчик легко разыскивает пчелиные гнезда и приводит к ним партнера. Медоед легко вскрывает гнезда, поедает мед и личинки пчел, а птице достаются остатки. Рыба-клоун и актиния. Рыба прячется в зарослях актинии, получая от нее защиту (у актинии ядовитые стрекающие нематоцисты), но и она защищает актинию, нападая на других рыб, в том числе врагов актинии. Рыбы-чистильщики и их клиенты. 45 видов рыб чистильщиков, поедающих с поверхности других рыб эктоаразитов, бактерий и отмершие ткани. Часто держатся на постоянных участках – "пунктах чистки". В Приморье – муравьи и джефферсония. Разведение растений или животных. Человек и культурные растения, домашние животные – не требуется пояснений. Муравьи и гусеницы бабочек-голубянок (классический пример). Первые две фазы личинки бабочек питаются цветками тимьяна. После третьей линьки личинку находит, муравей, питается сладкими выделениями из ее медоносной железы. Затем переносит гусеницу в муравейник, где она 11 м-цев пребывает в стадии куколки или спячке, а проснувшись питается личинками муравьев. Выйдя из куколки, бабочка покидает колонию муравьев. Грибы и муравьи, грибы и жуки. Грибы – источник пищи, насекомые – разносчики спор. Мутуализм и опыление. В простейших случаях одни и те же виды опыляются разными насекомыми, т.к. нектар и пыльца имеются в изобилии. У других растений нектар защищен от всех посетителей, только для определенных видов насекомых, имеющих специальные приспособления (длинные хоботки, другие особо устроенные ротовые органы и др.) имеется доступ к нектарникам. Или же совпадают циклы развития насекомых-опылителей и опыляемых растений (в Приморье, по-видимому, бабочка людорфия и эфемероиды). Мутуализм высших растений и грибов. У деревьев – грибокорень – микориза. Грибы помогают хозяевам получать минеральное питание, а сами берут у растения часть необходимого органического углерода. Лишь немногие семейства не имеют микоризу.

Лекция 7. Популяции: структура и динамика

Москалюк Т.А.

Список литературы

Степановских А.С. Общая экология: Учебник для вузов. М.: ЮНИТИ, 2001. 510 с.

Радкевич В.А. Экология. Минск: Вышэйшая школа, 1998. 159 с.

Бигон М., Харпер Дж., Таунсенд К. Экология. Особи, популяции и сообщества / Пер. с англ. М.: Мир, 1989. Том. 2..

Шилов И.А. Экология. М.: Высшая школа, 2003. 512 с. (СВЕТ, циклы)

 

1. Понятие о популяции. Типы популяций

2. Основные характеристики популяций

3. Структура и динамика популяций

4. Двойственный характер популяционных систем

а) эволюционная и функциональная сущность популяции

б) биологическая противоречивость функций популяции (модель Лотки–Вольтерры; закон эмерджентности)

5. Колебания численности

6. Экологические стратегии популяций

 

1. Понятие о популяции. Типы популяций

Популяция (populus – от лат. народ. население) – одно из центральных понятий в биологии и обозначает совокупность особей одного вида, которая обладает общим генофондом и имеет общую территорию. Она является первой надорганизменной биологической системой. С экологических позиций четкого определения определение популяции еще не выработано. Наибольшее признание получила трактовка С.С. Шварца, популяция – группировка особей, которая является формой существования вида и способна самостоятельно развиваться неопределенно долгое время.

Основным свойством популяций, как и других биологических систем является то, что они находятся в беспрерывном движении, постоянно изменяются. Это отражается на всех параметрах: продуктивности, устойчивости, структуре, распределении в пространстве. Популяциям присущи конкретные генетические и экологические признаки, отражающие способность систем поддерживать существование в постоянно меняющихся условиях: рост, развитие, устойчивость. Наука, объединяющая генетические, экологические и эволюционные подходы к изучению популяций, известна как популяционная биология.

http://www.botsad.ru/images3/image15.gif

Типы популяций. Популяции могут занимать разные по размеру площади и условия обитания в пределах местообитания одной популяции тоже могут быть не одинаковы. По этому признаку выделяют три типа популяций (рис.1): элементарную, экологическую, географическую.

Элементарная (локальная) популяция – это совокупность особей одного вида, занимающих небольшой участок однородной пло-щади. Между ними постоянно идет обмен генетической информацией.

 

 

 

ПРИМЕРЫ. Одна из нескольких стай рыб одного вида в озере; микрогруппировки ландыша Кейске в белоберезняке, растущие у оснований деревьев и на открытых местах; куртины деревьев одного вида (дуба монгольского, лиственницы, и др.), разобщенные лугами, куртинами других деревьев или кустарников, или болотцами.

Экологическая популяция – совокупность элементарных популяций, внутривидовые группировки, приуроченные к конкретным биоценозам. Растения одного вида в ценозе называются ценопопуляцией. Обмен генетической информацией между ними происходит достаточно часто.

ПРИМЕРЫ. Рыбы одного вида во всех стаях общего водоема; древостои в монодоминантных лесах, представляющих одну группу типов леса: травяных, лишайниковых или сфагновых лиственничников (Магаданская область, север Хабаровского края); древостои в осоковых (сухих) и разнотравных (влажных) дубняках (Приморский край, Амурская область); популяции белок в сосновых, елово-пихтовых и широколиственных лесах одного района.

Географическая популяция – совокупность экологических популяций, заселивших географически сходные районы. Географические популяции существуют автономно, ареалы их относительно изолированы, обмен генами происходит редко – у животных и птиц – во время миграций, у растений – при разносе пыльцы, семян и плодов. На этом уровне происходит формирование географических рас, разновидностей, выделяются подвиды.

ПРИМЕРЫ. Известны географические расы лиственницы даурской (Larix dahurica): западная (к западу от Лены (L. dahurica ssp. dahurica) и восточная (к востоку от Лены, выделяемая в L. dahurica ssp. cajanderi), северная и южная расы лиственницы курильской. Аналогично выделение М.А. Шембергом (1986) у березы каменной двух подвидов: березы Эрмана (Betula ermanii) и шерстистой (B. lanata). В низовьях р. Яма расположен очаг ели обыкновенной (Picea obovata), отстоящий от сплошного массива ельников к востоку на 1000 км, к северу – на 500 км. Зоологи выделяет тундровую и степную популяции у узкочерепной полевки (Microtis gregalis). У вида "белка обыкновенная" насчитывается около 20 географических популяций, или подвидов.

2. Основные характеристики популяций

Численность и плотность – основные параметры популяции. Численность – общее количество особей на данной территории или в данном объеме. Плотность – количество особей или их биомасса на единице площади или объема. В природе происходит постоянные колебания численности и плотности.

Динамика численности и плотности определяется в основном рождаемостью, смертностью и процессами миграции. Это показатели, характеризующие изменение популяции в течение определенного периода: месяца, сезона, года и т.д. Изучение этих процессов и причин их обусловливающих очень важно для прогнозов состояния популяций.

Рождаемость различают абсолютную и удельную. Абсолютная рождаемость – это количество новых особей, появившихся за единицу времени, а удельная – то же самое количество, но отнесенное к определенному числу особей. Например, показателем рождаемости человека служит число детей, родившихся на 1000 человек в течение года. Рождаемость определяется многими факторами: условиями среды, наличием пищи, биологией вида (скорость полового созревания, количество генераций в течение сезона, соотношение самцов и самок в популяции).

Согласно правилу максимальной рождаемости (воспроизводства) в идеальных условиях в популяциях появляется максимально возможное количество новых особей; рождаемость ограничивается физиологическими особенностями вида.

ПРИМЕР. Одуванчик за 10 лет способен заполонить весь земной шар, при условии, что все его семена прорастут. Исключительно обильно семеносят ивы, тополя, березы, осина, большинство сорных растений. Бактерии делятся каждые 20 минут ив течение 36 часов могут сплошным слоем покрыть всю планету. Очень высока плодовитость у большинства видов насекомых и низка у хищников, крупных млекопитающих.

Смертность, как и рождаемость, бывает абсолютной (количество особей, погибших за определенное время), так и удельной. Она характеризует скорость снижения численности популяции от гибели из-за болезней, старости, хищников, недостатка корма, и играет главную роль в динамике численности популяции.

Различают три типа смертности:

- одинаковый на всех стадиях развития; встречается редко, в оптимальных условиях;

- повышенная смертность в раннем возрасте; характерна для большинства видов растений и животных (у деревьев к возрасту зрелости доживает менее 1% всходов, у рыб – 1-2% мальков, у насекомых – менее 0,5% личинок);

- высокая смерть в старости; обычно наблюдается у животных, чьи личиночные стадии проходят в благоприятных мало изменяющихся условиях: почве, древесине, живых организмах.

Стабильные, растущие и сокращающиеся популяции. Популяция приспосабливается к изменению условий среды путем обновления и замещения особей, т.е. процессами рождения (возобновления) и убывания (отмирания), дополняемыми процессами миграции. В стабильной популяции темпы рождаемости и смертности близки, сбалансированы. Они могут быть непостоянны, но плотность популяции незначительно отличается от какой-то средней величины. Ареал вида при этом ни увеличивается, ни уменьшается.

В растущей популяции рождаемость превышает смертность. Для растущих популяций характерны вспышки массового размножения, особенно у мелких животных (саранча, 28-точечная картофельная коровка, колорадский жук, грызуны, вороны, воробьи; из растений – амброзия, борщевик Сосновского в северной республике Коми, одуванчик, прилипало гималайское, отчасти – дуб монгольский). Нередко растущими становятся популяции крупных животных в условиях заповедного режима (лоси в Магаданском заповеднике, на Аляске, олень пятнистый в Уссурийском заповеднике, слоны в национальном парке Кении) или интродукции (лось в Ленинградской области, ондатра в Восточной Европе, домашние кошки в отдельных семьях). При переуплотнении у растений (обычно совпадает с началом сомкнутости покрова, кронового полога) начинается дифференциация особей по размерам и жизненному состоянию, самоизреживание популяций, а у животных (обычно совпадает с достижением половой зрелости молодняка) начинается миграция на сопредельные свободные участки.

Если смертность превышает рождаемость, то такая популяция считается сокращающейся. В естественной среде она сокращается до определенного предела, а затем рождаемость (плодовитость) вновь повышается и популяция из сокращающейся становится растущей. Чаще всего неумеренно растущими бывают популяции нежелательных видов, сокращающимися – редких, реликтовых, ценных, как в экономическом, так и в эстетическом отношении.

3. Структура и динамика популяций

Динамика, состояние и воспроизводство популяций согласуются с их возрастной и половой структурой. Возрастная структура отражает скорость обновления популяции и взаимодействие возрастных групп с внешней средой. Она зависит от особенностей жизненного цикла, существенно различающегося у разных видов (например, птиц и у млекопитающих хищников), и внешних условий.

В жизненном цикле особей обычно выделяют три возрастных периода: предрепродуктивный, репродуктивный и пострепродуктивный. Для растений характерен еще период первичного покоя, который они проходят в стадии поящихся семян. Каждый из периодов может быть представлен одной (простая структура) или несколькими (сложная структура) возрастными стадиями. Простой возрастной структурой обладают однолетние растения, многие насекомые. Сложная структура характерна для разновозрастных популяций деревьев, для высокоорганизованных животных. Чем сложнее структура, тем выше приспособительные возможности популяции.

Одна из наиболее известных классификаций животных по возрасту Г.А. Новикова:

- новорожденные – до момента прозревания;

- молодые – подрастающие особи, "подростки";

- полувзрослые – близкие к половозрелым особям;

- взрослые – половозрелые животные;

- старые – особи, переставшие размножаться.

В геоботанике получила признание классификация растений по возрасту Н.М. Черновой, А.М. Быловой:

- покоящиеся семена;

- проростки (всходы) – растения первого года жизни, многие из них живут за счет питательных веществ в семядолях;

- ювенильные – переходят к самостоятельному питанию, но размерами и морфологически еще отличаются от взрослых растений;

- имматурные – обладают переходными признаками от ювенильных к взрослым растениям, еще очень малы, у них идет смена типа нарастания, начинается ветвление побегов;

- виргинильные – "взрослые подростки", могут достигать размеров взрослых особей, но регенеративные органы отсутствуют;

- молодые генеративные – характерно наличие генеративных органов, завершается формирование облика, типичного для взрослого растения;

- средневозрастные генеративные – отличаются максимальным годичным приростом и максимальной репродуктивностью;

- старые генеративные – растения продолжают плодоносить, но у них полностью прекращаются рост побегов и образование корней;

- субсенильные – плодоносят очень слабо, идет отмирание вегетативных органов, новообразование побегов идет за счет спящих почек;

- сенильные – очень старые, дряхлые особи, появляются черты ювенильных растений: крупные одиночные листья, порослевые побеги.

Ценопопуляция, в которой представлены все перечисленные стадии, называется нормальной полночленной.

В лесоведении и таксации принята классификация древостоев и насаждений по классам возраста. Для хвойных пород:

- проростки и самосев – 1-10 лет, высота до 25 см;

- стадия молодняка – 10-40 лет, высота от 25 до 5 м; под пологом леса соответствует мелкому (до 0,7 м), среднему (0,7-1,5 м) и крупномерному (>1,5 м) подросту;

- стадия жердняка – средневозрастные насаждения 50-60 лет; диаметры стволов от 5 до 10 см, высота – до 6-8 м; под пологом леса молодое поколение древостоя, или тонкомер с аналогичными размерами;

- приспевающие насаждения – 80-100 лет; по размерам могут незначительно уступать материнском деревьям, на открытом месте и в редколесьях обильно плодоносят; в лесу могут еще находиться во втором ярусе, не плодоносят; ни в коем случае не назначаются в рубку;

- спелые древостои – 120 лет и старше, деревья первого яруса и отставшие в росте деревья второго яруса; обильно плодоносят, в начале этой стадии достигают технической спелости, в конце – биологической;

- перестойные – старше 180 лет, продолжают обильно плодоносить, но постепенно дряхлеют и усыхают или вываливаются еще будучи живыми.

Для лиственных пород градации и придержки по размерам аналогичные, но в связи с их более быстрым ростом и старением класс возраст у них составляет не 20, а 10 лет.

http://www.botsad.ru/images3/image16.gif

Соотношение возрастных групп в структуре популяции характеризуют ее способность к раз-множению и выживанию, и согласуется с показателями рож-даемости и смертности. В растущих популяциях с высокой рождаемостью преобладают молодые (рис. 2), еще не репродуктивные особи, в стабильных – обычно это разновозрастные, полночленные популяции, у которых регулярно определенное число особей переходит из младших возрастных групп в старшие, рождаемость равна убыванию населения. В сокращающихся популяциях основу составляют старые особи, возобновление в них отсутствует или совсем незначительно.

 

 

 

http://www.botsad.ru/images3/image17.gif

Половая структура по генетическим законам должна быть представлена равным соотношением мужских и женских особей, т.е. 1:1. Но в силу специфики физиологии и экологии, свойственной разным полам, в силу их разной жизнеспособности, влияния факторов внешней среды, социальных, антропогенных могут быть значительные различия в этом соотношении. И эти различия нео-динаковы как в разных популяции-ях, так и в разных возрастных групп-пах одной и той же популяции.

Это наглядно показано на рис. 3, представляющим срезы возрастной и половой структуры для населения бывшего СССР и африканской республики Кения. На срезе СССР, на фоне естественного распределения возрастных групп в жизненном цикле, очевидно снижение рождаемости в годы войны и увеличение ее в послевоенные годы. Диспропорция между женским и мужским полом тоже, несомненно, связано с войной. В Кении же прослеживается закономерная связь распределения полов и явной убыли населения в предрепродуктивном возрасте с низким уровнем жизни, зависимостью от природных условий.

 

 

Изучение половой структуры популяций очень важно, поскольку между особями разных полов сильно выражены как экологические, так и поведенческие различия.

ПРИМЕР. Сильно различаются между собой самцы и самки комаров (сем. Culicidae): по темпам роста, срокам полового созревания, устойчивости к изменению температуры. Самцы в стадии имаго не питаются совсем или питаются нектаром, а самкам необходимо напиться крови для полноценного оплодотворения яиц. У некоторых видов мух популяции состоят только из самок.

Есть виды, у которых пол изначально определяется не генетическими, а экологическими факторами, как, например, у Ариземы японской при образовании массы клубней женские соцветия формируются на растениях с крупными мясистыми клубнями, а мужские – на растениях с мелкими. Хорошо прослеживается роль экологических факторов в формировании половой структуры у видов с чередованием половых и партеногенетических поколений. При оптимальной температуре у дафнии (Daphnia magna) популяцию образуют партеногенетические самки, а при отклонениях от нее - появляются и самцы.

Пространственное распределение особей в популяциях бывает случайным, групповым и равномерным.

Случайное (диффузное) распределение – неравномерное, наблюдается в однородной среде; взаимосвязи между особями выражены слабо. Случайное распределение свойственно популяциям в начальный период расселения; популяциям растений, испытывающим сильное угнетение со стороны эдификаторов сообществ; популяциям животных, у которых социальная связь выражена слабо.

ПРИМЕРЫ. На начальных стадиях поселения и приживания – насекомые вредители на поле; всходы эксплерентных (пионерных) видов: ивы, чозения, лиственница, леспедеца и др., на нарушенных территориях (горные полигоны, карьеры);.

Групповое распределение встречается наиболее часто; отражает неоднородность условий обитания или разные онтогенетические (возрастные) закономерности популяции. Оно обеспечивает наибольшую устойчивость популяции.

ПРИМЕРЫ. Каким бы однородным не казалось строение леса, в нем не бывает такой равномерности распределения растительного покрова, как в поле или на газоне. Чем сильнее выражен микрорельеф, определяющий микроклимат в лесном сообществе, чем сильнее выражена разновозрастность древостоя, тем более четко выражена парцеллярная структура насаждения. Растительноядные животные объединяются в стада, чтобы успешнее противостоять врагам-хищникам. Групповой характер свойствен для малоподвижных и мелких животных.

Равномерное размещение в природе встречается редко. Им характеризуются вторичные одновозрастные древостои после смыкания крон и интенсивного самоизреживания, редкостойные древостои, произрастающие в однородной среде, неприхотливые растения нижних ярусов. Большинство животных-хищников, ведущих активный образ жизни, тоже характеризуются равномерным размещением после того, как расселятся и займут всю пригодную для жизни территорию.

Как определить характер размещения растений?

Это можно сделать с помощью простейшей математической обработки данных учета. Участок или пробную площадь разбивают на учетные площадки одинакового размера – не менее 25, или же проводят учеты растений на расположенных примерно на одном и том же расстоянии учетных площадках одинакового размера. Совокупность площадок представляет собой выборку. Обозначив среднее число особей вида на площадках в выборке буквой m, количество площадок (учетов) в выборке – n, фактическое число особей вида на каждой площадке – x, можно определить дисперсию, или меру рассеяния s2 (отклонение значения x от m):

 

s2 = S(m-x)2 /(n-1 )

При случайном распределении s2=m (при условии достаточного размера выборки). При равномерном распределении s2=0, а число особей на каждой площадке должно быть равным среднему. При групповом распределении всегда s2>m, и чем больше разница между отклонением и средним числом, тем сильнее выражено групповое размещение особей.

4. Двойственный характер популяционных систем

а) эволюционная и функциональная сущность популяции

http://www.botsad.ru/images3/image18.gif

Следует обратить внимание на двойственное положение популяции в рядах биологических систем, принад-лежащих разным уровням организации живой материи (рис. 4). С одной стороны популяция является одним из звеньев генетико-эволюционного ряда, отражающего филогенетические связи таксонов разного уровня, как результат эволюции форм жизни:

организм - популяция -вид - род - … - царство

В этом ряду популяция выступает, как форма существования вида, основная функция которого заключается в выживании и воспроизведении. Играя важную роль в микроэволюционном процессе, популяция является элементарной генетической единицей вида. Особи в популяции обладают характерными особенностями строения, физиологии и поведения, т.е. гетерогенностью. Эти особенности вырабатываются под влиянием условий обитания и являются результатом микроэволюции, протекающей в конкретной популяции. Изменение популяций в процессе адаптации к изменяющимся факторам среды и закрепление этих изменений в генофонде обусловливает в итоге эволюцию вида.

С другой стороны, в тех же конкретных условиях среды популяция вступает в трофические и иные связи с популяциями других видов, образуя с ними простые и сложные биогеоценозы. В этом случае она является функциональной субсистемой биогеоценоза и представляет одно из звеньев функционально-энергетического ряда:

организм - популяция - биогеоценоз - биосфера

б) биологическая противоречивость функций популяции

"Двойственность" популяций проявляется и в биологической противоречивости их функций. Они сложены особями одного вида, а, следовательно, одинаковы по экологическим требованиям к условиям среды, и обладают одинаковыми механизмами адаптации. Но в себе самих популяции содержат:

1) высокую вероятность острой внутривидовой конкуренции

2) возможность отсутствия устойчивых контактов и взаимосвязей между особями.

Острая конкуренция имеет место при перенаселении, ведущем к истощению жизнеобеспечивающих ресурсов: у животных пищи, у растений влаги, плодородия и (или) света. При слишком малой численности особей популяция утрачивает свойства системы, устойчивость ее снижается. Разрешение данного противоречия является главным условием сохранения целостности системы. Оно заключается в необходимости поддержания оптимальной численности и оптимального соотношения между внутрипопуляционными процессами дифференциации и интеграции.

Модель Лотки–Вольтерры. В качестве примера естественного регулирования процесса внутривидовой конкуренции можно привести правило Лотки–Вольтерры, которое отражает взаимоотношения в пищевой цепи консументов и продуцентов, или хищника и жертвы. Оно представлено двумя уравнениями. Первое выражает успешность встреч жертвы с хищником:

dN

= r×N – a'× C × N,

dt

C – численность популяции хищника (=консумента), N – численность или биомасса популяции жертвы (=растений), r – частота встреч хищника с жертвой, a' – эффективность поиска или частота нападений. Таким образом, a'× C × N – частота успешных встреч или скорость поедания жертвы.

Второе уравнение отражает изменение численности популяции хищника с учетом его смертности (q) и рождаемости (f×a×C'×N):

= f× a × C'× N – q × C.

dt

Рождаемость, естественно зависит от эффективности (f), с которой пища переходит в потомство, и от скорости потребления пищи (a × C'× N).

Рост численности и плотности популяций не бесконечен. Рано или поздно возникает угроза недостатка ресурсов среды (корм, убежища, места для размножения, истощение почвы, чрезмерное затенение). У каждой популяции свои пределы ресурсов, называемые емкостью среды. По мере ее снижения усиливается внутривидовая конкуренция. Включаются разные механизмы регуляции численности. У растений начинается самоизреживание и дифференциация растений по размерам и физиологическому состоянию, у животных падает рождаемость, усиливается агрессия, они начинают расселяться на свободные территории, внутри популяций начинаются эпидемии. Реакция у каждого вида на собственное перенаселение разная, но результат для всех один – торможение развития и размножения.

http://www.botsad.ru/images3/image19.gif

На рис. 5 изображена графическая модель Лотки–Вольтерры. Она позволяет показать основную тенденцию в отношениях "хищник-жертва", которая заключается в том, что колебания численности популяций хищника согласуются с колебаниями численности популяции жертвы. При этом циклы нарастания и спада численности хищников и жертвы по отношению друг к другу смещены. Когда велика численность жертв (пищевой ресурс), увеличивается численность хищников, но не беспредельно, а до тех пор, пока не возникнет напряжение с пищей. Снижение запасов пищи приводит к усилению внутривидовой конкуренции и снижению численности хищника, а это, в свою очередь, вновь приводит к увеличению численности жертвы.

 

 

 

Закон эмерджентности. Как целостная система популяция может быть устойчивой только при тесных контактах и взаимодействии особей друг с другом. Только стадом могут противостоять парнокопытные хищникам. Только в стае волки успешно охотятся. В лесных сообществах, как правило, подрост деревьев лучше растет в биогруппах (эффект группы), восстановление леса на нарушенных площадях лучше идет при обильном обсеменении и дружном появлении всходов деревьев. Животные держатся стадами, птицы и рыбы – стаями.

http://www.botsad.ru/images3/image20.gif

При этом популяция, как система, приобретает новые свойства, которые не равнозначны простой сумме аналогичных свойств особей популяции. Например, когда дафнии – пища окуня, сбиваются в группу, у группы образуется защитное биополе (рис. 5), благодаря которому рыбы не "замечают" корм. У одной дафнии такого биополя нет, и она быстро становится добычей рыбы. Та же закономерность проявляется и при объединении популяций в систему биоценоза – биоценоз получает при этом такие свойства, которыми не обладает ни один из его блоков в отдельности. Этот закон - закон эмерджентности, был сформулирован Н.Ф. Реймерсом.

 

 

 

5. Колебания численности

 

http://www.botsad.ru/images3/image21.gif

При благоприятных условиях в популяциях наблюдается рост численности и может быть столь стремительным, что приводит к популяционному взрыву. Совокупность всех факторов способствующих росту численности называется биотическим потенциалом. Он достаточно высок для разных видов, но вероятность достижения популяцией предела численности в естественных условиях низка, т.к. этому противостоят лимитирующие (ограничивающие) факторы. Совокупность факторов, лимитирующих рост численности популяции, называют сопротивлением среды. Состояние равновесия между биотическим потенциалом вида и сопротивлением среды (рис. 6), поддерживающее постоянство численности популяции получило название гомеостаза или динамического равновесия. При нарушении его происходят колебания численности популяции, т.е изменения ее.

 

 

 

Различают периодические и непериодические колебания численности популяций. Первые совершаются в течение сезона или нескольких лет (4 года – периодический цикл плодоношения кедра, подъема численности лемминга, песца, полярной совы; через год плодоносят яблони на садовых участках), вторые – это вспышки массового размножения некоторых вредителей полезных растений, при нарушениях условий среды обитания (засухи, необычно холодные или теплые зимы, слишком дождливые сезоны вегетации), непредвиденные миграции в новые местообитания. Периодические и непериодические колебания численности популяций под влиянием биотических и абиотических факторов среды, свойственные всем популяциям, именуются популяционными волнами.

Любая популяция обладает строго определенной структурой: генетической, половозрастной, пространственной и др., но она не может состоять из меньшего числа особей, чем необходимо для стабильного развития и устойчивости популяции к факторам внешней среды. В этом заключается принцип минимального размера популяций. Нежелательны любые отклонения параметров популяций от оптимальных, но если чрезмерно высокие значения их не представляют прямой опасности для существования вида, то снижение до минимального уровня, особенно численности популяции, представляют угрозу для вида.

ПРИМЕРЫ. Минимальными размерами популяций характеризуются очень многие виды на Дальнем Востое: тигр амурский, леопард дальневосточный, белый медведь, утка-мандаринка, многие бабочки: хвостоносец Мака и хвостоносец Ксута, адмирал, зефиры, красавица Артемида, Аполлон, реликтовый усач, жук-олень; из растений: все аралиевые, орхидные, пихта цельнолистная, сосна густоцветковая, абрикос маньчжурский, можжевельник твердый, тис остроконечный, лилии двурядная, мозолистая, даурская и др., рябчик уссурийский, триллиум камчатский и многие другие виды.

Однако наряду с принципом минимального размера популяций есть и принцип, или правило, популяционного максимума. Оно заключается в том, что популяция не может увеличиваться бесконечно. Лишь теоретически она способна к неограниченному росту численности.

Согласно теории Х.Г. Андреварты – Л.К. Бирча (1954) – теория лимитов популяционной численности, численность естественных популяций ограничена истощением пищевых ресурсов и условий размножения, недоступностью этих ресурсов, слишком коротким периодом ускорения роста популяции. Теория "лимитов" дополняется теорией биоценотической регуляции численности популяции К. Фредерикса (1927): рост численности популяции ограничивается воздействием комплекса абиотических и биотических факторов среды.

Каковы же эти факторы или причины колебания численности?

- достаточные запасы пищи и ее недостаток;

- конкуренция нескольких популяций из-за одной экологической ниши;

- взаимоотношения между популяциями хищника и жертвы, хозяина и паразита;

- внешние (абиотические) условия среды: гидротермический режим, освещенность, кислотность, аэрация и др.

Кроме экологических факторов, включаются внутренние (генетические и физиологические) механизмы регулирования численности популяций: при сокращении жизненного пространства и запасов корма сокращается плодовитость особей (многие насекомые, мышевидные грызуны), повышение смертности на ранних стадиях жизни (паразиты, многие насекомые), задерживается наступление половой зрелости (полевые мыши) и стадии плодоношения (виды деревьев 2 и 3 ярусов в густом лесу), имеет место каннибализм (грызуны, насекомые, рыбы), и др.; снижается выход личинок из яиц (майский хрущак), уменьшаются размеры взрослых особей. При чрезмерном росте численности популяции у млекопитающих, общественных насекомых, птиц начинается эмиграция на новые места.

6. Экологические стратегии популяций

Каковы бы не были приспособления особей к совместному проживанию в популяции, каковы бы не были приспособления популяции к тем или иным факторам, все они в конечном итоге направлены на длительное выживание и продолжение себя в любых условиях существования. Среди всех приспособлений и особенностей можно выделить комплекс основных признаков, которые называются экологической стратегией. Это общая характеристика роста и размножения данного вида, включающая темп роста особей, период достижения ими половой зрелости, периодичность размножения, предельный возраст и пр.

Экологические стратегии очень разнообразны и хотя между ними существует множество переходов, из них можно выделить два крайних типа: r-стратегию и K-стратегию.

r-стратегия – ею обладают быстро размножающиеся виды (r-виды); для нее характерен отбор на повышение скорости роста популяции в периоды низкой плотности. Она характерна для популяций в среде с резкими и непредсказуемыми изменениями условий или в эфемерных, т.е. существующих короткое время (пересыхающие лужи, заливные луга, временные водотоки)

Основные признаки r-видов: высокая плодовитость, короткое время регенерации, высокая численность, обычно малые размеры особей (у растений мелкие семена), малая продолжительность жизни, большие траты энергии на размножение, кратковременность местообитаний, низкая конкурентоспособность. R-виды быстро и в больших количествах заселяют не занятые территории, но, как правило, скоро – в течение жизни одного-двух поколений сменяются К-видами.

К r-видам относятся бактерии, все однолетние растения (сорняки) и насекомые-вредители (тли, листоеды, стволовые вредители, стадная фаза саранчи). Из многолетников – пионерные виды: Иван-чай, многие злаки, полыни, эфемерные растения, из древесных видов – ивы, березы белая и каменная, осина, чозения, из хвойных – лиственница; они появляются первыми на нарушенных землях: гарях, горных полигонах, строительных карьерах, по обочинам дорог.

K-стратегия – этой стратегией обладают виды с низкой скоростью размножения и высокой выживаемостью (К-виды); она определяет отбор на повышение выживаемости при высокой плотности популяции, приближающейся к предельной.

Основные признаки К-видов: низкая плодовитость, значительная продолжительность жизни, крупные размеры особей и семян, мощные корневые системы, высокая конкурентоспособность, устойчивость на занимаемой территории, высокая специализация образа жизни. Скорость размножения К-видов с приближением к предельной плотности популяции падает и быстро увеличивается при низкой плотности; родители заботятся о потомках. К-виды часто становятся доминантами биогеоценозов.

К К-видам относятся все хищники, человек, реликтовые насекомые (крупные тропические бабочки, в т.ч. дальневосточные, реликтовый усач, жук-олень, жужелицы и др.), одиночная фаза саранчи, почти все деревья и кустарники. Наиболее яркие представители растений – все хвойные, дуб монгольский, орех маньчжурский, лещины, клены, разнотравье, осоки.

Разные популяции по-разному используют одну и ту же среду обитания, поэтому в ней одновременно могут существовать виды обоих типов стратегией.

ПРИМЕРЫ. В лесах на экологическом профиле "Горнотаежный" весной до распускания листьев на деревьях, спешат зацвести, отплодоносить и закончить вегетацию эфемероиды: хохлатки, адонис амурский, ветреницы, фиалка восточная (желтая). Под пологом леса начинается цветение пионов, лилий, воронца остроконечного. На открытых участках в сухих дубняках южного склона разрастаются овсяница овечья и марьянник розовый. Дуб, овсяница и другие виды – K-стратеги, марьянник – r-стратег. 40 лет назад после пожара в пихтово-широколиственном типе леса образовались парцеллы из осины (r-вид). В настоящее время осина уходит из состава древостоя, сменяясь К-видами: липой, дубом, грабом, орехом и др.

Любая популяция растений, животных и микроорганизмов – это совершенная живая система, способная к саморегуляции, восстановлению своего динамического равновесия. Но она существует не изолированно, а совместно с популяциями других видов, образуя биоценозы. Поэтому в природе широко распространены и межпопуляционные механизмы, регулирующие взаимоотношения между популяциями разных видов. В качестве регулятора данных взаимоотношений выступает биогеоценоз, состоящий из множества популяций разных видов. В каждой из этих популяций происходят взаимодействия между особями, и каждая популяция оказывает воздействие на другие популяции и на биогеоценоз в целом, как и биогеоценоз с входящими в него популяциями оказывает непосредственное влияние на каждую конкретную популяцию.

Как пишет И.И. Шмальгаузен: "…Во всех биологических системах имеется всегда взаимодействие разных циклов регуляции, ведущее к саморазвитию системы соответственно данным условиям существования…"

При достижении оптимальных соотношений наступает более или менее длительное стационарное состояние (динамическое равновесие) данной системы в данных условиях существования. "…Для популяции это означает установление определенной генетической структуры, в том числе, разных форм сбалансированного полиморфизма. Для вида это означает установление и поддержание его более или менее сложного строения. … Для биогеоценоза это означает установление и поддержание его гетерогенного состава и сложившихся соотношений между компонентами. При изменении условий существования стационарное состояние, конечно, нарушается. Происходит переоценка нормы и вариантов, а, следовательно, и новое преобразование, т.е. дальнейшее саморазвитие данных систем…". При этом в биогеоценозе изменяются соотношения между звеньями, а в популяциях идет перестройка генетической структуры.

Лекция 8. Сукцессии растительности

Москалюк Т.А.

 

Сукцессия растительности – это последовательный ряд смены серийных (временно существующих) растительных сообществ на конкретном местообитании после выведения конкретной экосистемы из состояния динамического равновесия. В результате сукцессии на конкретном местообитании восстанавливается исходное растительное сообщество, называемое геоботаниками климаксовым, или коренным. Коренное сообщество растений устойчиво и в данных климатических условиях не изменяется. При этом конкретная экосистема возвращается в свое исходное состояние и пребывает в нем до тех пор, пока не изменятся климат, рельеф, гидрологический режим, пока вновь не пройдет пожар, или не случится какая-то другая катастрофа. И вновь начнется новая сукцессия, которая либо приведет к восстановлению исходного сообщества, либо нет.

Если прошел пожар, лес вырубили, луг или степь распахали и потом забросили, то, скорее всего, сукцессия завершится восстановлением коренного сообщества, которое так же, как и исходное, будет находиться в состоянии относительного равновесия с внешней средой. Однако, если изменился климат, понизился или повысился уровень грунтовых вод, сообщество растений, выведенное из состояния равновесия, в процессе сукцессии не восстановится прежним. Оно будет коренным, согласуясь с новыми условиями среды, но иным, чем исходное коренное сообщество.

Существует гипотеза, предположение, что в современных условиях в районах с неустойчивым муссонным климатом коренные сообщества вообще не успевают сформироваться. Существенные для растительности подвижки климата происходят быстрее, чем длится сукцессионный ряд. В современную климатическую эпоху коренная растительность сформироваться не успевает, и в растительном покрове преобладают серийные сообщества.

Что содержит принцип Ле-Шателье?

Как всякие материальные системы, экологические системы, согласно принципу Ле-Шателье, способны поддерживать свое состояние при резких неблагоприятных для них воздействиях внешних факторов или возмущениях. При всяком возмущении экосистема изменяется таким образом, что снижает эффект этого возмущения и, таким образом, сохраняет свой status quo. Поскольку компоненты экосистемы находятся друг с другом в постоянном взаимодействии - связаны друг с другом потоками вещества и энергии, то, говоря о равновесии экосистемы, следует иметь в виду не статическое, а динамическое равновесие - равновесие в первую очередь, потоков вещества и энергии. Если экосистему вывести из состояния динамического равновесия, то она стремится вернуться к нему, используя при этом часть своей внутренней энергии и упорядоченности (структурной негэнтропии). Если резерва внутренней энергии и негэнтропии хватает, то система возвращается в состояние близкое к исходному, если нет, то она либо разрушается, либо переходит в новое состояние динамического равновесия, но на значительно более низком энергетическом уровне. При этом говорят, что экосистема деградировала. Примером такой деградации является, например, распашка и уничтожение естественной растительности на значительных пространствах в зоне сухой степи. Это воздействие резко снижает запасы влаги в почве, способствует ветровой эрозии плодородного слоя и экосистема переходит в новое состояние с очень низкой биологической продуктивностью. Степные экосистемы сменяются при этом экосистемами пустынь. Некоторые ученые экологи считают, что именно так на месте саванны в Северной Африке примерно 10 тыс. лет назад образовалась пустыня Сахара. Другой пример – по лесной зоне Дальнего Востока – уничтожение пожарами лесов, смена их вначале менее продуктивными лесами, затем луговыми или кустарниковыми сообществами, а затем разного рода пустырями и каменистыми россыпями.

Для всякой экосистемы существуют пределы толерантности (устойчивости). Одни экосистемы более толерантны, или устойчивы, к воздействию внешних возмущающих факторов, другие менее. Но пока мы ничего не можем сказать о пределах толерантности естественных экосистем, и среди ученых имеются разногласия. Например, одни ученые говорят, что экосистемы тундры очень неустойчивы и легко уязвимы. Другие, напротив, считают, что самыми неустойчивыми являются экосистемы влажных тропических лесов, а экосистемы тундры не менее устойчивы, чем экосистемы тайги и степи. Ясно одно. Проблема толерантности экологических систем должна быть решена в ближайшее время, иначе под мощным антропогенным воздействием окажутся как раз наиболее уязвимые экосистемы. Проблема эта очень сложна тем, что разные экосистемы оказываются в разной степени устойчивыми по отношению к разрушающим факторам. Например, колея от трактора на склоне в зоне тайги через 50 лет зарастет и исчезнет, а вот такая же колея в зоне тундры через 50 лет превратится в овраг глубиной до 20-30 м и шириной до 10-20 м.


Предварительный просмотр:


Предварительный просмотр:

Н.А.Воронков

Основы общей экологии

(Общеобразовательный курс)

Издание четвертое доработанное и дополненное

Рекомендовано Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений

Допущено Департаментом общего среднего образования Министерства образования Российской Федерации в качестве пособия для учителей

«Агар»        «Рандеву-АМ»

Москва 1999

ББК20Я73

Воронков Н.А.

Основы общей экологии: Учебник для студентов высших учебных заведений. Пособие для учителей. - М.: Агар, 1999. - 96 с.

В соответствии с вновь вводимыми стандартами высшего образования, экологию должны изучать студенты всех специальностей в блоке общекультурных дисциплин. Настоящий учебник ставит целью оказать помощь в решении данной весьма актуальной задачи экологического всеобуча. В нем в доступной форме, при максимально возможном сохранении научного уровня, рассматриваются основные вопросы современной экологии. Учебник является результатом обобщения опыта длительной научной работы автора в области экологии и преподавания данной дисциплины студентам всех специальностей (факультетов) Московского государственного открытого педагогического университета.

Предлагаемая читателю первая часть учебника посвящена наиболее значимым вопросам общей, или классической экологии, рассматривающей основные закономерности функционирования природных систем различного ранга (от биосферы до элементарных экосистем и популяций), их устойчивость, энергетику, продуктивность, роль в сохранении жизни и другие свойства.

Во второй части (издается в 1999 году) освещаются проблемы социальной, прикладной и других разделов экологии, связанных с деятельностью человека.

Кроме использования студентами и учителями, будет полезен слушателям университетов повышения квалификации, учащимся старших классов школ, а также всем лицам, интересующимся вопросами экологии и экологического образования.

Автор: Воронков Н. А.

Рецензенты:

Академик Российской академии образования, д.б.н. И.Д.Зверев.

Проректор Московского института повышения квалификации работников образования, действительный член Международной академии наук, профессор, доктор физико-математических наук Ю.Л.Хотунцев.

Кафедра зоологии и экологии МПГУ, доктор биологических наук, профессор Н.М.Чернова.

ISBN 5-89218-098-0 ISBN 5-93290-008-3

© Издательство «Агар», 1999

© Н.А.Воронков

СЛОВО К ЧИТАТЕЛЮ! (вместо предисловия)

Автор учебника, который Вам предлагается, стремится познакомить Вас с началами экологии как науки, пробудить интерес к этой весьма актуальной и интересной отрасли знаний.

В предлагаемой первой части учебника ставится цель показать, по каким закономерностям природа формировалась миллиарды лет и существовала без участия человека; утвердить Вас в мысли, что среда, в которой человек обитает, создана прежде всего живыми организмами и продуктами их жизнедеятельности, и что сбережение этой среды возможно только при непременном условии сохранения всего разнообразия жизни. Из этого следует, что любые попытки человека и человечества решить свои проблемы существования и выживания в одиночку (без сохранения всего разнообразия жизни), даже самыми современными техническими средствами, однозначно не состоятельны.

Современная среда обитания и свойственная ей жизнь на Земле порождены живыми организмами многих геологических эпох, они же являются и условием продолжения жизни. Неверен даже самый гуманный тезис, провозглашенный человеком: все окружающие существа - братья наши меньшие. Человек в существующем мире - самый младший брат, хотя и щедро наделенный старшими братьями разумом и невиданной силой. Свой разум и силу человек должен использовать не для того, чтобы больше взять у старших братьев, а также из их кладовых, наполнявшихся миллиарды лет, а для осознания того факта, что старшие братья существовали миллионы лет без младшего и могут продолжать существование без него. Младший же без старших не проживет и нескольких дней. Поэтому силу и ум, дарованные ему старшими братьями, он ни в коем случае не должен использовать во вред им, часто немощным и беззащитным перед мощью человека, а в помощь, хотя бы для того, чтобы вернуть долги, залечить раны, искупить свою вину и не повторять ошибок.

Тезис «меньших братьев» неверен и потому, что предполагает учение их уму-разуму. На самом же деле человек должен, наконец, осознать, что ему, и прежде всего ему, есть чему учиться у братьев старших, если не у каждого в отдельности, то уж у коллективного разума - обязательно!

Вторая часть пособия («Социальная и прикладная экология») посвящена рассмотрению тех проблем, которые человек создал мгновениями своей жизни в том мире, который многие миллионы и миллиарды лет жил по своим нормам и правилам; каковы масштабы его деятельности и к чему надо стремиться, чтобы стать равным среди равных и не разрушить наш общий дом. К сожалению, пока далеко не все ясно, что конкретно надо делать для исправления сложившейся и усугубляющейся с каждым днем весьма тревожной ситуации. Однако известно, что поиск выхода возможен только совместными усилиями всех и каждого на основе познания себя и мира, в котором мы живем, и прежде всего глубоких экологических знаний. Незнание и равнодушие - дорога в пропасть!

Если этот учебник вызовет у Вас интерес к науке и учебной дисциплине, имя которой «Экология», а знакомство с ее проблемами хоть в какой-то мере заставит Вас задуматься о своем месте и роли в окружающем мире, автор будет глубоко удовлетворен и с благодарностью примет и учтет в дальнейшей работе все Ваши замечания и пожелания, которые можно направлять по адресу: 109004 Москва, ул. Верхняя Радищевская, 18, МГОПУ, биолого-химический факультет. По этому же адресу можно приобрести книгу.

ВВЕДЕНИЕ

Существует образное выражение, что мы живем в эпоху трех «Э»: экономика, энергетика, экология. При этом экология как наука и образ мышления привлекает все более и более пристальное внимание человечества.

Экологию рассматривают как науку и учебную дисциплину, которая призвана изучать взаимоотношения организмов и среды во всем их разнообразии. При этом под средой понимается не только мир неживой природы, а и воздействие одних организмов или их сообществ на другие организмы и сообщества.

Термин «экология» был введен в употребление немецким естествоиспытателем Э. Геккелем в 1866 году и в дословном переводе с греческого обозначает науку о доме (ойкос - дом, жилище; логос - учение).

По этой причине экологию иногда связывают только с учением о среде обитания (доме) или окружающей среде. Последнее в основе правильно с той, однако, существенной поправкой, что среду нельзя рассматривать в отрыве от организмов, как и организмы вне их среды обитания. Это составные части единого функционального целого, что и подчеркивается приведенным выше определением экологии как науки о взаимоотношениях организмов и среды.

Такую двустороннюю связь важно подчеркнуть в связи с тем, что это основополагающее положение часто не доучитывается: экологию сводят только к влиянию среды на организмы. Ошибочность таких положений очевидна, поскольку, как будет показано ниже, именно организмы сформировали современную среду. Им же принадлежит первостепенная роль в нейтрализации тех воздействий на среду, которые происходили и происходят по различным причинам.

Концептуальные основы дисциплины. С момента появления «Экология» развивалась в рамках биологии практически на протяжении целого века - до 60-70-х годов настоящего столетия. Человек в этих системах, как правило, не рассматривался - полагалось, что его взаимоотношения со средой подчиняются не биологическим, а социальным закономерностям и являются объектом общественно-философских наук.

В настоящее время термин «экология» существенно трансформировался. Она стала больше ориентированной на человека в связи с его исключительно масштабным и специфическим влиянием на среду.

Сказанное позволяет дополнить определение «экологии» и назвать задачи, которые она призвана решать в настоящее время. Современную экологию можно рассматривать как науку, занимающуюся изучением взаимоотношений организмов, в том числе и человека, со средой, определением масштабов и допустимых пределов воздействия человеческого общества на среду, возможностей уменьшения этих воздействий или их полной нейтрализации. В стратегическом плане - это наука о выживании человечества и выходе из экологического кризиса, который приобрел (или приобретает) глобальные масштабы - в пределах всей планеты Земля.

Становится все более ясным, что человек очень мало знает о среде, в которой он живет, особенно о механизмах, которые формируют и сохраняют среду. Раскрытие этих механизмов (закономерностей) -одна из важнейших задач современной экологии и экологического образования. Ясно, что она может решаться лишь при условии изучения не только «Дома», но и его обитателей, их образа жизни.

Содержание термина «экология», таким образом, приобрело социально-политический, философский аспект. Она стала проникать практически во все отрасли знаний, с ней связывается гуманизация естественных и технических наук, она активно внедряется в гуманитарные области знаний. Экология при этом рассматривается не только как самостоятельная дисциплина, а как мировоззрение, призванное пронизывать все науки, технологические процессы и сферы деятельности людей.

Признано поэтому, что экологическая подготовка должна идти, по крайней мере, по двум направлениям через изучение специальных интегральных курсов и через экологизацию всей научной, производственной и педагогической деятельности.

Решению этих крайне актуальных вопросов и призван помочь предлагаемый курс. Как отмечено в аннотации, основной целью его является изложение тех основ экологии, с которыми должен быть знаком каждый обучающийся вне зависимости от его специальности. Сказанное не исключает, а полагает, что вопросы, ориентированные на конкретные отрасли знаний, должны рассматриваться в специальных экологических курсах. Ясно, что без основательной общеэкологической подготовки экологизация образования, как и деятельности человека, практически невозможна, а если она и проводится - то либо не достигает цели, либо имеет результат, противоположный ожидаемому, так как базируется на случайных, часто фрагментарных положениях, что недопустимо для системной науки, к рангу которой относится «Экология».

Наряду с экологическим образованием существенное внимание уделяется экологическому воспитанию, с которым связывается бережное отношение к природе, культурному наследию, социальным благам. Без серьезного общеэкологического образования решение этой задачи также весьма проблематично.

Между тем, став в своем роде модной, экология не избежала вульгаризации понимания и содержания. В ряде случаев экология становится разменной монетой в достижении определенных политических целей, положения в обществе.

В разряд экологических нередко возводятся вопросы, относящиеся к отраслям производства, видам и результатам деятельности человека, просто если к ним добавляют модное слово «экология». Так появляются несуразные выражения, в том числе и в печати, типа «хорошая и плохая экология», «чистая и грязная экология», «испорченная экология» и др. Это равнозначно присвоению таких же эпитетов математике, физике, истории, педагогике и т. п.

По этому же принципу ранг экологии присваивается многим разделам гуманитарных (философии, социологии, экономики) и естественных наук (биологии, естествознания, географии).

Несмотря на отмеченные неясности и издержки в понимании объема, содержания и использования термина «экология», несомненным остается факт ее крайней актуальности в настоящее время.

Предлагаемая первая часть учебника («Общая экология») является теоретической базой второй («Социальная и прикладная экология»), которая, в свою очередь, является логическим продолжением первой. В таком случае более частные вопросы рассматриваются в ранге отдельных проблем названных выше двух крупных разделов (частей). Так, например, во второй части пособия рассматриваются экологические проблемы (но не «экологии») промышленности, земельных ресурсов, продовольствия, водных ресурсов, городов, энергетики, народонаселения, состояния среды и здоровья и др.

В обобщенном виде «Общая экология» изучает наиболее общие закономерности взаимоотношений организмов и их сообществ со средой в естественных условиях.

«Социальная экология» рассматривает взаимоотношения в системе «общество - природа», специфическую роль человека в системах различного ранга, отличие этой роли от других живых существ, пути оптимизации взаимоотношений человека со средой, теоретические основы рационального природопользования.

«Прикладная экология» призвана решать конкретные вопросы природопользования, определять допустимые нагрузки на среду, разрабатывать методы управления природными системами (экосистемами) и способы «экологизации» различных видов деятельности человека.

С точки зрения основного содержания предмета «Общая экология» есть не что иное, как экология природных систем и учение о природной среде, а «Социальная и прикладная экология» - экология измененных человеком природных систем и среды, или экология природно-антропогенных систем и учение о природно-антропогенной (иногда техногенной) среде.

Краткий исторический очерк. Общеэкологические подходы к рассмотрению и оценке природных явлений имеют длительную историю. По сути своей в значительной мере экологичными были труды первых ученых-естествоиспытателей, искавших зависимости между свойствами живых существ и условиями обитания: Аристотель (384-322 г. до н. э.), его ученик-ботаник Теофраст (371-280 г. до н. э.). Много ценных материалов поставили исследователи-натуралисты, занимавшиеся описанием и систематизацией растений и животных.

Особо следует выделить труд Ч. Дарвина «Происхождение видов» (1859), в котором большое внимание уделяется приспособлениям (адаптациям) и взаимоотношениям организмов. Э. Геккель, вводя термин «экология», отмечал, что одной из задач данной науки является исследование всех тех взаимоотношений организмов, которые Ч. Дарвин условно обозначил как борьбу за существование.

Из отечественных ученых наиболее существенный вклад в развитие отдельных разделов общей экологии и прежде всего системный взгляд на природные явления внесли исследования почвоведа-географа В. В. Докучаева (1846-1903) и его школы (Г. Ф. Морозов, Г. Н. Высоцкий, В. И. Вернадский и др.). В. В. Докучаев показал тесную взаимосвязь живых организмов и неживой природы на примере почвообразования и выделения природных зон. Г. Ф. Морозов (1867-1920) раскрыл всесторонние связи в лесных сообществах и рассмотрел их как единые системы, включающие весь свойственный им комплекс живых организмов и условий обитания, их средообразовательную роль. В этом же направлении, но применительно к решению конкретных вопросов степного лесоразделения, проводил свои исследования ботаник, почвовед, географ Г.Н.Высоцкий (1865-1940).

В. И. Вернадский (1863-1945) системный подход применил к раскрытию основополагающих геологических явлений и их эволюции, показал определяющую роль живых организмов и продуктов их жизнедеятельности в этих явлениях, стал автором учения о биосфере и закономерностях ее существования, устойчивости и развития.

Оригинальны и интересны исследования В. Н. Сукачева (1880-1967), посвятившего многие годы комплексному изучению лесных систем (сообществ), результатом чего явилось всестороннее рассмотрение единства и взаимообусловленности природных явлений, живой и неживой материи. Им в 1942 г. введен в науку термин «биогеоценоз», раскрыто его содержание.

Несколько раньше (в 1935 г.) подобные идеи сформулировал английский ботаник-эколог А. Тенсли и ввел в науку термин «экосистема», дал его определение. В настоящее время эти понятия являются определяющими для экологии как науки.

В числе других ученых, которые либо развивали, либо обогащали различные аспекты общей экологии как науки (многие из них являются авторами учебников и учебных пособий), следует назвать Д. Н. Кашкарова, Ч. Элтона, Н. П. Наумова, С. С. Шварца, М. С. Гилярова - труды по вопросам экологии животных; А. П. Шенникова, Ф. Клементса, В. Лархера и др. - комплекс работ по экологии растений; Г. Одума, Ю. Одума, Р. Уиттекера, Р. Риклефса, М. Бигона и др., Р. Дажо, Н. М. Чернову, А. М. Былову, В. А. Радкевича, И. Н. Пономареву, И. А. Шилова и др. - учебники и учебные пособия по проблемам общей экологии.

Одно из первых высказываний, относящихся к сфере социальной экологии, принадлежит французскому естествоиспытателю-эволюционисту Жану-Батисту Ламарку (1744-1829). Он, наряду с раскрытием ряда закономерностей влияния среды на организмы, впервые обратил серьезное внимание на специфическую роль человека и ее возможные катастрофические последствия. Он писал: «Можно, пожалуй, сказать, что назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания». Это высказывание перекликается с «Пророчествами» Леонардо да Винчи (1452-1519), предрекавшего появление существ, результаты деятельности которых «... ничего не оставят ни на земле, ни под водой, что не было бы преследуемо и не подвергалось искоренению...».

Различные аспекты экологии и смежных с ней дисциплин содержатся в трудах и учебниках М. И. Будыко, Н. Н. Моисеева, Н.Ф. Реймерса, А. В. Яблокова, Б. Г. Розанова, Б. Коммонера, а также в переведенных в последнее время на русский язык обстоятельных сводках по вопросам различных проблем экологии Б. Небела, Т. Миллера, П. Ревелля, Ч. Ревелля, Л. Р. Брауна и других авторов. Следует также обратить внимание на оригинальный труд «Проблемы экологии России», авторами которого являются К. С. Лосев, В. Г. Горшков, К. Я. Кондратьев и другие ученые.

В целом основная задача курса сводится к формированию общих основ системного взгляда на природные и техногенные процессы как базы для оптимизации деятельности и поведения человека в окружающем мире с целью поиска путей относительно стабильного, а в дальнейшем и устойчивого развития общества, к чему призвала Конференция ООН по окружающей среде и развитию, состоявшаяся в Рио-де-Жанейро в 1992 году.

На первый взгляд, казалось бы, возможно при знакомстве с экологией как дисциплиной ограничиться ее прикладными аспектами и прежде всего мероприятиями по оздоровлению среды, которые сводятся в конечном счете к определенной системе технологических требований, административных запретов и санкций. Однако такой подход недостаточен и односторонен, поскольку не позволяет видеть глубинные причины сложившейся экологической ситуации и тем более обоснованно прогнозировать возможные и часто труд-нопредсказуемые последствия планируемых или осуществляемых действий, в том числе и с самыми благими намерениями. Поэтому крайне важно рассмотреть основные положения общей экологии, которая, как отмечалось, является теоретической основой для решения проблем рационального природопользования и охраны природы, базовой для социальной и прикладной экологии, а также для других, более частных экологических дисциплин.

I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ

I.1. Основные понятия

Основным понятием и основной таксономической единицей в экологии является «экосистема». Этот термин, как упоминалось выше, введен в употребление А. Тенсли в 1935 г., т. е. более полувека спустя после выделения экологии как отрасли научных знаний (1866).

Под экосистемой понимается любая система, состоящая из живых существ и среды их обитания, объединенных в единое функциональное целое. Основные свойства экосистем -способность осуществлять круговорот веществ, противостоять внешним воздействиям, производить биологическую продукцию. Выделяют обычно экосистемы различного ранга: от микроэкосистем (небольшой водоем, труп животного с населяющими его организмами или ствол дерева в стадии разложения, аквариум и даже лужица или капля воды, пока они существуют и в них присутствуют живые организмы, способные осуществлять круговорот веществ); мезоэкосистемы (лес, пруд, река и т.п.); макроэкосистемы (океан, континент, природная зона и т. п.) и глобальная экосистема - биосфера в целом.

Таким образом, более крупные экосистемы включают в себя экосистемы меньшего ранга. Образное (шутливое) определение экосистемы дал географ и писатель Г. К. Ефремов: это любое природное образование - «от кочки до оболочки» (географической).

Близкий по содержанию смысл вкладывается в термин «биогеоценоз», введенный в литературу академиком В. Н. Сукачевым несколько позднее, чем «экосистема» - в 1942 г.

Небольшие различия, которые свойственны этим терминам будут рассмотрены в разд. IV. 1 (часть I).

Экосистемы (биогеоценозы) обычно включают два блока. Первый из них состоит из взаимосвязанных организмов разных видов и носит название «биоценоз» (термин введен немецким зоологом К. Мебиусом в 1877 г.), второй блок составляет среда обитания, которую в данном случае называют «биотоп» или «экотоп».

Каждый биоценоз состоит из множества видов, но виды входят в него не отдельными особями, а популяциями или их частями. Популяция - это относительно обособленная часть вида (состоит из особей одного вида), занимающая определенное пространство и способная к саморегулированию и поддерживанию оптимальной численности особей. Каждый вид в пределах занимаемой территории (ареала), таким образом, распадается на популяции. Размеры их различны. В таком случае можно сказать, что биоценоз - это сумма взаимосвязанных между собой и с условиями среды популяций разных видов.

В экологии часто пользуются также термином «сообщество». Содержание этого термина неоднозначно. Под ним понимается и совокупность взаимосвязанных организмов разных видов (синоним биоценоза), и аналогичная совокупность только растительных (фитоценоз, растительное сообщество), животных (зооценоз) организмов или микробного населения (микробоценоз).

Системность экологии. Экология как наука рассматривает системы, звенья и члены которых находятся в тесной взаимосвязи и взаимозависимости. Из этого вытекает необходимость учета множества факторов при анализе тех или иных экологических явлений и тем более при планировании любых вмешательств в экосистемы. Такой подход, в свою очередь, невозможен без комплексного метода изучения, оценки и решения тех или иных экологических задач. По этим же причинам очевидна тесная связь экологии с другими науками, сведениями из которых необходимо не только располагать, но и уметь их грамотно использовать. К таким наукам относятся: биология, география, почвоведение, гидрология, химия, физика и другие отрасли знаний. Важно также уметь пользоваться необходимой информацией из различных отраслей хозяйства и свойственных им технологических процессов.

Говоря о системных явлениях, важно познакомиться с видами систем, общими положениями теории систем. Обычно различают три вида систем: 1) изолированные, которые не обмениваются с соседними ни веществом, ни энергией, 2) закрытые, которые обмениваются с соседними энергией, но не веществом (например, космический корабль), и 3) открытые, которые обмениваются с соседними и веществом, и энергией. Практически все природные (экологические) системы относятся к типу открытых.

Существование систем немыслимо без связей. Последние делят на прямые и обратные. Прямой называют такую связь, при которой один элемент (А) действует на другой (В) без ответной реакции. Примером такой связи может быть действие древесного яруса леса на случайно выросшее под его пологом травянистое растение или действие солнца на земные процессы. При обратной связи элемент В отвечает на действие элемента А. Обратные связи бывают положительными и отрицательными. И те и другие играют существенную роль в экологических процессах и явлениях.

Положительная обратная связь ведет к усилению процесса в одном направлении. Пример ее - заболачивание территории, например, после вырубки леса. Снятие лесного полога и уплотнение почвы обычно ведет к накоплению воды на ее поверхности. Это, в свою очередь, дает возможность поселяться здесь растениям-влагонакопителям, например сфагновым мхам, содержание воды в которых в 25-30 раз превышает вес их тела. Процесс начинает действовать в одном направлении: увеличение увлажнения - обеднение кислородом - замедление разложения растительных остатков - накопление торфа - дальнейшее усиление заболачивания.

Отрицательная обратная связь действует таким образом, что в ответ на усиление действия элемента А увеличивается противоположная по направлению сила действия элемента В. Такая связь позволяет сохраняться системе в состоянии устойчивого динамического равновесия. Это наиболее распространенный и важный вид связей в природных системах. На них прежде всего базируется устойчивость и стабильность экосистем. Пример такой связи - взаимоотношение между хищником и его жертвой. Увеличение численности жертвы как кормового ресурса, например полевых мышей для лис, создает условия для размножения и увеличения численности последних. Они, в свою очередь, начинают более интенсивно уничтожать жертву и снижают ее численность. В целом численность хищника и жертвы синхронно колеблется в определенных границах. Второй пример. В истории биосферы имели место явления локального увеличения содержания углекислого газа в атмосфере, например, при извержении вулканов. За этим следовало повышение интенсивности фотосинтеза и связывание углекислоты в органическом веществе, а также более интенсивное поглощение ее океаном. Третий пример. В природе закономерны периодические повышения уровней почвенно-грунтовых вод. За этим следует увеличение их контакта с корневыми системами растений, повышение расходования на испарение растительностью (транспирацию) и возвращение уровней грунтовой воды в исходное состояние.

Одно из отрицательных проявлений деятельности человека в природе связано с нарушением этих связей, что может привести к разрушению экосистем или переходу их в другое состояние. Например, умеренное загрязнение водной среды органическими и биогенными (необходимыми для жизнедеятельности организмов) веществами обычно сопровождается интенсификацией деятельности организмов, потребляющих эти вещества, результатом чего является самоочищение водоемов. Перегрузка же среды загрязняющими веществами на определенном этапе ведет к угнетению или уничтожению организмов-санитаров, переводу установившихся обратных связей в прямые, переходу системы на другой уровень. В результате неизбежным становится прогрессирующее загрязнение, обеднение водной среды кислородом и превращение чистых озерных или текущих вод в системы болотного типа.

Универсальное свойство экосистем - их эмерджентность (англ. эмердженс - возникновение, появление нового), заключающееся в том, что свойства системы как целого не являются простой суммой свойств слагающих ее частей или элементов. Например, одно дерево, как и редкий древостой, не составляет леса, поскольку не создает определенной среды (почвенной, гидрологической, метеорологической и т. д.) и свойственных лесу взаимосвязей различных звеньев, обусловливающих новое качество. Недоучет эмерджент-ности может приводить к крупным просчетам при вмешательстве человека в жизнь экосистем или при конструировании систем для выполнения определенных целей. Например, сельскохозяйственные поля (агроценозы) имеют низкий коэффициент эмерджентности и поэтому характеризуются крайне низкой способностью саморегулирования и устойчивости. В них, вследствие бедности видового состава организмов, крайне незначительны взаимосвязи, велика вероятность интенсивного размножения отдельных нежелательных видов (сорняков, вредителей).

Энергетические процессы в экосистемах подчиняются первому и второму началам термодинамики. В соответствии с ними энергия не возникает и не исчезает, она лишь переходит из одной формы в другую (первое начало термодинамики). При этом часть энергии при любых ее превращениях рассеивается (теряется) в виде тепла (второе начало термодинамики). Мерой необратимого рассеивания энергии является энтропия (греч. эн - внутрь, тропе - превращение). Последнюю можно характеризовать и через степень упорядоченности системы. Так, живые организмы и нормально функционирующие экосистемы характеризуются высокой степенью упорядоченности слагающих их элементов. Они сохраняют (поддерживают) определенный уровень энергии и тем самым противостоят энтропии. Мертвый организм характеризуется максимальной неупорядоченностью элементов (структур), в результате чего приходит в равновесие с окружающей его средой (температура его тела выравнивается с температурой среды, составляющие его химические элементы и соединения включаются в процессы круговорота и становятся частью среды). Это значит, что организм как система приходит в состояние полной неупорядоченности, максимальной энтропии. Показатель, противоположный энтропии, носит название негэнтропии. Чем выше организованность системы (упорядоченность), тем значительнее ее негэнтропия. Опасно любое вмешательство в систему, которое ведет к снижению ее негэнтропии, а следовательно, устойчивости и способности противостоять внешним возмущениям.

Основным свойством нормально функционирующих природных экосистем является способность извлекать негэнтропию из внешней среды (солнечную энергию) и тем самым поддерживать свою высокую упорядоченность.

Деятельность человека, если она превышает определенные пределы, ведет к снижению негэнтропии систем, а следовательно, уменьшает их способность поддерживать себя в устойчивом состоянии вплоть до перехода к полной неупорядоченности (максимальной энтропии) и гибели.

Видный американский эколог Б. Коммонер сделал удачную попытку обобщить системность экологии как науки в виде четырех законов. Эти законы в основе своей не новы, но впервые сформулированы в образной простой форме. Их соблюдение - обязательное условие любой экологически обусловленной деятельности человека в природе.

Первый закон Коммонера отражает по сути своей всеобщую связь процессов и явлений в природе и звучит так: «Все связано со всем». Второй закон базируется на положении сохранения вещества и энергии: «Все должно куда-то деваться». Какой бы ни была высокой труба завода, она не может выбрасывать отходы производства за пределы биосферы. В такой же мере загрязнители, попадающие в реки, в конечном счете оказываются в морях и океанах и с их продуктами возвращаются к человеку в виде своего рода «экологического бумеранга». Третий закон ориентирует на действия, согласующиеся с природными процессами, сотрудничество с природой, или коадаптацию (лат. ко - с, вместе; адаптацио - приспособление), вместо покорения человеком природы, подчинения ее своим целям: «Природа знает лучше». Сущность четвертого закона заключается в ориентации человека на то, что любое его действие в природе не остается бесследным, мнимая выгода часто оборачивается ущербом, а охрана природы и рациональное использование природных ресурсов немыслимы без определенных экономических затрат. Звучит этот закон так: «Ничто не дается даром». Дешевому природопользованию не должно быть места. Если не заплатим за него мы, то в многократном размере это должны будут сделать пришедшие нам на смену поколения.

Другие термины и понятия, а также закономерности (правила, принципы) экологии, важные для решения социальных и прикладных ее задач, будут рассмотрены во второй части работы (см.разд.1.2 и 1.3).

I.2. Структура общей экологии

В «Общей экологии» обычно выделяют несколько взаимосвязанных разделов, которые иногда рассматривают как отдельные дисциплины (табл. 1). Это: учение о факторах среды и закономерностях их действия на организмы (факториальная экология); экология на уровне взаимоотношения отдельных организмов и среды (экология организмов, или аутэкология); экология взаимосвязанных и относительно обособленных групп организмов одних и тех же видов (популяционная, или демографическая, экология), экология взаимосвязанных популяций различных видов между собой (учение о биоценозах). Если биоценозы рассматриваются во взаимосвязи со средой обитания (как единая система), то этот раздел выделяется в учение об экосистемах или биогеоценозах. Основополагающим и высшим рангом экологии является учение о биосфере как наиболее крупной (глобальной) экосистеме.

Таблица 1

Структура «Общей экологии»

В настоящем общеобразовательном курсе мы познакомимся с теми основными положениями «Общей экологии», которые составляют базу для понимания наиболее существенных моментов функционирования разных природных экосистем и биосферы в целом, раскрывают роль живых организмов (живого вещества, по В. И. Вернадскому) в создании, сохранении и стабилизации природной среды; рассматривают механизмы, обусловливающие устойчивость природных систем различного ранга, и другие основополагающие проблемы. На этом фоне существенно увеличивается возможность научно обоснованного решения конкретных вопросов прикладной и других разделов экологии, ориентированных на человека, а также осуществление основного требования экологизации природопользования и других видов деятельности человека: «мыслить глобально, действовать локально».

Вопросы и задания

1. Дайте определение экологии как науки. Назовите автора термина.

2. Как трансформировать содержание и задачи экологии в современный период?

3. Какие вопросы и проблемы рассматривает «Общая экология»? Назовите основные ее разделы.

4. Какие вопросы и проблемы являются предметом изучения «Социальной и прикладной экологии»?

5. Почему экологию относят к системным наукам? Назовите основные виды систем и присущие им связи.

6. Дайте определение понятий (терминов) экологии: «экосистема», «биоценоз», «сообщество», «популяция». К какому виду систем относится «экосистема» и почему? Какие для нее присущи связи? Приведите примеры.

7. Раскройте содержание понятий «эмерджентность», «энтропия», «негэнтропия».

8. Назовите экологические законы Б. Коммонера. Раскройте их содержание.

II. СРЕДА ОБИТАНИЯ. ФАКТОРЫ СРЕДЫ И АДАПТАЦИИ К НИМ ОРГАНИЗМОВ. СРЕДЫ ЖИЗНИ

II.1. Среда и факторы среды, их классификация

Под средой обитания обычно понимают природные тела и явления, с которыми организм (организмы) находятся в прямых или косвенных взаимоотношениях. Отдельные элементы среды, на которые организмы реагируют приспособительными реакциями (адап-тациями), носят название факторов.

Наряду с термином «среда обитания» используются также понятия «экологическая среда», «местообитание», «окружающая среда», «окружающая природная среда», «окружающая природа» и др. Четких различий между этими терминами нет, но на некоторых из них следует остановиться. В частности, под популярным в последнее время термином «окружающая среда» понимается, как правило, среда, в той или иной (в большинстве случаев в значительной) мере измененная человеком. К ней близки по смыслу «техногенная среда», «антропогенная среда», «промышленная среда».

Природная среда, окружающая природа - это среда, не измененная человеком или измененная в малой степени. С термином «местообитание» обычно связывается та среда жизни организма или вида, в которой осуществляется весь цикл его развития.

В «Общей экологии» речь обычно идет о природной среде, окружающей природе, местообитаниях; в «Прикладной и социальной экологии» - об окружающей среде. Этот термин часто считают неудачным переводом с английского environment, поскольку отсутствует указание на объект, который окружает среда.

Влияние среды на организмы обычно оценивают через отдельные факторы (лат. делающий, производящий). Под экологическими факторами понимается любой элемент или условие среды, на которые организмы реагируют приспособительными реакциями, или адаптациями. За пределами приспособительных реакций лежат летальные (гибельные для организмов) значения факторов.

Классификация факторов:

Чаще всего факторы делят на три группы.

1. Факторы неживой природы (абиотические, или физико-химические). К ним относятся климатические, атмосферные, почвенные (эдафические), геоморфологические (орографические), гидрологические и другие.

2. Факторы живой природы (биотические) - влияние одних организмов или их сообществ на другие. Эти влияния могут быть со стороны растений (фитогенные), животных (зоогенные), микроорганизмов, грибов и т. п.

3. Факторы человеческой деятельности (антропогенные). В их числе различают прямое влияние на организмы (например, промысел) и косвенное - влияние на местообитание (например, загрязнение среды, уничтожение кормовых угодий, строительство плотин на реках и т. п.).

Современные экологические проблемы и возрастающий интерес к экологии связан с действием антропогенных факторов.

Интересна классификация факторов по периодичности и направленности действия, степени адаптации к ним организмов. В этом отношении выделяют факторы, действующие строго периодически (смены времени суток, сезонов года, приливно-отливные явления и т. п.), действующие без строгой периодичности, но повторяющиеся время от времени. Сюда относятся погодные явления, наводнения, ураганы, землетрясения и т. п. Следующая группа - факторы направленного действия, они обычно изменяются в одном направлении (потепление или похолодание климата, зарастание водоемов, заболачивание территорий и т. п.). И последняя группа - факторы неопределенного действия. Сюда относятся антропогенные факторы, наиболее опасные для организмов и их сообществ.

Из перечисленных групп факторов организмы легче всего адаптируются или адаптированы к тем, которые четко изменяются (строго периодические, направленные). Адаптационность к ним такова, что часто становится наследственно обусловленной. И если фактор меняет периодичность, то организм продолжает в течение некоторого времени сохранять адаптации к нему, т. е. действовать в ритме так называемых «биологических часов». Такое явление, в частности, имеет место при смене часовых поясов.

Некоторые трудности характерны для адаптации к нерегулярно-периодическим факторам, но организмы нередко имеют механизмы предчувствия их возможности (землетрясения, ураганы, наводнения и т. п.) и в какой-то мере могут смягчать их отрицательные последствия.

Наибольшие трудности для адаптации представляют факторы, природа которых неопределенна, к ним организм, как правило, не готов, вид не встречался с такими явлениями и в процессе эволюции. Сюда, как отмечалось, относится группа антропогенных факторов. В этом их основная специфика и антиэкологичность. Многие из этих факторов, кроме того, выступают как вредные. Их относят к группе ксенобиотиков (греч. ксенокс - чужой). К последним относятся практически все загрязняющие вещества. В числе быстроизменяющихся факторов большое беспокойство в настоящее время вызывают изменение климата, обусловливаемое так называемым «тепличным, или парниковым, эффектом», изменение водных экосистем в результате преобразования рек, мелиорации и т. п. Только в отдельных случаях по отношению к таким факторам организмы могут использовать механизмы так называемых преадаптаций, т. е. те адаптации, которые выработались по отношению к другим факторам. Так, например, устойчивости растений к загрязнениям воздуха в какой-то мере способствуют те структуры, которые благоприятны для повышения засухоустойчивости: плотные покровные ткани листьев, наличие на них воскового налета, опушенности, меньшее количество устьиц и другие структуры, замедляющие процессы поглощения веществ, а следовательно, и отравление организма. Это необходимо учитывать, в частности, при подборе ассортимента видов для выращивания в районах с высокой промышленной нагрузкой, для озеленения городов, промплощадок и т.п.

II.2. Некоторые общие закономерности действия факторов среды на организмы

В комплексе действия факторов можно выделить некоторые закономерности, которые являются в значительной мере универсальными (общими) по отношению к организмам. К таким закономерностям относятся правило оптимума, правило взаимодействия факторов, правило лимитирующих факторов и некоторые другие.

Правило оптимума. В соответствии с этим правилом для экосистемы, организма или определенной стадии его развития имеется диапазон наиболее благоприятного (оптимального) значения фактора. За пределами зоны оптимума лежат зоны угнетения, переходящие в критические точки, за которыми существование невозможно (рис. 1). К зоне оптимума обычно приурочена максимальная плотность популяции. Зоны оптимума для различных организмов неодинаковы. Для одних они имеют значительный диапазон. Такие организмы относятся к группе эврибионтов (греч. эури - широкий; биос - жизнь). Организмы с узким диапазоном адаптации к факторам называются стенобионтами (греч. стенос - узкий). Важно подчеркнуть, что зоны оптимума по отношению к различным факторам различаются, и поэтому организмы полностью проявляют свои потенциальные возможности в том случае, если весь спектр факторов имеет для них оптимальные значения.

Диапазон значений факторов (между критическими точками) называют экологической валентностью (см. рис.1). Синонимом термина валентность является толерантность (лат. толеранция - терпение), или пластичность (изменчивость). Эти характеристики зависят в значительной мере от среды, в которой обитают организмы. Если она относительно стабильна по своим свойствам (малы амплитуды колебаний отдельных факторов), в ней больше стено-бионтов (например, в водной среде), если динамична, например, наземно-воздушная - в ней больше шансов на выживание имеют эврибионты.

Зона оптимума и экологическая валентность обычно шире у теплокровных организмов, чем у холоднокровных. Надо также иметь в виду, что экологическая валентность для одного и того же вида не остается одинаковой в различных условиях (например, в северных и южных районах в отдельные периоды жизни и т.п.). Молодые и старческие организмы, как правило, требуют более кондиционированных (однородных) условий. Иногда эти требования весьма неоднозначны. Например, по отношению к температуре личинки насекомых обычно стенобионтны (стенотермны), в то время как куколки и взрослые особи могут относиться к эврибионтам (эвритермным).

Правило взаимодействия факторов. Сущность его заключается в том, что одни факторы могут усиливать или смягчать силу действия других факторов. Например, избыток тепла может в какой-то мере смягчаться пониженной влажностью воздуха, недостаток света для фотосинтеза растений - компенсироваться повышенным содержанием углекислого газа в воздухе и т. п. Из этого, однако, не следует, что факторы могут взаимозаменяться. Они не взаимозаменяемы.

Правило лимитирующих факторов. Сущность этого правила заключается в том, что фактор, находящийся в недостатке или избытке (вблизи критических точек) отрицательно влияет на организмы и, кроме того, ограничивает возможность проявления силы действия других факторов, в том числе и находящихся в оптимуме. Например, если в почве имеются в достатке все, кроме одного, необходимые для растения химические элементы, то рост и развитие растения будет обусловливаться тем из них, который находится в недостатке. Все другие элементы при этом не проявляют своего действия. Лимитирующие факторы обычно обусловливают границы распространения видов (популяций), их ареалы. От них зависит продуктивность организмов и сообществ. Поэтому крайне важно своевременно выявлять факторы минимального и избыточного значения, исключать возможности их проявления (например, для растений - сбалансированным внесением удобрений).

Человек своей деятельностью часто нарушает практически все из перечисленных закономерностей действия факторов. Особенно это относится к лимитирующим факторам (разрушение местообитаний, нарушение режима водного и минерального питания растений и т.п.).

Фотопериодизм. Под фотопериодизмом понимают реакцию организма на длину дня (светлого времени суток). При этом длина светового дня выступает и как условие роста и развития, и как фактор-сигнал для наступления каких-то фаз развития или поведения организмов. Применительно к растениям обычно выделяют организмы короткого и длинного дня. Растения короткого дня существуют в низких (южных) широтах, где при длинном периоде вегетации день остается относительно коротким. Растения длинного дня характерны для высоких (северных) широт, где при коротком вегетационном периоде день длиннее, чем в южных широтах, вплоть до круглосуточного. Перемещение растении из одних широт в другие без учета данного явления обычно заканчивается неудачей: растения ненормально развиваются, не вызревают.

Сигнальное свойство фотопериодизма выражается в том, что растительные и животные организмы обычно реагируют на длину дня своим поведением, физиологическими процессами. Например, сокращение продолжительности дня является сигналом для подготовки организмов к зиме. Дня растений это повышение концентрации клеточного сока и т. п. Для животных - накопление жиров, смена накожных покровов, подготовка птиц к перелетам и т. п.

Другие факторы обычно в меньшей мере используются как сигнал (например, температура), поскольку они изменяются не с такой строгой закономерностью, как фотопериод, и могут провоцировать наступление у организмов каких-то фаз или явлений преждевременно или с запозданием. Хотя определенную корректировку в действие фотопериодизма они вносят.

Адаптации к ритмичности природных явлений. Наряду с длиной дня организмы эволюционно адаптировались к другим видам периодических явлений в природе. Прежде всего это относится к суточной и сезонной ритмике, приливно-отливным явлениям, ритмам, обусловливаемым солнечной активностью, лунными фазами и другими явлениями, повторяющимися со строгой периодичностью. Человек может нарушать эту ритмику через изменение среды, перемещением организмов в новые условия и другими действиями.

Ритмичность действия факторов среды, подверженная строгой периодичности, стала физиологически и наследственно обусловленной для многих организмов. Например, к суточной ритмике адаптирована активность многих животных организмов (интенсивность дыхания, частота сердцебиений, деятельность желез внутренней секреции и т п.). Одни организмы очень стойко сохраняют эту ритмику, другие более пластичны. Например, отмечается, что черные крысы более стойки к суточной (или околосуточной) ритмике и поэтому меньше склонны к расселению, держатся в определенных местообитаниях; серые крысы более лобильны по ритмике, легче осваивают новые условия и поэтому являются практически космополитами.

Индивидуальны реакции отдельных людей на изменение суточной ритмики. Например, одни лица относительно легко переносят смену часовых поясов, и для их адаптации в новых условиях требуется непродолжительное время. Другие - переносят такие смены болезненно и приспосабливаются к ним в течение более длительных периодов. Это явление представляет серьезную проблему с физиологической и медицинской точек зрения. В частности, при решении проблем ночных смен работы, пребывания в космосе, перелетах на значительные расстояния и т. п.

Поразительна высокая и разнообразная адаптивность некоторых организмов к подобным природным ритмам. Например, приливно-отливные ритмы морей связаны с солнечными сутками (24 часа), лунными сутками (24 часа 50 минут). Кроме этого, в течение последних имеют место два прилива и два отлива, которые ежедневно смещаются на 50 минут. Сила приливов изменяется также в течение лунного месяца, равного 29,5 солнечным суткам, а приливы дважды в месяц (при новолунии и полнолунии) достигают максимальной величины. Некоторые организмы, обитающие в приливно-отливной зоне (литораль), адаптируются ко всем изменениям водной среды. Например, отдельные рыбы (атерина в Калифорнии) откладывают икринки на границе максимального прилива. К этому же периоду приурочен и выход мальков из икринок.

Многие из ритмов становятся наследственно обусловленными. Например, при перемещении некоторых животных в более северные районы они (животные) продолжают сохранять свою ритмику. В таких случаях нарушается правило приуроченности наиболее ответственных периодов в жизни (размножения) к более благоприятному времени. Так, австралийские страусы в условиях Аскании Нова (Украина) могут откладывать яйца на снег.

Нет оснований доказывать, что ритмичность деятельности организмов должна учитываться человеком при тех или иных изменениях среды и особенно при перемещениях или переселениях организмов, например, при интродукции (перемещении вида в новые условия за пределы его ареала).

II.3. Среды жизни и адаптации к ним организмов

Наряду с понятиями «среда», «местообитание», «природная среда», «окружающая среда» широко используется термин «среда жизни». Все разнообразие условий на Земле объединяют в четыре среды жизни: водную, наземно-воздушную, почвенную и организменную (в последнем случае одни организмы являются средой для других).

Среды жизни выделяются обычно по фактору или комплексу факторов, которые никогда не бывают в недостатке. Эти факторы являются средообразующими и обусловливают свойства сред. Рассмотрим кратко присущие названным средам жизни свойства, лимитирующие факторы и адаптации организмов.

Водная среда. Эта среда наиболее однородна среди других. Она мало изменяется в пространстве, здесь нет четких границ между отдельными экосистемами. Амплитуды значений факторов также невелики. Разница между максимальными и минимальными значениями температуры здесь обычно не превышает 50°С (в наземно-воздушной среде - до 100°С). Среде присуща высокая плотность. Для океанических вод она равна 1,3 г/см3, для пресных - близка к единице. Давление изменяется только в зависимости от глубины: каждый 10-метровый слой воды увеличивает давление на 1 атмосферу.

Лимитирующим фактором часто бывает кислород. Содержание его обычно не превышает 1% от объема. При повышении температуры, обогащении органическим веществом и слабом перемешивании содержание кислорода в воде уменьшается. Малая доступность кислорода для организмов связана также с его слабой диффузией (в воде она в тысячи раз меньше, чем в воздухе). Второй лимитирующий фактор - свет. Освещенность быстро уменьшается с глубиной. В идеально чистых водах свет может проникать до глубины 50-60 м, в сильно загрязненных - только на несколько сантиметров.

В воде мало теплокровных, или гомойотермных (греч. хомой -одинаковый, термо - тепло), организмов. Это результат двух причин: малое колебание температур и недостаток кислорода. Основной адаптационный механизм гомойотермии - противостояние неблагоприятным температурам. В воде такие температуры маловероятны, а в глубинных слоях температура практически постоянна (+4°С). Поддержание постоянной температуры тела обязательно связано с интенсивными процессами обмена веществ, что возможно только при хорошей обеспеченности кислородом. В воде таких условий нет. Теплокровные животные водной среды (киты, тюлени, морские котики и др.) - это бывшие обитатели суши. Их существование невозможно без периодической связи с воздушной средой.

Типичные обитатели водной среды имеют переменную температуру тела и относятся к группе пойкилотермных (греч. пойкиос - разнообразный). Недостаток кислорода они в какой-то мере компенсируют увеличением соприкосновения органов дыхания с водой. Многие обитатели вод (гидробионты) потребляют кислород через все покровы тела. Часто дыхание сочетается с фильтрационным типом питания, при котором через организм пропускается большое количество воды. Некоторые организмы в периоды острого недостатка кислорода способны резко замедлять жизнедеятельность, вплоть до состояния анабиоза (почти полное прекращение обмена веществ).

К высокой плотности воды организмы адаптируются в основном двумя путями. Одни используют ее как опору и находятся в состоянии свободного парения. Плотность (удельный вес) таких организмов обычно мало отличается от плотности воды. Этому способствует полное или почти полное отсутствие скелета, наличие выростов, капелек жира в теле или воздушных полостей. Такие организмы объединяются в группу планктона (греч. планктос -блуждающий). Различают растительный (фито-) и животный (зоо-) планктон. Размеры планктонных организмов обычно невелики. Но на их долю приходится основная масса водных обитателей.

Активно передвигающиеся организмы (пловцы) адаптируются к преодолению высокой плотности воды. Для них характерна продолговатая форма тела, хорошо развитая мускулатура, наличие структур, уменьшающих трение (слизь, чешуя). В целом же высокая плотность воды имеет следствием уменьшение доли скелета в общей массе тела гидробионтов по сравнению с наземными организмами.

В условиях недостатка света или его отсутствия организмы для ориентации используют звук. Он в воде распространяется намного быстрее, чем в воздухе. Для обнаружения различных препятствий используется отраженный звук по типу эхолокации. Для ориентации используются также запаховые явления (в воде запахи ощущаются намного лучше, чем в воздухе). В глубинах вод многие организмы обладают свойством самосвечения (биолюминесценции).

Растения, обитающие в толще воды, используют в процессе фотосинтеза наиболее глубоко проникающие в воду голубые, синие и сине-фиолетовые лучи. Соответственно и цвет растений меняется с глубиной от зеленого к бурому и красному.

Адекватно адаптационным механизмам выделяются следующие группы гидробионтов: отмеченный выше планктон - свободнопарящие, нектон (греч. нектос - плавающий) - активно передвигающиеся, бентос (греч. бентос - глубина) - обитатели дна, пелагос (греч. пелагос - открытое море) - обитатели водной толщи, нейстон - обитатели верхней пленки воды (часть тела может быть в воде, часть - в воздухе).

Воздействие человека на водную среду проявляется в уменьшении прозрачности, изменении химического состава (загрязнении) и температуры (тепловое загрязнение). Следствием этих и других воздействий является обеднение кислородом, снижение продуктивности, смены видового состава и другие отклонения от нормы. Подробнее эти вопросы рассматриваются в ч. II работы (разд.VII, VII.5).

Наземно-воздушная среда. Эта среда относится к наиболее сложной как по свойствам, так и по разнообразию в пространстве. Для нее характерна низкая плотность воздуха, большие колебания температуры (годовые амплитуды до 100°С), высокая подвижность атмосферы. Лимитирующими факторами чаще всего являются недостаток или избыток тепла и влаги. В отдельных случаях, например под пологом леса, недостаток света.

Большие колебания температуры во времени и ее значительная изменчивость в пространстве, а также хорошая обеспеченность кислородом явились побудительными мотивами для появления организмов с постоянной температурой тела (гомойотермных). Гомойотермия позволила обитателям суши существенно расширить место обитания (ареалы видов), но это неизбежно связано с повышенными энергетическими тратами.

Для организмов наземно-воздушной среды типичны три механизма адаптации к температурному фактору: физический, химический, поведенческий. Физический осуществляется регулированием теплоотдачи. Факторами ее являются кожные покровы, жировые отложения, испарение воды (потовыделение у животных, транспирация у растений). Этот путь характерен для пойкилотермных и гомойотермных организмов. Химические адаптации базируются на поддержании определенной температуры тела. Это требует интенсивного обмена веществ. Такие адаптации свойственны гомойотермным и лишь частично пойкилотермным организмам. Поведенческий путь осуществляется посредством выбора организмами предпочтительных положений (открытые солнцу или затененные места, разного вида укрытия и т. п.). Он свойственен обеим группам организмов, но пойкилотермным в большей степени. Растения приспосабливаются к температурному фактору в основном через физические механизмы (покровы, испарение воды) и лишь частично - поведенчески (повороты пластинок листьев относительно солнечных лучей, использование тепла земли и утепляющей роли снежного покрова).

Адаптации к температуре осуществляются также через размеры и форму тела организмов. Для уменьшения теплоотдачи выгоднее крупные размеры (чем крупнее тело, тем меньше его поверхность на единицу массы, а следовательно, и теплоотдача, и наоборот). По этой причине одни и те же виды, обитающие в более холодных условиях (на севере), как правило, крупнее тех, которые обитают в более теплом климате. Эта закономерность называется правилом Бергмана. Регулирование температуры осуществляется также через выступающие части тела (ушные раковины, конечности, органы обоняния). В холодных районах они, как правило, меньше по размерам, чем в более теплых (правило Аллена).

О зависимости теплоотдачи от размеров тела можно судить по количеству кислорода, расходуемого при дыхании на единицу массы различными организмами. Оно тем больше, чем меньше размеры животных. Так, на 1 кг массы потребление кислорода (смУчас) составило: лошадь - 220, кролик - 480, крыса -1800, мышь - 4100.

Регулирование водного баланса организмами. У животных различают три механизма: морфологический - через форму тела, покровы; физиологический - посредством высвобождения воды из жиров, белков и углеводов (метаболическая вода), через испарение и органы выделения; поведенческий - выбор предпочтительного расположения в пространстве.

Растения избегают обезвоживания либо посредством запасания воды в теле и защиты ее от испарения (суккуленты), либо через увеличение доли подземных органов (корневых систем) в общем объеме тела. Уменьшению испарения способствуют также различного рода покровы (волоски, плотная кутикула, восковой налет и др.). При избытке воды механизмы ее экономии слабо выражены. Наоборот, некоторые растения способны выделять избыточную воду через листья, в капельно-жидком виде («плач растений»).

Воздействия человека на наземно-воздушную среду и ее обитателей многообразны. Они рассматриваются во второй части работы.

Почвенная среда. Эта среда имеет свойства, сближающие ее с водной и наземно-воздушной средами.

Многие мелкие организмы живут здесь как гидробионты - в поровых скоплениях свободной воды. Как и в водной среде, в почвах невелики колебания температур. Амплитуды их быстро затухают с глубиной. Существенна вероятность дефицита кислорода, особенно при избытке влаги или углекислоты. Сходство с наземно-воздушной средой проявляется через наличие пор, заполненных воздухом.

К специфическим свойствам, присущим только почве, относится плотное сложение (твердая часть или скелет). В почвах обычно выделяют три фазы (части): твердую, жидкую и газообразную. В. И. Вернадский почву отнес к биокосным телам, подчеркивая этим большую роль в ее образовании и жизни организмов и продуктов их жизнедеятельности. Почва- наиболее насыщенная живыми организмами часть биосферы (почвенная пленка жизни). Поэтому в ней иногда выделяют четвертую фазу - живую.

Есть основание рассматривать почву как среду, которая играла промежуточную роль при выходе организмов из воды на сушу (М. С. Гиляров). Кроме перечисленных выше свойств, сближающих эти среды, в почве организмы находили защиту от жесткого космического излучения (при отсутствии озонового экрана).

В качестве лимитирующих факторов в почве чаще всего выступает недостаток тепла (особенно при вечной мерзлоте), а также недостаток (засушливые условия) или избыток (болота) влаги. Реже лимитирующими бывают недостаток кислорода или избыток угае-кислоты.

Жизнь многих почвенных организмов тесно связана с порами и их размером. Одни организмы в порах свободно передвигаются. Другие (более крупные организмы) при передвижении в порах изменяют форму тела по принципу перетекания, например дождевой червь, или уплотняют стенки пор. Третьи могут передвигаться только разрыхляя почву или выбрасывая на поверхность образующий ее материал (землерои). Из-за отсутствия света многие почвенные организмы лишены органов зрения. Ориентация осуществляется с помощью обоняния или других рецепторов.

Воздействия человека проявляются в разрушении почв (эрозии), загрязнении, изменении химических и физических свойств. Эти вопросы рассматриваются в ч. II работы (ra.VIII).

Организмы как среда обитания. С данной средой связан паразитический и полупаразитический образ жизни. Организмы этих групп получают кондиционированную среду (по температуре, влажности и другим параметрам) и готовую легкоусвояемую пищу. Результатом этого является упрощение всех систем и органов, а также потеря некоторых из них. Наиболее слабое (лимитирующее) звено в жизни паразитов - возможность потери хозяина. Это неизбежно при его смерти. По этой причине паразиты, как правило, не убивают своего хозяина («разумный паразитизм») и имеют приспособления, увеличивающие вероятность выживания в случае потери хозяина. Основной путь сохранения вида (популяции) в таких условиях - большое число зачатков («закон большого числа яиц») в виде долгосохраняющихся цист, спор и т. п. Это увеличивает вероятность встречи с хозяином. Часто используются промежуточные хозяины.

Человек может как увеличивать, так и уменьшать численность паразитов, воздействуя как на среду для организмов-хозяинов, так и непосредственно на последних. Используются различные методы прямого уничтожения или ограничения численности паразитов.

Вопросы и задания

1. В каких сочетаниях используется термин «среда»? В чем отличие этих сочетаний?

2. Что понимается под экологическим фактором? Приведите классификации факторов по двум известным Вам принципам. Какие факторы являются наиболее трудными для адаптации к ним организмов?

3. Перечислите общие закономерности действия факторов среды на организмы. Раскройте их сущность и значение.

4. Перечислите среды жизни и наиболее типичные их свойства. Назовите присущие отдельным средам жизни лимитирующие факторы, адаптации организмов.

III. БИОСФЕРА

III.1. Биосфера как глобальная экосистема

Рассмотрение основополагающих вопросов общей экологии целесообразно начать со знакомства с биосферой как глобальной экосистемой и закономерностями ее функционирования. В таком случае разделы экологии более низкого ранга (популяционный, экосистемный) будут в определенной мере подчинены углубленному раскрытию закономерностей существования биосферы и допустимых пределов вмешательства в нее или ее звенья человека. Другими словами, на уровне экосистем элементарного плана должен осуществляться в основном принцип локальных действий, в то время как биосферный уровень формирует базу для глобального мышления.

В настоящее время становится предельно ясным, что среда, в которой мы живем, сформирована жившими организмами различных геологических эпох. По образному выражению Б. Коммонера, окружающая среда - «... это дом, созданный на Земле жизнью и для жизни». При этом каждое поколение организмов этот дом совершенствовало соответственно изменявшимся условиям и обитающим в нем существам. Эти истины стали понятными людям далеко не сразу. Важнейший вклад в этот раздел современной экологии внесли исследования академика В. И. Вернадского (1863-1945), его учение о биосфере.

Понятие «биосфера». Термин «биосфера» в научную литературу введен в 1875 г. австрийским ученым-геологом Эдуардом Зюссом. К биосфере он отнес все то пространство атмосферы, гидросферы и литосферы (твердой оболочки Земли), где встречаются живые организмы.

Владимир Иванович Вернадский (1863-1945) использовал этот термин и создал науку с аналогичным названием. Если с понятием «биосфера», по Зюссу, связывалось только наличие в трех сферах земной оболочки (твердой, жидкой и газообразной) живых организмов, то, по В. И. Вернадскому, им отводится роль главнейшей геохимической силы. При этом в понятие биосферы включается преобразующая деятельность организмов не только в границах распространения жизни в настоящее время, но и в прошлом. В таком случае под биосферой понимается все пространство (оболочка Земли), где существует или когда-либо существовала жизнь, то есть где встречаются живые организмы или продукты их жизнедеятельности. В. И. Вернадский не только сконкретизировал и очертил границы жизни в биосфере, но, самое главное, всесторонне раскрыл роль живых организмов в процессах планетарного масштаба. Он показал, что в природе нет более мощной геологической (средообразующей) силы, чем живые организмы и продукты их жизнедеятельности.

Учение В. И. Вернадского о биосфере произвело переворот во взглядах на глобальные природные явления, в том числе геологические процессы, причины явлений, их эволюцию. До трудов В. И. Вернадского эти процессы прежде всего связывались с действием физико-химических сил, объединяемых термином «выветривание». В. И. Вернадский показал первостепенную преобразующую роль живых организмов и обусловливаемых ими механизмов образования и разрушения геологических структур, круговорота веществ, изменения твердой (литосферы), водной (гидросферы) и воздушной (атмосферы) оболочек Земли.

Ту часть биосферы, где живые организмы встречаются в настоящее время, обычно называют современной биосферой, или необиосферой, а древние биосферы относят к палеобиосферам, или белым биосферам. В качестве примеров последних можно назвать безжизненные скопления органических веществ (залежи каменных углей, нефти, горючих сланцев и т. п.) или запасы других соединений, образовавшихся при участии живых организмов (известь, мел, соединения кремния, рудные образования и т. п.).

Границы биосферы. По современным представлениям необиосфера в атмосфере простирается примерно до озонового экрана (у полюсов 8-10 км, у экватора - 17-18 км и над остальной поверхностью Земли - 20-25 км). За пределами озонового слоя жизнь невозможна вследствие наличия губительных космических ультрафиолетовых лучей. Гидросфера практически вся, в том числе и самая глубокая впадина (Марианская) Мирового океана (11022 м), занята жизнью. К необиосфере следует относить также и донные отложения, где возможно существование живых организмов. В литосферу жизнь проникает на несколько метров, ограничиваясь в основном почвенным слоем, но по отдельным трещинам и пещерам она распространяется на сотни метров.

Границы палеобиосферы в атмосфере примерно совпадают с необиосферой, под водами к палеобиосфере следует отнести и осадочные породы, которые, по В. И. Вернадскому, практически все претерпели переработку живыми организмами. Это толща от сотен метров до десятков километров. Сказанное относительно осадочных пород применимо и к литосфере, пережившей водную стадию функционирования.

Таким образом, границы биосферы определяются наличием живых организмов или «следами» их жизнедеятельности. В пределах современной, как и былых биосфер, насыщенность жизнью между тем далеко не равномерна. На границах биосферы встречаются лишь случайно занесенные организмы («поле устойчивости жизни», по В. И. Вернадскому). В пределах основной части биосферы организмы присутствуют постоянно («поле существования жизни»), но распределены далеко не равномерно. Очаги повышенной и максимальной концентрации жизни В. И. Вернадский называл пленками и сгущениями жизни. Эти наиболее продуктивные экосистемы являются своего рода каркасом биосферы и требуют повышенного внимания человека. Подробнее о пленках и сгущениях жизни см. разд. IV.5 (ч.1).

III.2. Живое вещество, его средообразующие свойства и функции в биосфере

Живое вещество. Этот термин введен в литературу В. И. Вернадским. Под ним он понимал совокупность всех живых организмов, выраженную через массу, энергию и химический состав.

Вещества неживой природы относятся к косным (например, минералы). В природе, кроме этого, довольно широко представлены биокосные вещества, образование и сложение которых обусловливается живыми и косными составляющими (например, почвы, воды).

Живое вещество - основа биосферы, хотя и составляет крайне незначительную ее часть. Если его выделить в чистом виде и распределить равномерно по поверхности Земли, то это будет слой около 2 см или крайне незначительная доля от объема всей биосферы, толща которой измеряется десятками километров. В чем же причина столь высокой химической активности и геологической роли живого вещества?

Прежде всего это связано с тем, что живые организмы, благодаря биологическим катализаторам (ферментам), совершают, по выражению академика Л. С. Берга, с физико-химической точки зрения что-то невероятное. Например, они способны фиксировать в своем теле молекулярный азот атмосферы при обычных для природной среды значениях температуры и давления. В промышленных условиях связывание атмосферного азота до аммиака требует температуры порядка 500°С и давления 300-500 атмосфер.

В живых организмах на порядок или несколько порядков увеличиваются скорости химических реакций в процессе обмена веществ. В. И. Вернадский в связи с этим живое вещество назвал чрезвычайно активизированной материей.

Свойства живого вещества. К основным уникальным особенностям живого вещества, обусловливающим его крайне высокую средообразующую деятельность, можно отнести следующие:

1. Способность быстро занимать (осваивать) все свободное пространство. В. И. Вернадский назвал это всюдностью жизни. Данное свойство дало основание В. И. Вернадскому сделать вывод, что для определенных геологических периодов количество живого вещества было примерно постоянным (константой). Способность быстрого освоения пространства связана как с интенсивным размножением (некоторые простейшие формы организмов могли бы освоить весь земной шар за несколько часов или дней, если бы не было факторов, сдерживающих их потенциальные возможности размножения), так и со способностью организмов интенсивно увеличивать поверхность своего тела или образуемых ими сообществ. Например, площадь листьев растений, произрастающих на 1 га, составляет 8-10 га и более. То же относится к корневым системам.

2. Движение не только пассивное (под действием силы тяжести, гравитационных сил и т. п.), но и активное. Например, против течения воды, силы тяжести, движения воздушных потоков и т. п.

3. Устойчивость при жизни и быстрое разложение после смерти (включение в круговороты), сохраняя при этом высокую физико-химическую активность.

4. Высокая приспособительная способность (адаптация) к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной, организменной), но и крайне трудных по физико-химическим параметрам условий. Например, некоторые организмы выносят температуры, близкие к значениям абсолютного нуля - 273°С, микроорганизмы встречаются в термальных источниках с температурами до 140°С, в водах атомных реакторов, в бескислородной среде, в ледовых панцирях и т. п.

5. Феноменально высокая скорость протекания реакций. Она на несколько порядков (в сотни, тысячи раз) значительнее, чем в неживом веществе. Об этом свойстве можно судить по скорости переработки вещества организмами в процессе жизнедеятельности. Например, гусеницы некоторых насекомых потребляют за день количество пищи, которое в 100-200 раз больше веса их тела. Особенно активны организмы-грунтоеды. Дождевые черви (масса их тел примерно в 10 раз больше биомассы всего человечества) за 150-200 лет пропускают через свои организмы весь однометровый слой почвы. Такие же явления имеют место в донных отложениях океана. Слой донных отложений здесь может быть представлен продуктами жизнедеятельности кольчатых червей (полихет) и достигать нескольких метров. Колоссальную роль по преобразованию вещества выполняют организмы, для которых характерен фильтрационный тип питания. Они освобождают водные массы от взвесей, склеивая их в небольшие агрегаты и осаждая на дно.

Впечатляют примеры чисто механической деятельности некоторых организмов, например роющих животных (сурков, сусликов и др.), которые в результате переработки больших масс грунта создают своеобразный ландшафт. По представлениям В. И. Вернадского, практически все осадочные породы, а это слой до 3 км, на 95-99% переработаны живыми организмами. Даже такие колоссальные запасы воды, которые имеются в биосфере, разлагаются в процессе фотосинтеза за 5-6 млн. лет, углекислота же проходит через живые организмы в процессе фотосинтеза каждые 6-7 лет.

6. Высокая скорость обновления живого вещества. Подсчитано, что в среднем для биосферы она составляет 8 лет, при этом для суши -14 лет, а для океана, где преобладают организмы с коротким периодом жизни (например, планктон), - 33 дня. В результате высокой скорости обновления за всю историю существования жизни общая масса живого вещества, прошедшего через биосферу, примерно в 12 раз превышает массу Земли. Только небольшая часть его (доли процента) законсервирована в виде органических остатков (по выражению В. И. Вернадского, «ушла в геологию»), остальная же включилась в процессы круговорота.

Все перечисленные и другие свойства живого вещества обусловливаются концентрацией в нем больших запасов энергии. Согласно В. И. Вернадскому, по энергетической насыщенности с живым веществом может соперничать только лава, образующаяся при извержении вулканов.

Средообразующие функции живого вещества. Всю деятельность живых организмов в биосфере можно, с определенной долей условности, свести к нескольким основополагающим функциям, которые позволяют значительно дополнить представление об их преобразующей биосферно-геологической роли.

В. И. Вернадский выделял девять функций живого вещества: газовую, кислородную, окислительную, кальциевую, восстановительную, концентрационную и другие. В настоящее время название этих функций несколько изменено, некоторые из них объединены. Мы приводим их в соответствии с классификацией А. В. Лапо (1987).

1. Энергетическая. Связана с запасанием энергии в процессе фотосинтеза, передачей ее по цепям питания, рассеиванием. Эта функция - одна из важнейших и будет подробнее рассмотрена в разделе IV.4 - энергетика экосистем.

Энергетическая функция живого вещества нашла отражение в двух биогеохимических принципах, сформулированных В.И.Вернадским. В соответствии с первым из них геохимическая биогенная энергия стремится в биосфере к максимальному проявлению. Второй принцип гласит, что в процессе эволюции выживают те организмы, которые своей жизнью увеличивают геохимическую энергию.

2. Газовая - способность изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. В частности, включение углерода в процессы фотосинтеза, а затем в цепи питания обусловливало аккумуляцию его в биогенном веществе (органические остатки, известняки и т. п.) В результате этого шло постепенное уменьшение содержания углерода и его соединений, прежде всего двуокиси (СО2) в атмосфере с десятков процентов до современных 0,03%. Это же относится к накоплению в атмосфере кислорода, синтезу озона и другим процессам.

С газовой функцией в настоящее время связывают два переломных периода (точки) в развитии биосферы. Первая из них относится ко времени, когда содержание кислорода в атмосфере достигло примерно 1% от современного уровня (первая точка Пастера). Это обусловило появление первых аэробных организмов (способных жить только в среде, содержащей кислород). С этого времени восстановительные процессы в биосфере стали дополняться окислительными. Это произошло примерно 1,2 млрд. лет назад. Второй переломный период в содержании кислорода связывают со временем, когда концентрация его достигла примерно 10% от современной (вторая точка Пастера). Это создало условия для синтеза озона и образования озонового экрана в верхних слоях атмосферы, что обусловило возможность освоения организмами суши (до этого функцию защиты организмов от губительных ультрафиолетовых лучей выполняла вода, под слоем которой возможна была жизнь).

3. Окислительно-восстановительная. Связана с интенсификацией под влиянием живого вещества процессов как окисления, благодаря обогащению среды кислородом, так и восстановления прежде всего в тех случаях, когда идет разложение органических веществ при дефиците кислорода. Восстановительные процессы обычно сопровождаются образованием и накоплением сероводорода, а также метана. Это, в частности, делает практически безжизненными глубинные слои болот, а также значительные придонные толщи воды (например, в Черном море). Данный процесс в связи с деятельностью человека прогрессирует.

4. Концентрационная - способность организмов концентрировать в своем теле рассеянные химические элементы, повышая их содержание по сравнению с окружающей организмы средой на несколько порядков (по марганцу, например, в теле отдельных организмов - в миллионы раз). Результат концентрационной деятельности - залежи горючих ископаемых, известняки, рудные месторождения и т. п. Эту функцию живого вещества всесторонне изучает наука биоминералогия. Организмы-концентраторы используются для решения конкретных прикладных вопросов, например для обогащения руд интересующими человека химическими элементами или соединениями.

5. Деструктивная - разрушение организмами и продуктами их жизнедеятельности как самих остатков органического вещества, так и косных веществ. Основной механизм этой функции связан с круговоротом веществ. Наиболее существенную роль в этом отношении выполняют низшие формы жизни - грибы, бактерии (деструкторы, редуценты).

6. Транспортная - перенос вещества и энергии в результате активной формы движения организмов. Часто такой перенос осуществляется на колоссальные расстояния, например, при миграциях и кочевках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, например, в местах их скопления (птичьи базары и другие колониальные поселения).

7. Средообразующая. Эта функция является в значительной мере интегративной (результат совместного действия других функций). С ней в конечном счете связано преобразование физико-химических параметров среды. Эту функцию можно рассматривать в широком и более узком планах.

В широком понимании результатом данной функции является вся природная среда. Она создана живыми организмами, они же и поддерживают в относительно стабильном состоянии ее параметры практически во всех геосферах.

В более узком плане средообразующая функция живого вещества проявляется, например, в образовании почв. В. И. Вернадский, как отмечалось выше, почву называл биокосным телом, подчеркивая тем самым большую роль живых организмов в ее создании и существовании. Роль живых организмов в образовании почв убедительно показал Ч. Дарвин в работе «Образование растительного слоя земли деятельностью дождевых червей». Известный ученый В. В. Докучаев назвал почву «зеркалом ландшафта», подчеркивая тем самым, что она продукт основного ландшафтообразующего элемента - биоценозов и, прежде всего, растительного покрова.

Локальная средообразующая деятельность живых организмов и особенно их сообществ проявляется также в трансформации ими метеорологических параметров среды. Это прежде всего относится к сообществам с большой массой органического вещества (биомассой). Например, в лесных сообществах микроклимат существенно отличается от открытых (полевых) пространств. Здесь меньше суточные и годовые колебания температур, выше влажность воздуха, ниже содержание углекислоты в атмосфере на уровне полога, насыщенного листьями (результат фотосинтеза), и повышенное ее количество в припочвенном слое (следствие интенсивно идущих процессов разложения органического вещества на почве и в верхних горизонтах почвы).

8. Наряду с концентрационной функцией живого вещества выделяется противоположная ей по результатам - рассеивающая. Она проявляется через трофическую (питательную) и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, гибели организмов при разного рода перемещениях в пространстве, смене покровов. Железо гемоглобина крови рассеивается, например, кровососущими насекомыми и т. п.

Важна также информационная функция живого вещества, выражающаяся в том, что живые организмы и их сообщества накапливают определенную информацию, закрепляют ее в наследственных структурах и затем передают последующим поколениям. Это одно из проявлений адаптационных механизмов.

В обобщающем виде роль живого вещества сформулирована геохимиком А. Н. Перельманом в виде «Закона биогенной миграции атомов» (В. И. Вернадского): «Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества, или же она протекает в среде, геохимические особенности которой обусловлены живым веществом...» В соответствии с этим законом понимание процессов, протекающих в биосфере, невозможно без учета биотических и биогенных факторов. Воздействуя на живое население Земли, люди тем самым изменяют условия миграции атомов, а следовательно, воздействуют на основополагающие геологические процессы.

III.3. Основные свойства биосферы

Биосфере, как и составляющим ее другим экосистемам более низкого ранга, присуща система свойств, которые обеспечивают ее функционирование, саморегулирование, устойчивость и другие параметры. Рассмотрим основные из них.

1. Биосфера - централизованная система. Центральным звеном ее выступают живые организмы (живое вещество). Это свойство всесторонне раскрыто В. И. Вернадским, но, к сожалению, часто не дооценивается человеком и в настоящее время: в центр биосферы или ее звеньев ставится только один вид - человек (антропоцентризм).

2. Биосфера - открытая система. Ее существование немыслимо без поступления энергии извне. Она испытывает воздействие космических сил, прежде всего солнечной активности. Впервые представления о влиянии солнечной активности на живые организмы (гелиобиология) разработаны А. Л. Чижевским (1897-1964), который показал, что многие явления на Земле и в биосфере тесно связаны с активностью солнца. Все больше накапливается данных, свидетельствующих, что резкое увеличение численности отдельных видов или популяций («волны жизни») - результат изменения солнечной активности. Высказываются мнения, что солнечная активность оказывает воздействие на многие геологические процессы (катаклизмы, катастрофы), а также на социальную активность человеческого общества или отдельных его этносов.

В частности, есть сторонники той точки зрения, что серия аномальных явлений, имевших место, например, в 1989 году, связана с высокой солнечной активностью. На протяжении только 1,5-2 месяцев наблюдались такие аномальные явления, как землетрясение на острове Итуруп, авария на продуктопроводе в районе Челябинска, гибель атомной подводной лодки «Комсомолец», события в Тбилиси, активизация военных действий в Нагорном Карабахе и др.

3. Биосфера - саморегулирующаяся система, для которой, как отмечал В. И. Вернадский, характерна организованность. В настоящее время это свойство называют гомеостазом, понимая под ним способность возвращаться в исходное состояние, гасить возникающие возмущения включением ряда механизмов. Гомеостатические механизмы связаны в основном с живым веществом, его свойствами и функциями, рассмотренными выше. Биосфера за свою историю пережила ряд таких возмущений, многие из которых были значительными по масштабам, и справлялась с ними (извержения вулканов, встречи с астероидами, землетрясения, горообразование и т. п.) благодаря действию гомеостатических механизмов и, в частности, принципа, который в настоящее время носит название Ле Шателье-Брауна: при действии на систему сил, выводящих ее из состояния устойчивого равновесия, последнее смещается в том направлении, при котором эффект этого воздействия ослабляется.

Опасность современной экологической ситуации связана прежде всего с тем, что нарушаются многие механизмы гомеостаза и принцип Ле Шателье-Брауна, если не в планетарном, то в крупных региональных планах. Их следствие - региональные кризисы. В стадию глобального кризиса биосфера, к счастью, еще, по-видимому, не вступила. Но отдельные крупные возмущения она уже гасить не в силах. Результатом этого является либо распад экосистем (например, расширяющиеся площади опустыненных земель), либо появление неустойчивых, практически лишенных свойств гомеостаза систем типа агроценозов или урбанизированных (городских) комплексов. Человечеству, к сожалению, отпущен крайне малый промежуток" времени для того, чтобы не произошел глобальный кризис и следующие за ним катастрофы и коллапс (полный и необратимый распад системы).

4. Биосфера - система, характеризующаяся большим разнообразием. Разнообразие - важнейшее свойство всех экосистем. Биосфера как глобальная экосистема характеризуется максимальным среди других систем разнообразием. Последнее обусловливается многими причинами и факторами. Это и разные среды жизни (водная, наземно-воз-душная, почвенная, организменная); и разнообразие природных зон, различающихся по климатическим, гидрологическим, почвенным, биотическим и другим свойствам; и наличие регионов, различающихся по химическому составу (геохимические провинции); и, самое главное, объединение в рамках биосферы большого количества элементарных экосистем со свойственным им видовым разнообразием.

В настоящее время описано около 2 млн. видов (примерно 1,5 млн. животных и 0,5 млн. растений). Полагают, однако, что число видов на Земле в 2-3 раза больше, чем их описано. Не учтены многие насекомые и микроорганизмы, особенно в тропических лесах, глубинных частях океанов и в других малоосвоенных местообитаниях. Кроме этого, современный видовой состав - это лишь небольшая часть видового разнообразия, которое принимало участие в процессах биосферы за период ее существования. Дело в том, что каждый вид имеет определенную продолжительность жизни (10-30 млн. лет), и поэтому с учетом постоянной смены и обновления видов число видов, принимавших участие в становлении биосферы, исчисляется сотнями миллионов. Считается, что к настоящему времени арену биосферы оставили более 95% видов.

Разнообразие биосферы за счет элементарных экосистем по вертикали обусловливается ярусностью или экогоризонтами растительного покрова и связанных с ними животных организмов, а в горизонтальном направлении неравномерностью распределения организмов и их группировок и связанных с ними факторов (увлажнение, микрорельеф, обеспеченность элементами питания и т. п.).

Для любой природной системы разнообразие - одно из важнейших ее свойств. С ним связана возможность дублирования, подстраховки, замены одних звеньев другими (например, на видовом или популяционном уровнях), степень сложности и прочности пищевых и других связей. Поэтому разнообразие рассматривают как основное условие устойчивости любой экосистемы и биосферы в целом. Это свойство настолько универсально, что сформулировано в качестве закона (автор его У. Р. Эшби).

К сожалению, как будет показано во второй части работы, практически вся без исключения деятельность человека подчинена упрощению экосистем любого ранга. Сюда следует отнести и уничтожение отдельньк видов или резкое уменьшение их численности, и создание агроценозов на месте сложных природных систем. Например, полностью исчезли с лица земли степи как тип экосистем и ландшафтов, резко уменьшились площади лесов (до появления человека они занимали примерно 70% суши, а сейчас - не более 20-23%). Идет дальнейшее, невиданное по масштабам уничтожение лесных экосистем в настоящее время, особенно наиболее ценных и сложных тропических, спрямление русел рек, создание промышленных районов и т. п.

Простые экосистемы с малым разнообразием удобны для эксплуатации, они позволяют в короткое время получить значительный объем нужной продукции (например, с сельскохозяйственных полей), но за это приходится рассчитываться снижением устойчивости экосистем, их распадом и деградацией среды.

Не случайно, что биологическое разнообразие отнесено Конференцией ООН по окружающей среде и развитию (1992 г.) к числу трех важнейших экологических проблем, по которым приняты специальные Заявления или Конвенции. Кроме сохранения разнообразия, такие конвенции приняты по сохранению лесов и по предотвращению изменений климата.

Следует подчеркнуть, что значимость разнообразия для природных систем в значительной мере действительна и для социальных структур. Всякое стремление к упрощению социальной структуры общества, перевод ее на однообразие, авторитаризм могут дать кратковременный положительный результат, за которым неминуемо проявляются отрицательные последствия.

Важное свойство биосферы - наличие в ней механизмов, обеспечивающих круговорот веществ и связанную с ним неисчерпаемость отдельных химических элементов и их соединений. При отсутствии круговорота, например, за короткое время был бы исчерпан основной «строительный материал» живого - углерод, который практически единственный способен образовывать межэлементные (углерод-углеродные) связи и создавать огромное количество органических соединений. Только благодаря круговоротам и наличию неисчерпаемого источника солнечной энергии обеспечивается непрерывность процессов в биосфере и ее потенциальное бессмертие. Как отмечал академик-почвовед В. Р. Вильямс, есть единственный способ сделать какой-то процесс бесконечным - пустить его по пути круговоротов. Одно из мощнейших антиэкологических действий человека связано с нарушением и даже разрушением природных круговоротов. Эти вопросы будут рассмотрены во второй части работы (см.разд.II.2).

Вопросы и задания

1. Что понимается под «Биосферой»? Кто является автором термина и автором науки «Биосфера»? Где проходят границы биосферы?

2. Попытайтесь кратко сформулировать сущность учения В. И. Вернадского о биосфере? Какое значение учение о биосфере имеет для понимания и решения современных экологических проблем?

3. Что называется «живым веществом», по В. И. Вернадскому? Какие вещества, кроме живого, В. И. Вернадский выделил в биосфере?

4. Назовите и раскройте основные свойства живого вещества. Сравните их с неживым веществом (косным).

5. Перечислите и раскройте содержание основных функций живого вещества. Каково их значение в процессах планетарного масштаба?

6. Сформулируйте содержание и раскройте сущность закона биогенной миграции атомов (В. И. Вернадского).

7. Назовите и раскройте содержание основных свойств биосферы. Как они связаны с живым веществом?

8. Что является основным условием устойчивости биосферы и других экологических систем?

9. Приведите примеры саморегулирующей способности биосферы.

10. Почему биосфера потенциально бессмертна с энергетической и вещественной точек зрения?

11. Что является центральным звеном биосферы?

IV. ЭКОСИСТЕМНЫЙ УРОВЕНЬ ЖИЗНИ

Экосистемы, как отмечалось в разделе («Основные понятия...»), являются основными звеньями (блоками) биосферы. Там же дается определение термина. На уровне экосистем, особенно элементарном (неделимом), представляется возможным рассмотреть более детально, глубоко и последовательно, чем это сделано на примере биосферы, основные свойства и закономерности их функционирования, важные как в теоретическом плане, так и для решения прикладных задач.

Экосистемы в конечном счете являются основными объектами (ячейками) научно обоснованного природопользования, особенно возобновимыми ресурсами. Их уровень используется для обоснования допустимых объемов изъятия продукции (при сохранении устойчивости), увеличения ее выхода (повышения продуктивности) и для решения других вопросов. В конечномсчете через сохранение отдельных элементарных экосистем решается важнейшая проблема современности - предотвращения или нейтрализации неблагоприятных явлений глобального кризиса, сохранения биосферы в целом.

IV. 1. Организация (структура) экосистем

Для того чтобы экосистемы функционировали (существовали) неограниченно долго и как единое целое, они должны обладать свойствами связывания и высвобождения энергии, а также круговоротом веществ. Экосистема, кроме этого, должна иметь механизмы, позволяющие противостоять внешним воздействиям (возмущениям, помехам), гасить их. Для раскрытия этих механизмов познакомимся с различными видами структур и другими характеристиками (свойствами) экосистем.

Блоковая модель экосистемы. Любая экосистема состоит из двух блоков. Один из них представлен комплексом взаимосвязанных живых организмов - биоценозом, а второй - факторами среды - биотопом или экотопом. В таком случае можно записать: экосистема = биоценоз + биотоп (экотоп). В. Н. Сукачев блоковую модель в ранге биогеоценоза в виде схемы изобразил на рис. 2.

Этот рисунок позволяет наглядно представить, чем отличаются понятия «экосистема» и «биогеоценоз», на что мы обращали внимание в разделе «Основные понятия...». Биогеоценоз, по В. Н. Сукачеву, включает все названные блоки и звенья. Это понятие обычно используют применительно к сухопутным системам. В биогеоценозах обязательно наличие в качестве основного звена растительного сообщества (фитоценоза). Примеры биогеоценозов - однородные участки леса, луга, степи, болота и т. п.

Экосистемы могут и не иметь растительное звено. Таким примером являются системы, формирующиеся на базе разлагающихся органических остатков, гниющих в лесу деревьев, трупов животных и т. п. В них достаточно присутствие зооценоза и микробоценоза или только микробоценоза, способных осуществлять круговорот веществ.

Таким образом, каждый биогеоценоз может быть назван экосистемой, но не каждая экосистема относится к рангу биогеоценоза.

Чтобы снять терминологические неясности, соавтор В. Н. Сукачева по формированию науки биогеоценологии - профессор В. Н. Дылис - образно определил биогеоценоз как экосистему, но только в рамках фитоценоза.

Биогеоценозы и экосистемы могут различаться и по временному фактору (продолжительности существования). Любой биогеоценоз потенциально бессмертен, поскольку все время пополняется энергией за счет деятельности растительных фото- или хемосинтезирующих организмов. В то же время экосистемы без растительного звена заканчивают свое существование одновременно с высвобождением в процессе разложения субстрата всей содержащейся в нем энергии. Надо, однако, иметь в виду, что в настоящее время термины «экосистема» и «биогеоценоз» нередко рассматриваются как синонимы.

Видовая структура экосистем. Под видовой структурой понимается количество видов, образующих экосистему, и соотношение их численностей. Точных данных о количестве видов в экосистемах нет. Это связано с тем, что трудно учесть видовое разнообразие всех мелких организмов (особенно микроорганизмов). Оно исчисляется сотнями и десятками сотен. Видовое разнообразие обычно тем значительнее, чем богаче условия (биотоп) экосистемы. В этом отношении самыми богатыми по видовому разнообразию являются, например, экосистемы дождевых тропических лесов. Только древесные виды исчисляются в них сотнями.

Рис.2

Схема биогеоценоза (экосистемы), по В.Н.Сукачеву

Богатство видов зависит также от возраста экосистем. Молодые экосистемы, возникающие, например, на таком изначально безжизненном субстрате, как отвалы пород, извлекаемые из глубинных слоев земной коры при добыче полезных ископаемых, крайне бедны видами. В дальнейшем по мере развития экосистем их видовое богатство увеличивается. Но в хорошо сформировавшихся экосистемах оно может несколько уменьшаться. К тому времени обычно выделяется один или 2-3 вида, которые явно преобладают по численности особей. Например, в еловом лесу - ель, в смешанном - ель, береза и осина, в степи - ковыль и типчак. Эти виды занимают большую часть пространства, оставляя меньше места для других видов.

Виды, явно преобладающие по численности особей, носят название доминантных (лат. доминантис - господствующий). Наряду с доминантами в экосистемах выделяются виды-эдификаторы (лат. эдификатор - строитель). К ним относят те виды, которые являются основными образователями среды. Обычно вид-доминант одновременно является и эдификатором. Например, ель в еловом лесу наряду с доминантностью обладает высокими эдификаторными свойствами. Они выражаются в ее способности сильно затенять почву, создавать кислую среду своими корневыми выделениями и при разложении мертвого органического вещества, образовывать специфические для кислой среды подзолистые почвы. Вследствие высоких эдификаторных свойств ели под ее пологом могут жить только виды растений, которые способны мириться со скудным освещением (теневыносливые и тенелюбивые). В то же время под пологом елового леса доминантным видом может быть, например, черника, но она не является существенным эдификатором.

Видовое разнообразие - очень важное свойство экосистем. С ним, как отмечалось выше, связана устойчивость систем к неблагоприятным факторам среды. Разнообразие обеспечивает как бы подстраховку, дублирование устойчивости. Вид, который присутствует в числе единичных экземпляров, при неблагоприятных условиях для широко представленного вида, в том числе и доминантного, может резко увеличить свою численность и таким образом заполнить освободившееся пространство (экологическую нишу), сохранив экосистему как единое целое.

Видовую структуру обычно используют для оценки условий местопроизрастания по растениям-индикаторам. Так, для лесной зоны кислица указывает на условия увлажнения, близкие к оптимальным, и значительное богатство почв питательными минеральными веществами; черника - на несколько избыточное увлажнение и некоторый дефицит элементов минерального питания; брусника - на дефицит увлажнения и почвенного плодородия; мхи (кукушкин лен и особенно сфагнум) - на чрезмерно избыточное увлажнение, дефицит минеральных веществ, недостаток кислорода для дыхания корней и наличие процессов торфообразования. Наряду с индикаторами меняется состав и других видов, произрастающих под пологом эдификаторов.

Названия экосистем (биогеоценозов). По растениям-эдификаторам или доминантам и растениям-индикаторам обычно называют биогеоценозы (экосистемы). Лесоводы их определяют как типы леса (например, ельники-кисличники, ельники-черничники, ельнико-сфагновые и др.). По такому же принципу классифицируются и называются другие экосистемы. Например, для степей выделяются типчаково-ковыльные, злаково-разнотравные и другие системы.

Трофическая (функциональная) структура экосистем. Цепи питания. Любая экосистема включает несколько трофических (пищевых) уровней или звеньев. Первый уровень представлен растениями. Их называют автотрофами (греч. аутос - сам; трофо - пища) или продуцентами (лат. продуцена - создающий). Второй и последующие уровни представлены животными. Их называют гетеротрофами (греч. геторос - другой) или консумен-тами. Последний уровень в основном представлен микроорганизмами и грибами, питающимися мертвым веществом. Их называют редуцентами (лат. редуцере - возвращать). Они разлагают органическое вещество до исходных минеральных элементов.

Взаимосвязанный ряд трофических уровней представляет цепь питания, или трофическую цепь (рис. 3). Главное свойство цепи питания - осуществление биологического круговорота веществ и высвобождение запасенной в органическом веществе энергии. Важно подчеркнуть, что цепь питания не всегда может быть полной. В ней могут отсутствовать растения (продуценты). Такая цепь питания характерна, как отмечалось выше, для сообществ, формирующихся на базе разложения животных или растительных остатков, например, накапливающихся в лесах на почве (лесная подстилка).

В цепи питания очень часто отсутствуют или представлены небольшим количеством животные (гетеротрофы). Например, в лесах отмирающие растения или их части (ветви, листья и др.) сразу включаются в звено редуцентов, которые завершают круговорот.

Исходя из положения: разнообразие - синоним устойчивости, можно заключить, что экосистемы с более длинными цепями питания характеризуются повышенной надежностью и более интенсивным круговоротом веществ.

IV.2. Связи организмов в экосистемах

Ни один организм в природе не существует вне связей со средой и другими организмами. Эти связи - основное условие функционирования экосистем. Через них, как было показано выше, осуществляется образование цепей питания, регулирование численности организмов и их популяций, реализация механизмов устойчивости систем и другие явления. В процессе взаимосвязей происходит поглощение и рассеивание энергии и в конечном счете осуществляются средообразующие, средоохранные и средостабилизирующие функции систем.

Подобные экосистемные связи обусловлены всем ходом эволюционного процесса. По этой причине и любое их нарушение не остается бесследным, требует длительного времени для восстановления. В связи с этим экологически обусловленное поведение человека в природе невозможно без знакомства с этими связями и последствиями их нарушения. Целесообразно выделять взаимосвязи и взаимоотношения организмов в природе (экосистемах) как различные понятия.

Взаимосвязи организмов. Взаимосвязи обычно классифицируются по «интересам», на базе которых организмы строят свои отношения.

Самый распространенный тип связей базируется на интересах питания. Такие связи носят название пищевых или трофических (греч. трофо - питание). В данный тип связей выделяется питание одного организма другим или продуктами его жизнедеятельности (например, экскрементами), питание сходной пищей (например, мертвым органическим веществом). Этим типом связей объединяются растения и насекомые, опыляющие их цветки. На базе трофических связей возникают цепи питания.

Связи, основанные на использовании местообитаний, носят название топических (греч. топос - место). Например, топические связи возникают между животными и растениями, которые предоставляют им убежище или местообитание (насекомые, прячущиеся в расщелинах коры деревьев или живущие в гнездах птиц, растения, поселяющиеся на стволах деревьев (но не паразиты). Не только трофическими, но и топическими отношениями связаны паразиты с организмами, на которых они паразитируют.

Рис.3

Трофическая (функциональная) структура экосистемы (цепь питания) и круговорот вещества в ней

Следующий тип связей носит название форических (лат. форас -наружу, вон). Они возникают в том случае, если одни организмы участвуют в распространении других или их зачатков (семян, плодов, спор). Животными это распространение может осуществляться как на наружных покровах, так и в пищеварительном тракте.

Выделяют также тип связей, которые носят название фабрических (лат. фабрикатио - изготовление). Для них характерно использование одними организмами других или продуктов их жизнедеятельности, частей (например, растений, перьевого покрова, шерсти, пуха) для постройки гнезд, убежищ и т. п.

Взаимоотношения организмов. Данная классификация строится по принципу влияния, которое оказывают одни организмы на другие в процессе взаимных контактов. Эти взаимоотношения можно обозначить математическими значками «+», «–», «0» (положительно, отрицательно, нейтрально).

Если взаимоотношения обоим партнерам выгодны, они обозначаются значками (+,+) и носят название симбиоза или мутуализма. Степень этих связей различна. В ряде случаев организмы настолько тесно связаны, что функционируют как единый организм. Например, лишайники, представляющие симбиоз гриба и водоросли. Водоросль поставляет грибу продукты фотосинтеза, а гриб для водоросли является поставщиком минеральных веществ и, кроме того, субстратом, на котором она живет. В то же время сожительство грибов с корнями растений (микориза) носит хотя и взаимовыгодные, но не в такой степени тесные взаимоотношения. Тип взаимовыгодных отношений широко распространен. Сюда относятся и микроорганизмы, населяющие пищеварительный тракт животных, способствуя усвоению пищи; и, в ряде случаев, травоядные животные. Установлено, что исключение поедания трав животными может иметь следствием оскудение растительных сообществ, снижение ими продуктивности и устойчивости. Даже умеренное объедание листьев древесных растений насекомыми или их гусеницами может быть положительным не только для животных, но и для растений.

Взаимоотношения, которые положительны для одного вида и отрицательны для другого (+,-), характеризуются как хищничество и паразитизм. Хищник и паразит обычно приспосабливаются к использованию других организмов (их жертв и хозяев), а последние, в свою очередь, имеют адаптации, которые сохраняют им жизнь. Эти типы взаимоотношений обычно играют большую роль в регулировании численности организмов. Интенсивное размножение хищников и паразитов обычно имеет следствием уменьшение численности их жертв или хозяев.

В свою очередь, уменьшение численности жертв и хозяев подрывает кормовую базу хищников и паразитов, что ведет к сокращению их численности и т. д. В конечном счете имеет место обычно пульсирующая численность организмов, вступающих в такие типы взаимоотношений.

Хотя взаимоотношения типа хищничества и паразитизма сходны по результатам влияния на численность особей, они резко различаются по образу жизни и адаптациям. Во взаимоотношениях хищник-жертва оба организма постоянно совершенствуются: первый в плане успешности охоты, второй - в отношении самосохранения. И в том и в другом случае требуется быстрая реакция, высокая скорость передвижения, хорошее зрение, обоняние и т. п.

Во втором типе взаимоотношений у паразита адаптации идут по пути специализации структур на использование хозяина как источника пищи и «благоустроенного» местообитания. Результатом этого является упрощение многих органов (пищеварительный тракт, накожные покровы, органы передвижения, чувств и др.). Вместе с тем, поскольку жизнь паразита очень тесно связана с хозяином, он адаптирован на выживание во внешней среде после смерти хозяина. Достигается это за счет большого количества зачатков (семян, спор, цист и т. п.), обычно долго сохраняющихся в среде.

Адаптации хозяина направлены, как правило, на уменьшение вреда от паразита. Это проявляется в выработке активного иммунитета, заключении внутренних паразитов в различного вида капсулы (галлы, цецидии и т. п.).

В ряде случаев адаптации паразитов и хозяев приводят к их взаимовыгодным отношениям типа симбиоза. Есть основание полагать, что в большинстве случаев симбиоз (мутуализм) вырос из паразитизма.

Взаимоотношения, невыгодные обоим партнерам (-,-), носят название конкуренции. Последняя тем сильнее, чем ближе потребности организмов к фактору или условию, за которые они конкурируют. В этом отношении наиболее близки интересы организмов одного вида, и, следовательно, внутривидовая конкуренция рассматривается как более острая по сравнению с межвидовой. Однако данное положение противоречит тому факту, что практически все механизмы существования вида направлены на его выживание. Такое противоречие решается тем, что на внутривидовом уровне есть механизмы, которые позволяют снять остроту конкурентной борьбы, в том числе жертвуя частью особей (см. разд.V.2). Конкуренция и взаимоотношения типа хищник-жертва являются основными в совершенствовании видов, в то время как взаимоотношения типа мутуализма (симбиоза) способствуют оптимизации жизненных процессов, более полному освоению среды.

Менее распространенным типом взаимоотношений является комменсализм (франц. комменсал - сотрапезник) - отношения, положительные для одного и безразличные для другого партнера (+,0), его иногда делят на нахлебничество, когда один организм поедает остатки пищи со «стола» другого (крупного) организма (например, акулы и сопровождающие их мелкие рыбы; львы и гиены) и квартиранство, или синойкийю (греч. синойкос -сожительство), когда одни организмы используют другие как «квартиру», убежище. Например, молодь некоторых морских рыб прячется под зонтик из щупалец медуз, или некоторые насекомые живут в норах животных, гнездах птиц, используя их только для укрытия.

Не часто встречается также аменсализм (лат. аменс - безрассудный, безумный) - отрицательный для одного организма и безразличный для другого (-,0). Например, светолюбивое растение, попавшее под полог леса. Отношения, при которых организмы, занимая сходные местообитания, практически не оказывают влияния друг на друга, носят название нейтрализма (0,0). Например, белки и лоси в лесу. Сохранение разнообразия связей - важнейшее условие устойчивости экосистем.

IV.3. Экологическая ниша

Для понимания различного вида существующих связей в экосистемах и обусловленности механизмов их функционирования важно познакомиться с одним из основополагающих понятий экологии - экологической нишей.

Каждый вид или его части (популяции, группировки различного ранга) занимают определенное место в окружающей их среде. Например, определенньш вид животного не может произвольно менять пищевой рацион или время питания, место размножения, убежища и т. п. Для растений подобная обусловленность условий выражается, например, через светолюбие или тенелюбие, место в вертикальном расчленении сообщества (приуроченность к определенному ярусу), время наиболее активной вегетации. Например, под пологом леса одни растения успевают закончить основной жизненный цикл, завершающийся созреванием семян, до распускания листьев древесного полога (весенние эфемеры). В более позднее время их место занимают другие, более теневыносливые растения. Особая группа растений способна на быстрый захват свободного пространства (растения-пионеры), но отличается низкой конкурентной способностью и поэтому быстро уступает свое место другим (более конкурентоспособным) видам.

Приведенные примеры иллюстрируют экологическую нишу или отдельные ее элементы. Под экологической нишей понимают обычно место организма в природе и весь образ его жизнедеятельности, или, как говорят, жизненный статус, включающий отношение к факторам среды,видам пищи, времени и способам питания, местам размножения, укрытий и т. п. Это понятие значительно объемнее и содержательнее понятия «местообитание». Американский эколог Одум образно назвал местообитание «адресом» организма (вида), а экологическую нишу - его «профессией». На одном местообитании живет, как правило, большое количество организмов разных видов. Например, смешанный лес - это местообитание для сотен видов растений и животных, но у каждого из них своя и только одна «профессия» - экологическая ниша. Так, сходное местообитание, как отмечалось выше, в лесу занимают лось и белка. Но ниши их совершенно разные: белка живет в основном в кронах деревьев, питается семенами и плодами, там же размножается и т. п. Весь жизненный цикл лося связан с подпологовым пространством: питание зелеными растениями или их частями, размножение и укрытие в зарослях и т. п.

Если организмы занимают разные экологические ниши, они не вступают обычно в конкурентные отношения, сферы их деятельности и влияния разделены. В таком случае отношения рассматриваются как нейтральные.

Вместе с тем в каждой экосистеме имеются виды, которые претендуют на одну и ту же нишу или ее элементы (пищу, укрытия и пр.). В таком случае неизбежна конкуренция, борьба за обладание нишей. Эволюционно взаимоотношения сложились так, что виды со сходными требованиями к среде не могут длительно существовать совместно. Эта закономерность не без исключений, но она настолько объективна, что сформулирована в виде положения, которое получило название «правило конкурентного исключения». Автор этого правила эколог Г. Ф. Гаузе. Звучит оно так: если два вида со сходными требованиями к среде (питанию, поведению, местам размножения и т. п.) вступают в конкурентные отношения, то один из них должен погибнуть либо изменить свой образ жизни и занять новую экологическую нишу. Иногда, например, чтобы снять острые конкурентные отношения, одному организму (животному) достаточно изменить время питания, не меняя самого вида пищи (если конкуренция возникает на почке пищевых отношений), или найти новое местообитание (если конкуренция имеет место на почве данного фактора) и т. п.

Из других свойств экологических ниш отметим, что организм (вид) может их менять на протяжении своего жизненного цикла. Наиболее яркий пример в этом отношении - насекомые. Так, экологическая ниша личинок майского жука связана с почвой, питанием корневыми системами растений. В то же время экологическая ниша жуков связана с наземной средой, питанием зелеными частями растений.

Сообщества (биоценозы, экосистемы) формируются по принципу заполнения экологических ниш. В природном сформировавшемся сообществе обычно все ниши заняты. Именно в такие сообщества, например в долгосуществующие (коренные) леса, вероятность внедрения новых видов очень мала. В то же время следует иметь в виду, что занятость экологических ниш в определенной мере понятие относительное. Все ниши обычно освоены теми организмами, которые характерны для данного региона. Но если организм приходит извне (например, заносятся семена или другие зачатки) случайно или преднамеренно, например в результате внедрения человеком новых видов (интродукция, акклиматизация), то он может найти для себя свободную нишу в связи с тем, что на нее не было претендентов из набора существующих видов. В таком случае обычно неизбежно быстрое увеличение численности (вспышка) вида-пришельца, поскольку он находит крайне благоприятные условия (свободную нишу) и, в частности, не имеет врагов (хищников, паразитов или других организмов, которые им питаются). Такие явления не единичны. Например, размножение кроликов, завезенных в Австралию; перемещение ондатры из Азии в европейскую часть; интенсивное продвижение колорадского жука в новые районы.

С экологическими нишами в значительной мере связаны жизненные формы организмов. К последним относят группы видов, часто систематически далеко отстоящие, но выработавшие одинаковые морфологические адаптации в результате существования в сходных условиях. Например, сходством жизненных форм характеризуются дельфины (млекопитающие) и интенсивно передвигающиеся в водной среде хищные рыбы. В условиях степей сходными жизненными формами представлены тушканчики и кенгуру (прыгуны). В растительном мире отдельными жизненными формами представлены многочисленные виды деревьев, занимающие в качестве нити верхний ярус, кустарники, существующие под пологом леса, и травы - в напочвенном покрове.

IV.4. Энергетика экосистем

Живые организмы, входящие в экосистемы, для своего существования должны постоянно пополнять и расходовать энергию. Растения, как известно, способны запасать энергию в химических связях в процессе фотосинтеза или хемосинтеза. При фотосинтезе связывается только энергия с определенными длинами волн -380-710 нм. Эту энергию называют фотосинтетически активной радиацией (ФАР). Она по длинам волн близка к видимой части спектра. На эту радиацию обычно приходится около 40% общей солнечной радиации, достигающей земной поверхности. Остальная часть спектра относится либо к более короткой (ультрафиолетовой), либо к более длинной (инфракрасной) радиации. С последней обычно связан тепловой эффект.

Растения в процессе фотосинтеза связывают лишь небольшую часть солнечной радиации. Даже по отношению к фотосинтетически активной - это в среднем для земного шара менее 1%. Только наиболее продуктивные экосистемы, такие как плантации сахарного тростника, тропические леса, посевы кукурузы, в оптимальных условиях могут связывать до 3-5% ФАР. В опытах с кондиционированными условиями по всем факторам среды за короткие периоды времени удавалось достичь эффективности фотосинтеза по усвоению солнечной энергии порядка 8-10% ФАР.

Растения являются первичными поставщиками энергии для всех других организмов в цепях питания. Существуют определенные закономерности перехода энергии с одного трофического уровня на другой вместе с потребляемой пищей. Основная часть энергии, усвоенной консументом с пищей, расходуется на его жизнеобеспечение (движение, поддержание температуры тела и т. п.). Эту часть энергии рассматривают как траты на дыхание, с которым в конечном счете связаны все возможности ее высвобождения из химических связей органического вещества.

Часть энергии переходит в тело организма-потребителя вместе с увеличивающейся массой (приростом, продукцией). Некоторая доля пищи, а вместе с ней и энергия не усваиваются организмом. Они выводятся в окружающую среду вместе с продуктами жизнедеятельности (экскрементами). В последующем эта энергия высвобождается другими организмами, которые потребляют продукты выделения.

Баланс пищи и энергии для отдельного животного организма можно, таким образом, представить в виде следующего уравнения:

Эп = Эд +Эпр +Эп.в ,

где Эп - энергия потребленной пищи, Эд - энергия дыхания или обеспечения жизнедеятельности организма, включая движение, поддержание температуры тела, сердцебиение и т. п., Эпр - энергия прироста (запасенная в теле организма-потребителя), Эп.в - энергия продуктов выделения (в основном экскрементов).

Количество энергии, расходуемой организмами на различные цели, неоднозначно. В периоды интенсивной жизнедеятельности взрослого организма в теле его может совершенно не фиксироваться энергия. Наоборот, траты ее в ряде случаев превышают поступление (организм теряет вес). В то же время в периоды интенсивного роста организмов, особенно в периоды размножения (беременности), в теле фиксируется значительное количество энергии.

Выделение энергии с экскрементами у плотоядных животных (например, хищников) невелико, у травоядных оно более значительно, а гусеницы некоторых насекомых, питающиеся растениями, выделяют с экскрементами до 70% энергии. Однако при всем разнообразии расходов энергии в среднем максимальны траты на дыхание, которые в сумме с неусвоенной пищей составляют около 90% от потребленной. Поэтому переход энергии с одного трофического уровня на другой в среднем принимается близким к 10% от энергии, потребленной с пищей. Эта закономерность рассматривается обычно как «правило десяти процентов».

Данное правило надо оценивать как относительное, ориентировочное. Вместе с тем из него следует, что цепь питания имеет ограниченное количество уровней, обычно не более 4—5. Пройдя через них, практически вся энергия оказывается рассеянной.

Закономерности потока и рассеивания энергии имеют важные в практическом отношении следствия. Во-первых, с энергетической точки зрения крайне нецелесообразно потребление животной продукции, особенно с высоких уровней цепей питания. Образование этой продукции связано с большими потерями (рассеиванием) энергии. Особенно велики потери энергии при переходе с первого трофического уровня на второй, от растений к травоядным животным.

Часто в экологической литературе рассматривается в качестве примера цепь питания: люцерна-телята-мальчик. Показано, что если бы мальчик весом 48 кг питался только телятиной, то за год ему потребовалось бы для обеспечения жизнедеятельности 4,5 теленка, для питания которых, в свою очередь, необходим урожай люцерны с площади 4 га весом 8211 кг. Такова энергетическая цена животной пищи.

Во-вторых, чтобы сократить вероятность дефицита продуктов питания для интенсивно возрастающей численности населения (по закономерности, близкой к экспоненте), надо, чтобы в рационе людей больший удельный вес занимала растительная пища. Энергетически идеально - вегетарианство.

В-третьих, для увеличения КПД использования пищи при получении животноводческой продукции в условиях культурного хозяйства очень важно уменьшить основную статью нерационального расходования энергии - ее траты на дыхание. Это возможно за счет поддержания оптимального температурного режима в животноводческих помещениях, ограничения подвижности животных и, естественно, сбалансированности кормового рациона по различным элементам питания, а также применения различных биотехнических приемов (умеренные добавки стимуляторов роста, веществ, способствующих улучшению аппетита и т. п.).

Споры о допустимо возможной численности населения с точки зрения обеспечения питанием в значительной мере относительны, если они не учитывают, какой в среднем удельный вес в рационе отводится животной и растительной пище. Если исходить из рациона питания зажиточной части населения, потребляющей мяса 80-100 кг в год на одного человека, то явно невозможно обеспечение таким рационом современной численности населения Земли (около 6 млрд. человек). Если же исходить из необходимости обеспечения минимальных потребностей жизнедеятельности организма, при настоящем производстве продуктов питания возможно исключить голод и, кроме того, прокормить на 3-4 миллиарда населения больше современного. Для этого требует решения вопрос более сбалансированного распределения продуктов питания. Переход на вегетарианство и тем более расширение ассортимента растений, используемых в пищу, может обеспечить жизнедеятельность (с энергетической точки зрения) численности населения в 2-3 раза больше современной. Ясно, однако, что при этом останутся нерешенными многие медико-биологические проблемы здоровья и долголетия, а также допустимые пределы антропогенных нагрузок на экосистемы и биосферу в целом.

IV.5. Продуктивность и биомасса экосистем

Одно из важнейших свойств организмов, их популяций и экосистем в целом - способность создавать органическое вещество, которое называют продукцией. Образование продукции в единицу времени (час, сутки, год) на единице площади (метры квадратные, гектар) или объема (в водных экосистемах) характеризует продуктивность экосистем. Продукция и продуктивность могут определяться для экосистем в целом или для отдельных групп организмов (растений, животных, микроорганизмов) или видов.

Продукцию растений называют первичной, а животных - вторичной. Наряду с продукцией различают биомассу организма, групп организмов или экосистем в целом. Под ней понимают всю живую органическую массу, которая содержится в экосистеме или ее элементах вне зависимости от того, за какой период она образовалась и накопилась. Биомасса и продукция (продуктивность) обычно выражаются через абсолютно сухой вес.

Нетрудно понять, что величина биомассы экосистем или их звеньев во многом зависит не столько от их продуктивности, сколько от продолжительности жизни организмов и экосистем в целом. Например, большая биомасса характерна для лесных экосистем: в тропических лесах она достигает 800-1000 т/га, в лесах умеренной зоны -300-400 т/га, а в травянистых сообществах обычно не выходит за пределы 3-5 т/га. В то же время лесные и травянистые (например, луговые) экосистемы в сходных условиях существования по продуктивности могут мало различаться или различаются в сторону большей продуктивности как лесных, так и травянистых сообществ.

Для экосистем, представленных однолетними организмами, их годичная продуктивность и биомасса практически совпадают. Для древесных сообществ они резко различаются. Вообще соотношение биомассы и годовой продукции экосистем можно выразить формулой:

где Б - биомасса в данный момент времени, П - годовая продукция, Д - дыхание. Под последним применительно к экосистемам понимается вся сумма живого вещества, отчуждаемого на процессы разложения в результате гибели целых организмов (отпад) или их частей - сучьев, коры, листьев, наружных покровов (опад) и потребления гетеротрофами.

Экологические параметры продуктивности. Продукция и биомасса экосистем - это не только ресурс, используемый в пищу или в качестве различных видов сырья (техническое, топливо и т. п.). От этих показателей в прямой зависимости находится средообразующая и средостабилизирующая роль экосистем. Так, с продуктивностью растений и их сообществ тесно связана интенсивность поглощения углекислого газа и выделения кислорода. Для образования одной тонны растительной продукции (абсолютно сухой вес) обычно поглощается 1,5-1,8 т углекислого газа и выделяется 1,2-1,4 т кислорода. Биомасса, в том числе и мертвое органическое вещество, являются основными резервуарами концентрации углерода. На суше это практически единственный фактор вывода углекислого газа из процессов круговорота на длительное время. Часть этого органического вещества и вовсе исключается из круговорота или, как отмечал В. И. Вернадский, «уходит в геологию» (торф, уголь, нефть и т. п.).

Чаще всего в гумидных (влажных) районах фактором, прерывающим круговорот, выступает недостаток кислорода и кислая среда. Здесь основными очагами накопления органики являются болота. На дне глубоких водоемов захоронение органического вещества также обусловливается недостатком кислорода или избытком ядовитых веществ (например, сероводорода). В крайне сухих (аридных) условиях круговорот прерывается чаще всего недостатком влаги.

В связи с тем, что дождевые тропические леса характеризуются максимальной продуктивностью (до 20-25 т/га/год) и биомассой (до 700-1000 т/га), их рассматривают как основные аккумуляторы углерода и обогащения атмосферы кислородом, называя «легкими планеты». В северных лесах, как известно, продуктивность (6-10 т/га/год) и биомасса (300-400 т/га) значительно ниже. Однако на этом основании северным лесам никак нельзя отводить менее значительную роль в положительном балансе кислорода и углекислоты. Наоборот, их роль в этом отношении часто более значительна. Эти вопросы рассмотрены во второй части учебника.

Есть и другие экологические аспекты продуктивности и биомассы экосистем. В частности, чем больше биомасса, тем сильнее ее контакт с окружающей средой и тем значительнее такие средоохранные свойства, как очистка воздуха от пыли и химических агентов, регулирование влагооборотов, гашение шумовых воздействий и т. п.

Продуктивность различных экосистем биосферы. До недавнего времени принималось за аксиому, что основной объем первичной продукции образуется в морях и океанах, на долю которых приходится около 70% поверхности земного шара. Однако по последним данным, полученным в основном в результате осуществления Международной биологической программы (МБП), которая проводилась в 1964-1974 гг., было установлено, что основная масса первичной продукции образуется в экосистемах суши (около 115 млрд. тонн в год) и только около 55 млрд. тонн в год - в экосистемах океана (табл. 2). Дело в том, что внутренние воды океана, расположенные за пределами прибрежной (шельфовой) зоны, по продуктивности близки к пустыням наземных экосистем (10-120 г/м2 за год первичной продукции). Для сравнения отметим, что продуктивность лесов тайги составляет в среднем около 700-800, а влажных тропических лесов - 2000-2200 г/м2 за год.

Второй вопрос, на который важно получить ответ: какие же экосистемы в пределах океана и суши являются наиболее продуктивными?

В. И. Вернадский в свое время выделил очаги наибольшей концентрации жизни, назвав их пленками и сгущениями живого вещества. Под пленками живого вещества понимается его повышенное количество на больших пространствах. В океане обычно выделяют две пленки: поверхностную, или планктонную, и донную, или бентосную. Мощность поверхностной пленки обусловливается в основном эуфотической зоной, то есть тем слоем воды, в котором возможен фотосинтез. Она колеблется от нескольких десятков и сотен метров (в чистых водах) до нескольких сантиметров (в загрязненных водах). Донная пленка образована в основном гетеротрофными экосистемами, и поэтому ее продукция представлена вторичной, а количество ее зависит в основном от поступления органического вещества с поверхностной пленки.

В наземных экосистемах также выделяют две пленки живого вещества. Приземная, заключенная между поверхностью почвы и верхней границей растительного покрова, имеет толщину от нескольких сантиметров (пустыни, тундры, болота и др.) до нескольких десятков метров (леса). Вторая пленка - почвенная. Эта пленка наиболее насыщена жизнью. На 1 м2 почвенного слоя насчитывают миллионы насекомых, десятки и сотни дождевых червей и сотни миллионов микроорганизмов. Толщина данной пленки находится в прямой зависимости от мощности почвенного слоя и его богатства гумусом. В тундрах и пустынях это несколько сантиметров, на черноземах, особенно тучных, - до 2-3 метров.

Повышенные концентрации живого вещества в биосфере обычно приурочены к условиям так называемого «краевого эффекта», или экотонов. Такой эффект возникает на стыках сред жизни или различных экосистем. В приведенных примерах для водных экосистем поверхностная пленка - это зона контакта атмосферы и водной среды, донная - водной толщи и донных отложений, почвенная - атмосферы и литосферы.

Таблица 2

Продуктивность и биомасса экосистем материков и океанов земного шара (Уиттекер, 1980)

Примером повышенной продуктивности на стыках экосистем могут служить переходные экосистемы между лесом и полем («опушечный эффект»), а в водных средах - экосистемы, возникающие в эстуариях рек (места впадения их в моря, океаны и озера и т. п.).

Этими же закономерностями во многом обусловливаются упоминавшиеся выше локальные сгущения больших масс живого вещества (наиболее высокопродуктивные экосистемы).

Обычно в океане выделяют следующие сгущения жизни:

1. Прибрежные. Они располагаются на контакте водной и наземно-воздушной среды. Особенно высокопродуктивны экосистемы эстуариев. Протяженность этих сгущений тем значительнее, чем больше вынос реками органических и минеральных веществ с суши.

2. Коралловые рифы. Высокая продуктивность этих экосистем связана прежде всего с благоприятным температурным режимом, фильтрационным типом питания многих организмов, видовым богатством сообществ, симбиотическими связями и другими факторами. 3. Саргассовые сгущения. Создаются большими массами плавающих водорослей, чаще всего саргассовых (в Саргассовом море) и филлофорных (в Черном море). 4. Апвеллинговые. Эти сгущения приурочены к районам океана, где имеет место восходящее движение водных масс от дна к поверхности (апвеллинг). Они несут много донных органических и минеральных отложений и в результате активного перемешивания хорошо обеспечены кислородом. Эти высокопродуктивные экосистемы являются одним из основных районов промысла рыб и других морепродуктов. 5. Рифтовые глубоководные (абиссальные) сгущения. Эти экосистемы были открыты только в 70-х годах настоящего столетия. Они уникальны по своей природе: существуют на больших глубинах (2-3 тыс. метров). Первичная продукция в них образуется только в результате процессов хемосинтеза за счет высвобождения энергии из сернистых соединений, поступающих из разломов дна (рифтов). Высокая продуктивность здесь обязана прежде всего благоприятным температурным условиям, поскольку разломы одновременно являются очагами выхода из недр подогретых (термальных) вод. Это единственные экосистемы, не использующие солнечную энергию. Они живут за счет энергии недр Земли.

На суше к наиболее высокопродуктивным экосистемам (сгущениям живого вещества) относят: 1) экосистемы берегов морей и океанов в районах, хорошо обеспеченных теплом; 2) экосистемы пойм, периодически заливаемые водами рек, которые откладывают ил, а вместе с ним органические и биогенные вещества, 3) экосистемы небольших внутренних водоемов, богатые питательными веществами, а также 4) экосистемы тропических лесов. Продуктивность других экосистем видна из табл.3. Выше мы уже отмечали, что человек должен стремиться сохранить высокопродуктивные экосистемы - этот мощнейший каркас биосферы. Его разрушение связано с наиболее значительными отрицательными последствиями для всей биосферы.

Что касается вторичной (животной) продукции, то она заметно выше в океане, чем в наземных экосистемах. Это связано с тем, что на суше в звено консументов (травоядных) в среднем включается лишь около 10% первичной продукции, а в океане - до 50%. Поэтому, несмотря на более низкую первичную продуктивность океана, чем суши, по массе вторичной продукции эти экосистемы примерно равны (см. табл. 2).

В наземных экосистемах основную продукцию (до 50%) и особенно биомассу (около 90%) дают лесные экосистемы. Вместе с тем основная масса этой продукции поступает сразу в звено деструкторов и редуцентов. Для таких экосистем характерно преобладание детритных (за счет мертвого органического вещества) цепей питания. В травянистых экосистемах (луга, степи, прерии, саванны), как и в океане, значительно большая часть первичной продукции прижизненно отчуждается фитофагами (травоядными животными). Такие цепи носят название пастбищных или цепей выедання.

IV.6. Экологические пирамиды

Если количество энергии, продукции, биомасс или численности организмов на каждом трофическом уровне изображать в виде прямоугольников в одном и том же масштабе, то их распределение будет иметь вид пирамид.

Таблица 3

Продуктивность основных экосистем земного шара (по Н. Ф. Реймерсу, 1990)

Правило пирамид энергии можно сформулировать следующим образом: количество энергии, содержащейся в организмах на любом последующем трофическом уровне цепи питания, меньше ее значений на предыдущем уровне (рис. 4а).

Рис. 4

Пирамиды энергии и продукции для экосистем суши и океана - а и биомасс для экосистем океана — б

Количество продукции, образующейся в единицу времени на разных трофических уровнях, подчиняется тому же правилу, которое характерно для энергии: на каждом последующем уровне количество продукции меньше, чем на предыдущем (рис. 4а). Более того, суммарное количество вторичной продукции (как и содержащейся в ней энергии), образующейся на разных трофических уровнях, меньше первичной продукции. Эта закономерность абсолютна и легко объясняется исходя из правила передачи энергии в цепях питания. Следует также иметь в виду, что различия в количестве энергии, содержащейся в единице веса (объема) отдельных видов продукции, невелики: 1 г (сухой вес) растительной и животной продукции содержит чаще всего от 3 до 5 калорий энергии.

Пирамиды биомасс сходны с таковыми для энергии и продукции, но только для сухопутных экосистем. Для водных экосистем закономерности соотношения биомасс на различных трофических уровнях имеют свою специфику. Здесь пирамида биомасс как бы перевернута (рис. 4б), то есть биомасса животных, потребляющих растительную продукцию, больше биомассы растительных организмов. Причина этого - резкие различия в продолжительности жизни организмов сравниваемых уровней. Первый уровень (продуценты) представлен в основном фитопланктоном с крайне коротким периодом жизни (несколько дней или часов), второй -более долгоживущими организмами - зоопланктоном или другими животными, питающимися фитопланктоном и зоопланктоном (рыбы, моллюски, киты и т. п.). Они накапливают биомассу годами и десятилетиями.

Пирамида чисел свидетельствует, что количество организмов, как правило, уменьшается от основания к вершине. Это правило не абсолютно и применимо в основном к цепям питания, не включающим редуцентов. Примером может служить пищевая цепь: насекомые и их личинки - насекомоядные животные - хищники.

IV.7. Динамика и развитие экосистем. Сукцессии

Любая экосистема, приспосабливаясь к изменениям внешней среды, находится в состоянии динамики. Эта динамика может касаться как отдельных звеньев экосистем (организмов, популяций, трофических групп), так и системы в целом. При этом динамика может быть связана, с одной стороны, с адаптациями к факторам, которые являются внешними по отношению к экосистеме, а с другой - к факторам, которые создает и изменяет сама экосистема.

Самый простой тип динамики - суточный. Он связан с изменениями в фотосинтезе и транспирации (испарении воды) растений. В еще большей мере эти изменения связаны с поведением животного населения. Одни из них более активны днем, другие - в сумерки, третьи - ночью. Аналогичные примеры можно привести по отношению к сезонным явлениям, с которыми еще больше связана активность жизнедеятельности организмов.

Не остаются неизменными экосистемы и в многолетнем ряду. Если в качестве примера взять лес или луг, то не трудно заметить, что в разные годы этим экосистемам свойственны свои особенности. В одни годы мы можем наблюдать увеличение численности одних видов (на лугах, например, бывают «клеверные годы», годы с резким увеличением злаков и других видов или групп видов). Из этого следует, что каждый вид индивидуален по своим требованиям к среде, и ее изменения для одних видов благоприятны, а на другие, наоборот, оказывают угнетающее влияние. Сказывается также и периодичность в интенсивности размножения.

Эти изменения в одних случаях могут в какой-то мере повторяться, в других же имеют однонаправленный, поступательный характер и обусловливают развитие экосистемы в определенном направлении.

Периодически повторяющуюся динамику называют циклическими изменениями или флуктуациями, а направленную динамику именуют поступательной или развитием экосистем. Для последнего вида динамики характерным является либо внедрение в экосистемы новых видов, либо смена одних видов другими. В конечном же счете происходят смены биоценозов и экосистем в целом. Этот процесс называют сукцессией (лат. сукцессио - преемственность, наследование). Различают обычно первичные и вторичные сукцессии.

Первичные сукцессии. Под первичной обычно понимается сукцессия, развитие которой начинается на изначально безжизненном субстрате. Ход первичной сукцессии рассмотрим на примере наземных экосистем. Если взять участки земной поверхности, например заброшенные песчаные карьеры, в различных географических районах (в лесной, степной зонах либо среди тропических лесов и т. п.), то для всех этих объектов будут характерны как общие, так и специфические изменения в экосистемах.

В качестве общих закономерностей будет иметь место заселение живыми организмами, увеличение их видового разнообразия, постепенное обогащение почв органическим веществом, возрастание их плодородия, усиление связей между различными видами или трофическими группами организмов, уменьшение числа свободных экологических ниш, постепенное формирование все более сложных биоценозов и экосистем, повышение их продуктивности. Более мелкие виды организмов, особенно растительных, при этом, как правило, сменяются более крупными, интенсифицируются процессы круговорота веществ и т. п. В каждом случае при этом можно выделить последовательные стадии сукцессий, под которыми понимается смена одних экосистем другими, а сукцессионные ряды заканчиваются относительно мало изменяющимися экосистемами. Их называют климаксными (греч. климакс - лестница), коренными или узловыми.

Специфические закономерности сукцессий заключаются прежде всего в том, что каждой из них, как и каждой стадии, присущ тот набор видов, которые, во-первых, характерны для данного региона, а во-вторых, наиболее приспособлены к той или иной стадии развития сукцессионного ряда. Различными будут и завершающие (климаксные) сообщества (экосистемы).

Американский эколог Клементс, наиболее полно разработавший учение о сукцессиях, считает, что в любом обширном географическом районе, который по масштабам можно примерно приравнять к природной зоне (лесная, степная, пустынная и т. п.), каждый ряд завершается одной и той же климаксной экосистемой (моноклимаксом). Такой климакс был назван климатическим. Это, однако, не значит, что для любого участка географической зоны (моноклимакса) характерен один и тот же набор видов. Видовой состав климаксных экосистем может существенно различаться. Общим является лишь то, что эти экосистемы объединяет сходство видов-эдификаторов, то есть тех, которые в наибольшей мере создают среду обитания. Например, для степных экосистем эдификаторами являются плотнокустовые злаки (ковыль и типчак). Для тропических лесов в качестве эдификаторов выступает большое количество древесных видов, создающих сильное затенение для других видов своим пологом.

Для лесной зоны северных и срединных регионов Евразии основными эдификаторами выступают ель или пихта. Из набора всех древесных видов они в наибольшей степени изменяют условия место-произрастания: сильно затеняют подпологовое пространство, создают кислую среду почв и обусловливают процессы их оподзоливания (растворение и вымывание из приповерхностного слоя практически всех минералов, кроме кварца). С этими эдификаторами уживаются только те древесные виды, которые не отстают от них в росте и способны первыми захватить пространство. При сочетании таких условий возможно формирование климаксных смешанных елово-лиственных (пихтово-лиственных), чаще всего с березой и осиной, лесов. Последнее наиболее характерно для зоны смешанных лесов. Для таежной (более северной) зоны более типичны климаксные леса с явным преобладанием только эдификаторов (ель, пихта).

Однако прежде чем сформируется климаксное сообщество (экосистема), ему предшествует, как отмечалось выше, ряд промежуточных стадий или серий. Так, в лесной зоне (рис.5) на исходно безжизненном субстрате здесь сначала появляются организмы-пионеры, например, корковые водоросли, накипные лишайники и некоторые малотребовательные к плодородию субстрата семенные растения. За ними следует стадия растительности, представленная в основном травами, а затем кустарниками и деревьями-пионерами (чаще всего березой, осиной, ивой). Последние характеризуются быстрым ростом, но, отличаясь высоким светолюбием, быстро изреживаются (к 40-50-летнему возрасту). В результате этого под их пологом создаются условия для поселения теневыносливой ели, которая постепенно догоняет в росте стареющие лиственные виды деревьев и выходит в первый ярус. На данной стадии и образуется климаксное смешанное елово-лиственное сообщество или чисто еловый лес со свойственным им набором других видов растений и животных.

Рис. 5

Биогеоценотическая сукцессия на примере смен фитоценозов в лесной зоне

Наряду с теорией моноклимакса существует точка зрения, в соответствии с которой в одном и том же географическом районе может формироваться несколько завершающих (климаксных) экосистем (поликлимакс). Например, в лесной зоне наряду с еловыми и елово-лиственными лесами в качестве климаксных рассматривают также луговые экосистемы, сосновые леса. Однако сторонники моноклимакса считают, что луга в лесной зоне могут длительно существовать только в результате их использования (скашивания, выпаса). При прекращении таких воздействий на смену им неизбежно придут лесные сообщества. Что касается сосновых лесов, то длительное существование их связывается с тем, что они занимают обычно крайне бедные (например, песчаные, щебнистые, сильно заболоченные) местообитания, где ель (более сильный эдификатор) не может внедряться и существовать вследствие более значительной требовательности к почвенному плодородию. Но с течением времени по мере накопления в почве органических веществ и необходимых для жизни минеральных элементов и эти «сосновые местообитания», с точки зрения сторонников моноклимакса, будут заняты еловыми лесами, как обладающими более сильной эдификаторной способностью.

Причины сукцессий. Сукцессионные смены обычно связывают с тем, что существующая экосистема (сообщество) создает неблагоприятные условия для наполняющих ее организмов (почвоутомление, неполный круговорот веществ, самоотравление продуктами выделений или разложения и т. п.). Такие явления реальны, но не объясняют всех случаев смен экосистем. Например, в северных лесах внедрение ели под полог лиственных древесных сообществ связано прежде всего с тем, что она использует биологические свойства этих сообществ по слабому притенению почвы. Сами же почвенные условия остаются не только благоприятными для лиственных древостоев, но и постепенно улучшаются для них (идет накопление питательных веществ, уменьшается кислотность почв и т.п.). Следовательно, здесь нет оснований говорить о самоотравлении или других подобных причинах смен.

Не подтверждается безоговорочно и точка зрения о том, что появление ели под пологом лиственных древостоев связано с тем, что в молодом возрасте она требует затенения. Известно, например, что ель и в молодом возрасте прекрасно растет при полном освещении (значительно лучше, чем под пологом других древесных видов). Об этом, в частности, свидетельствуют многочисленные примеры создания культурных фитоценозов ели (посадкой молодых растений или посевом семян) на открытых площадях.

Наряду с природными факторами, причинами динамики экосистем все чаще выступает человек. К настоящему времени им разрушено большинство коренных (климаксных) экосистем. Например, степи почти полностью распаханы (сохранились только на заповедных участках). Преобладающие площади лесов представлены переходными (временными) экосистемами из лиственных древесных пород (береза, осина, реже ива, ольха и др.). Эти леса обычно называют производными или вторичными. Они, как отмечалось выше, являются промежуточными стадиями сукцессий.

К сменам экосистем ведут также такие виды деятельности человека, как осушение болот, чрезмерные нагрузки на леса. Например, в результате отдыха населения (рекреации), химических загрязнений среды, усиленного выпаса скота, пожаров и т. п.

Антропогенные воздействия часто ведут к упрощению экосистем. Такие явления обычно называют дигрессиями (лат. дигрессион - отклонение). Различают, например, пастбищные, рекреационные и другие дигрессии. Смены такого типа обычно завершаются не климаксными экосистемами, для которых характерно усложнение структуры, а стадиями катоценоза (греч. ката - вниз, против; кайнос - общий), которые нередко заканчиваются полным распадом экосистем.

Климаксные экосистемы обычно чувствительны к различным вмешательствам в их жизнь. К подобным воздействиям, кроме хвойных лесов, чувствительны и другие коренные сообщества, например, дубовые леса. Это одна из причин катастрофической гибели дубрав в современный период и замены их, как и хвойных лесов, менее ценными, но более устойчивыми временными экосистемами из березы, осины, кустарников или трав. Последнее особенно типично при разрушении степных и лесостепных дубрав.

Кроме песчаных пространств, первичные сукцессии могут начинаться на горных породах, извлеченных из недр, продуктах извержения вулканов (застывшая лава, отложения пепла) и т. п.

Вторичные н другие сукцессии. Вторичные сукцессии отличаются от первичных тем, что они начинаются обычно не с нулевых значений, а возникают на месте нарушенных или разрушенных экосистем. Например, после вырубок лесов, лесных пожаров, при зарастании площадей, находившихся под сельскохозяйственными угодьями. Основное отличие этих сукцессий заключается в том, что они протекают несравненно быстрее первичных, так как начинаются с промежуточных стадий (трав, кустарников или древесных растений-пионеров) и на фоне более богатых почв. Конечно, вторичная сукцессия возможна только в тех случаях, если человек не будет оказывать сильное и постоянное влияние на развивающиеся экосистемы. В последнем случае, как отмечалось выше, процесс пойдет по схеме дигрессий и завершится стадией катоценоза и опустынивания территорий.

Различают также автотрофные и гетеротрофные сукцессии. Рассмотренные выше примеры сукцессий относятся к автотрофным, поскольку все они протекают в экосистемах, где центральным звеном является растительный покров. С его развитием связаны смены гетеротрофных компонентов. Такие сукцессии потенциально бессмертны, поскольку все время пополняются энергией и веществом, образующимися или фиксирующимися в организмах в процессе фотосинтеза либо хемосинтеза. Завершаются они, как отмечалось, климаксной стадией развития экосистем.

К гетеротрофным относятся те сукцессии, которые протекают в субстратах, где отсутствуют живые растения (продуценты), а участвуют лишь животные (гетеротрофы). Этот вид сукцессий имеет место только до тех пор, пока присутствует запас готового органического вещества, в котором сменяются различные виды организмов-разрушителей. По мере разрушения органического вещества и высвобождения из него энергии сукцессионный ряд заканчивается, система распадается. Таким образом, эта сукцессия по природе своей деструктивна. Примерами гетеротрофных являются сукцессии, имеющие место, например, при разложении мертвого дерева или животного. Так, при разложении мертвого дерева можно выделить несколько стадий смен гетеротрофов. Первыми на мертвом, чаще ослабленном дереве поселяются насекомые-короеды. Далее их сменяют насекомые, питающиеся древесиной (ксилофаги). К ним относятся личинки усачей, златок и др. Одновременно идут смены грибного населения. Они имеют примерно следующую последовательность: грибы-пионеры (обычно окрашивают древесину в разные цвета), грибы-деструкторы, способствующие появлению мягкой гнили, и грибы-гумификаторы, превращающие часть гнилой древесины в гумус. На всех стадиях сукцессий присутствуют также бактерии. В конечном счете органическое вещество в основной массе разлагается до конечных продуктов: минеральных веществ и углекислого газа. Гетеротрофные сукцессии широко осуществляются при разложении детрита (в лесах он представлен лесной подстилкой). Они протекают также в экскрементах животных, в загрязненных водах, в частности, интенсивно идут при биологической очистке вод с использованием активного ила, насыщенного большим количеством организмов.

Общие закономерности сукцессионного процесса. Для любой сукцессии, особенно первичной, характерны следующие общие закономерности протекания процесса.

1. На начальных стадиях видовое разнообразие незначительно, продуктивность и биомасса малы. По мере развития сукцессии эти показатели возрастают.

2. С развитием сукцессионного ряда увеличиваются взаимосвязи между организмами. Особенно возрастает количество и роль симбиотических отношений. Полнее осваивается среда обитания, усложняются цепи и сети питания.

3. Уменьшается количество свободных экологических ниш, и в климаксном сообществе они либо отсутствуют, либо находятся в минимуме. В связи с этим по мере развития сукцессии уменьшается вероятность вспышек численности отдельных видов.

4. Интенсифицируются процессы круговорота веществ, потока энергии и дыхания экосистем.

5. Скорость сукцессионного процесса в большей мере зависит от продолжительности жизни организмов, играющих основную роль в сложении и функционировании экосистем. В этом отношении наиболее продолжительны сукцессии в лесных экосистемах. Короче они в экосистемах, где автотрофное звено представлено травянистыми растениями, и еще быстрее протекают в водных экосистемах.

6. Неизменяемость завершающих (климаксных) стадий сукцессий относительна. Динамические процессы при этом не приостанавливаются, а лишь замедляются. Продолжаются динамические процессы, обусловливаемые изменениями среды обитания, сменой поколений организмов и другими явлениями. Относительно большой удельный вес занимают динамические процессы циклического (флуктуационного) плана.

7. В зрелой стадии климаксного сообщества (не старческой!) биомасса обычно достигает максимальных или близких к максимальным значений. Неоднозначна продуктивность отдельных сообществ на стадии климакса. Обычно считается, что по мере развития сукцессионного процесса продуктивность увеличивается и достигает максимума на промежуточных стадиях, а затем в климаксном сообществе резко уменьшается. Последнее связывают, во-первых, с тем, что в это время максимум первичной продукции потребляется консументами, а во-вторых, экосистема развивает чрезвычайно большую массу ассимиляционного аппарата, что ведет к дефициту освещенности, следствием чего является снижение интенсивности фотосинтеза при одновременном возрастании потерь продуктов ассимиляции на дыхание самих автотрофов.

Эти положения нельзя распространять на все климаксные сообщества. Например, нет реальных предпосылок для увеличения численности гетеротрофов в хвойных лесах (завершающие стадии сукцессий) по сравнению с лиственными (промежуточные стадии). Скорее, в последних больше потребителей зеленой продукции и вероятнее вспышки численности отдельных видов-фитофагов.

Нет также ни теоретических предпосылок,ни фактических данных, которые бы свидетельствовали, что в зрелой климаксной системе, например в еловых лесах, масса хвои достигает чрезмерно (!) высоких значений.

Весь опыт лесоводства свидетельствует о наиболее высокой продуктивности климаксных лесных сообществ (применительно к лесной зоне хвойных или смешанных хвойно-лиственных лесов). В противном случае, с точки зрения получения продукции (древесины), неизбежен вывод о нецелесообразности ориентации на выращивание и сохранение климаксных стадий лесов.

Применительно к другим экосистемам, например луговым, можно согласиться с тем, что возможности получения продукции на климаксной стадии уменьшаются, однако не потому, что сокращается ее нарастание (прирост, продуктивность), а по той причине, что более значительная ее часть отчуждается гетеротрофами в результате образования устойчивых цепей выедания.

Другими словами, продуктивность экосистем на климаксных стадиях сукцессий высока, как правило, максимальна вследствие более полного освоения пространства. Однако возможности снятия человеком первичной продукции лимитируются (иногда до нулевых значений) вследствие включения ее в цепи питания консументов.

IV.8. Стабильность и устойчивость экосистем

Термины «стабильность» и «устойчивость» в экологии обычно рассматриваются как синонимы, и под ними понимается способность экосистем сохранять свою структуру и функциональные свойства при воздействии внешних факторов.

Более целесообразно, однако, разграничивать эти термины, понимая под «стабильностью» данное выше определение, а под «устойчивостью» - способность экосистемы возвращаться в исходное (или близкое к нему) состояние после воздействия факторов, выводящих ее из равновесия. Кроме этого, для более полной характеристики реакции экосистем на внешние факторы целесообразно пользоваться в дополнение к названным еще двумя терминами: «упругость» и «пластичность».

Упругая система способна воспринимать значительные воздействия, не изменяя существенно своей структуры и свойств. Вместе с тем при определенных (запороговых) воздействиях такая система обычно разрушается или переходит в новое качество.

Пластичная система более чувствительна к воздействиям, но она под их влиянием как бы «прогибается» и затем относительно быстро возвращается в исходное или близкое к исходному состояние при прекращении или уменьшении силы воздействия.

Примером упругих экосистем являются климаксные (например, хвойные леса в лесной зоне, коренные тундровые сообщества, типчаково-ковыльные степи и т. п.). Пластичными экосистемами для лесной зоны являются лиственные леса как промежуточные стадии сукцессий. Они, например, выносят в несколько раз больше рекреационных (связанных с посещением населения) и других (пастьба скота, разного рода загрязнения) нагрузок, чем климаксные экосистемы, в которых эдификаторами выступают хвойные виды.

При рассмотрении стабильности и устойчивости как синонимов, обычно считается, что эти качества тем значительнее, чем разнообразнее экосистемы. Данное положение является настолько универсальным, что формулируется как закон: разнообразие - синоним устойчивости (автор Эшби). С этой точки зрения тундровые и пустынные экосистемы рассматриваются как малоустойчивые (нестабильные), а тропические леса, максимально богатые по видовому составу, - как самые устойчивые (стабильные).

Для экосистем с низкой устойчивостью характерны вспышки численности отдельных видов. Последнее связывается с тем, что в маловидовых экосистемах слабо проявляются силы, уравновешивающие численность различных видов (конкуренция, хищничество, паразитизм). Так, для тундровых экосистем типичны периодические резкие увеличения численности мелких грызунов - леммингов. В качестве результата низкой устойчивости этих экосистем рассматривается легкое разрушение их под влиянием внешних воздействий (перевыпаса, технических нагрузок и т. п.). Так, колеи, образующиеся после прохода тяжелой техники (тракторов, вездеходов), сохраняются десятилетиями.

С этих же позиций к неустойчивым и низкостабильным относят агросистемы, создаваемые человеком и представленные обычно одним преобладающим видом растений, интересующим человека. С этой же точки зрения как неустойчивые и нестабильные следует рассматривать сосновые леса на бедных песчаных или щебнистых почвах. Их древесный ярус представлен в таких условиях одним видом (сосной), беден в них и напочвенный (травяной, моховой) покров.

Однако если экосистемы, приведенные выше в качестве примеров, рассматривать с позиций названных выше различии устойчивости и стабильности, то они попадают в разные категории (табл. 4).

Устойчивость, стабильность и другие параметры экосистем зависят часто не столько от структуры самих сообществ (например, их разнообразия), сколько от биолого-экологических свойств видов-эдификаторов и доминантов, слагающих эти сообщества.

Так, высокая стабильность и значительная устойчивость, как видно из табл. 4, присущи сосновым лесам на бедных песчаных почвах, несмотря на малое видовое разнообразие этих экосистем. Это связано, во-первых, с тем, что сосна довольно пластична, и поэтому на изменение условий, например уплотнение почв, она реагирует снижением продуктивности и редко - распадом экосистемы. Однако и в последнем случае, в силу бедности субстрата питательными веществами и влагой, ее молодое поколение не встречает серьезной конкуренции со стороны других видов, и экосистема довольно быстро вновь восстанавливается в том же виде эдафического (почвенного) климакса.

Таблица 4

Характеристики устойчивости и стабильности отдельных экосистем

* по основным звеньям: фитоценозам и почвам

Иные параметры устойчивости и стабильности характерны для сосняков на богатых почвах, где они могут сменяться еловыми лесами, обладающими более сильными эдификаторными свойствами. Здесь, несмотря на значительное разнообразие (по видовому составу, ярусности, трофической структуре и т. п.), экосистемы сосновых лесов характеризуются низкой стабильностью и низкой устойчивостью. Сосна в данном случае выступает как промежуточная стадия сукцессионного ряда. Ей удается занимать и удерживать какое-то время такие местообитания только в силу каких-то необычных обстоятельств. Например, после пожаров, когда уничтожаются более сильные конкуренты (ель, лиственные древесные породы).

IV.9. Агроценозы и естественные экосистемы

Основное свойство экосистем - способность естественного развития и прежде всего самовозобновления хотя бы в течение одного-двух поколений. С этой точки зрения нет основания рассматривать агроценозы как экосистемы или одну из стадий (начальную, промежуточную) сукцессионного ряда. Агроценозы сельскохозяйственных культур, особенно однолетних, существуют только при условии постоянного вмешательства человека. При прекращении такого вмешательства обычно начинается вторичная сукцессия с той стадии, которую называют сорняками. Но эта стадия уже не имеет прямого отношения к агроценозу.

Другими словами, такой агроценоз - это совершенно чуждое естественным условиям образование (сообщество), поэтому ему не присуще ни одно из свойств экосистемы (см. табл. 4).

Несколько иные свойства характерны для агроценозов, создаваемых из долгоживущих лесных растений. Эти творения человека можно относить к экосистемам если не на протяжении всей жизни, то на определенных стадиях развития. Здесь наиболее типичны два варианта.

Первый из них относится к созданию леса искусственным путем в условиях, где сукцессии не являются четко выраженными. Например, сосняков на бедных песчаных почвах (см. выше). Здесь вмешательство человека по уходу за выращиваемыми растениями требуется только на начальных этапах жизни, когда сосенки еще настолько малы и слабы, что могут не выдержать конкуренции с травами. В дальнейшем (уже с 3-5 лет жизни) сосна начинает создавать сообщество и постепенно занимать позиции доминантного вида, формирующего свою среду. В последующем образуется сообщество со всеми критериями экосистемы. Правда, некоторые свойства такой экосистемы оказываются не вполне реализованными по сравнению с естественными сообществами. В частности, это проявляется в недостаточной жизнеспособности (устойчивости), обусловленной пониженным, по сравнению с естественными экосистемами, разнообразием. Последнее снижается в результате практически абсолютной выравненности растений по возрасту (возрастная структура как таковая отсутствует) и, в какой-то мере, выравненности почвенного фона в результате обработки почвы, предшествующей посадкам или посевам растений. Пониженная устойчивость проявляется через слабую дифференциацию деревьев по росту и, как следствие этого, ослабление, хотя и в разной степени, всех особей в период смыкания крон и острой внутривидовой конкуренции.

Кроме этого, равномерное размещение растений по площади и создание одновидовых древесных фитоценозов из хвойных видов способствует широко распространенному в настоящее время грибному заболеванию - корневой губке. Последняя имеет следствием очаговую, а порой и полную гибель растительных сообществ как систем.

Второй вариант связан с местопроизрастаниями (прежде всего почвами), характеризующимися значительным богатством питательными веществами и влагой. Здесь создание экосистем, минуя промежуточные стадии сукцессий, требует длительного вмешательства человека в их жизнь. Во всяком случае, до тех пор, пока вводимый вид (например, ель или сосна) не сформирует среду, препятствующую видам-конкурентам (осина, береза, ивы и др.) внедриться в сообщество и захватить главенствующие позиции. В большинстве же случаев победа оказывается на стороне естественных процессов развития экосистем (сукцессий). И виды, вводимые человеком, вытесняются конкурентами полностью или до такой степени, что они не способны сформировать полноценную экосистему с точки зрения целей, которые преследовал человек. Если удается сформировать желаемую экосистему (насаждение), минуя промежуточные стадии сукцессий (обязательно ценой больших затрат), то такие системы, как и в первом случае, оказываются недостаточно устойчивыми.

Исключить эти недостатки искусственных экосистем в значительной мере возможно посредством создания многовидовых сообществ, конечно, при постоянной помощи виду, в котором заинтересован человек. Иногда эти поправки удачно вносит природа через внедрение умеренного количества видов промежуточных стадий сукцессий (береза, осина и др.).

Таким образом, попытки создать сразу климаксные сообщества или их подобие, минуя промежуточные, часто обречены на неудачу по разным причинам. Это должен учитывать человек при решении конкретных хозяйственных проблем. Приведенные выше примеры свидетельствуют, насколько разнообразны взаимосвязи в экосистемах, их зависимость от биотических, абиотических и антропогенных факторов, а также насколько обязателен творческий (системный) подход в каждом конкретном случае, даже при том условии, что выявлены какие-то общие (часто основополагающие) закономерности существования экосистем. Возможности моделирования и создания человеком экосистем во многом зависят не только от биологических свойств видов (в приводимых примерах растительных), но и от условий местопроизрастания. Несомненна также относительность и необходимость конкретизации таких основополагающих экологических постулатов, как «разнообразие - синоним устойчивости», неизбежность резкого снижения продуктивности экосистем в климаксной стадии, неоднозначность терминов «устойчивость» и «стабильность» и др.

Вопросы и задания

1. Из каких основных блоков (звеньев) состоит экосистема? Вспомните определение понятия «Экосистема» из разд.1.

2. Что общего и в чем различаются понятия «Экосистема» и «Биогеоценоз»? Почему каждый биогеоценоз можно назвать экосистемой, но не каждую экосистему можно относить к разряду биогеоценоза, рассматривая последний в соответствии с определением В. Н. Сукачева?

3. Приведите примеры организмов доминантов и эдификаторов. Чем они различаются по роли в экосистемах (биогеоценозах)?

4. Перечислите связи и взаимоотношения между организмами в соответствии с существующими классификациями. Какое значение такие связи имеют для существования экосистем?

5. Что называется «экологической нишей»? Чем это понятие отличается от «местообитания»?

6. Что понимается под трофической структурой экосистем? Что называют трофическим (пищевым) звеном и трофической (пищевой) цепью?

7. Какие энергетические процессы происходят в экосистемах? По каким закономерностям энергия рассеивается и передается в цепях питания? Почему «энергетическая цена» животной пищи существенно выше «энергетической цены» растительной пищи?

8. Что называется продуктивностью и биомассой экосистем? Как связаны эти показатели с воздействием экосистем на среду?

9. Назовите наиболее продуктивные экосистемы суши и океана (пленки жизни и сгущения жизни).

10. Что называется сукцессией? Назовите виды сукцессий. Приведите примеры первичных и вторичных автотрофных и гетеротрофных сукцессий.

11. Как изменяются основные параметры и свойства экосистем в сукцессионном ряду? Перечислите основные закономерности сукцессионного процесса.

12. Чем создаваемые человеком агроценозы отличаются от естественных экосистем (по видовому богатству, устойчивости, стабильности, продуктивности)? Могут ли агроценозы существовать без постоянного вмешательства человека, вложения в них энергии?

V. ПОПУЛЯЦИОННЫЙ УРОВЕНЬ ЖИЗНИ

Если экосистемы - это реально существующие элементы (блоки) биосферы, то популяции в изолированном виде нигде не встречаются в природе. Они входят в состав экосистем и являются одним из элементов их структуры. Популяции выделяются как относительно обособленные части отдельных видов, в пределах которых более вероятны скрещивания и передача информации, чем это возможно между различными популяциями данного вида. Важнейшим фактором обособления популяций внутри вида являются различия условий местообитания. Этот же признак лежит в основе выделения экосистем (биогеоценозов). Поэтому границы популяций часто, хотя далеко не всегда, совпадают с границами экосистем.

В конечном счете экосистему можно рассматривать как сумму популяций (или их частей) разных видов, взаимосвязанных между собой и находящихся в тесном единстве с окружающей средой.

Несмотря на абстрактность вычленения популяций из общих систем (биоценозов, экосистем), им свойственен ряд специфических закономерностей функционирования, важных для существования вида и в целом экосистем различного ранга. На уровне популяций происходят основные адаптации, естественный отбор и эволюционные процессы. Разнообразие популяций внутри вида резко увеличивает его приспособительные способности, освоение среды и, в конечном счете, возможности выживания.

Проявляя заботу о сохранении вида, человек должен прежде всего думать о сохранении популяций. Для популяций различных видов существуют допустимые пределы снижения численности особей, за которыми существование популяции становится невозможным. Точных данных о критических значениях численности популяций в литературе нет. Приводимые значения разноречивы. Остается, однако, несомненным факт, что чем мельче особи, тем выше критические значения их численности. Для микроорганизмов это миллионы особей, для насекомых - десятки и сотни тысяч, а для крупных млекопитающих - несколько десятков. Численность не должна уменьшаться ниже тех пределов, за которыми резко снижается вероятность встречи половых партнеров. Критическая численность также зависит от других факторов. Например, для некоторых организмов специфичен групповой образ жизни (колонии, стаи, стада). Группы внутри популяции относительно обособлены. Могут иметь место такие случаи, когда численность популяции в целом еще достаточно велика, а численность отдельных групп уменьшена ниже критических пределов. Например, колония (группа) перуанского баклана должна иметь численность не менее 10 тыс. особей, а стадо северных оленей - 300-400 голов.

V.1. Структура популяций

Для понимания механизмов функционирования и решения вопросов использования популяций важное значение имеют сведения об их структуре.

Различают половую, возрастную, территориальную и другие виды структуры. В теоретическом и прикладном планах наиболее важны данные о возрастной структуре, под которой понимают соотношение особей (часто объединенных в группы) различных возрастов.

Обычно наибольшей жизнеспособностью отличаются популяции, в которых все возраста представлены относительно равномерно. Такие популяции называют нормальными. Если в популяции преобладают старческие особи, это однозначно свидетельствует о наличии отрицательных факторов в ее существовании, нарушающих воспроизводительные функции. Такие популяции рассматривают как регрессивные, или вымирающие. Требуются срочные меры по выявлению причин такого состояния и их исключению. Популяции, представленные в основном молодыми особями, рассматриваются как внедряющиеся, или инвазионные. Жизненность их обычно не вызывает опасений, но велика вероятность вспышек чрезмерно высокой численности особей, поскольку в таких популяциях не сформировались трофические и другие связи. Особенно опасно, если такие популяции представлены видами, которые здесь ранее отсутствовали. В таком случае популяции обычно находят и занимают свободную экологическую нишу и реализуют свой потенциал размножения, интенсивно увеличивая численность.

Если популяция находится в нормальном или близком к нормальному состоянии, человек из нее может изымать то количество особей или биомассу (последний показатель обычно используется применительно к растительным сообществам), которая прирастает за промежуток времени между изъятиями. Ясно, что изыматься должны прежде всего особи послепродуктивного возраста (окончившие размножение). Если преследуется цель получения определенного продукта, то поправки на возраст, пол или другие характеристики популяций корректируются с учетом поставленной задачи.

Эксплуатация популяций растительных сообществ, в частности, с целью получения древесного сырья обычно приурочивается к тому периоду, когда имеет место возрастное замедление накопления продукции (прироста). Этот период обычно совпадает с максимальным накоплением древесной массы на единице площади.

Количество изымаемой продукции и способ ее изъятия сообразуется с биологическими особенностями популяций. Например, у животных, ведущих групповой образ жизни, как отмечалось выше, нельзя уменьшать численность групп до такой степени, которая повлекла бы за собой потерю ими свойств оптимизации жизненных процессов.

Лесоводами применительно к решаемым задачам и сообразуясь с эколого-биологическими свойствами популяций (экосистем) разработаны различные виды рубок. Прежде всего, они делятся на две большие группы: промежуточного и главного пользования. Рубки промежуточного пользования проводятся практически во всех возрастах жизни леса. При их проведении, наряду с изъятием продукции, преследуется цель создания более благоприятных условий для жизнедеятельности и роста остающейся части древостоя. Ими же создаются условия для увеличения доли более ценных с точки зрения целей хозяйства видов (например, хвойных в смешанных хвойно-лиственных сообществах).

При рубках главного пользования убирается весь древостой, достигший возраста спелости. Этот урожай может сниматься единовременно (сплошные рубки) или в несколько приемов (постепенные, выборочные рубки). Изымается при этом такая часть древостоя, которая не нарушила бы жизнедеятельности популяций и экосистем в целом, механизмов их самоподдержания и соморегулирования (гомеостаза). Такой тип ведения хозяйства рассматривают как мягкое управление природными процессами.

С целью создания условий для появления молодого поколения леса при сплошных рубках применяются такие лесоводственные приемы, как вырубка последовательно небольшими площадями (лесосеками). В таком случае остающиеся рядом с вырубкой древостой являются источником семян, умеренного притенения появляющегося молодого поколения леса, препятствием буйному росту конкурентов из трав, кустарников и нежелательных древесных растений. Появлению молодого поколения леса способствует также оставление на вырубках отдельных, как правило, лучших деревьев, которые выполняют роль обсеменителей и носят название семенников.

Однако в обширных лесных массивах Севера и других регионов часто проводятся так называемые концентрированные рубки большими площадями без учета возможностей восстановления их молодым поколением леса. Они проводятся с использованием тяжелой техники, сопровождаются сильным разрушением и уплотнением почвенного покрова. Это, в свою очередь, ведет, как правило, к цепным реакциям природных процессов, в частности, сложившиеся круговороты воды сменяются накоплением застойных вод на поверхности почв с последующей сменой лесных экосистем болотными. В других случаях, например на песчаных почвах, следствием подобного вмешательства в экосистемы является опустынивание или полное разрушение экосистемы. Такой тип ведения хозяйства рассматривается как жесткое вмешательство в природные процессы. Оно не должно иметь места в деятельности человека.

V.2. Динамика популяций. Гомеостаз

К числу важнейших свойств популяций относится динамика свойственной им численности особей и механизмы ее регулирования. Всякое значительное отклонение численности особей в популяциях от оптимальной связано с отрицательными последствиями для ее существования. В связи с этим популяции обычно имеют адаптационные механизмы, способствующие как снижению численности, если она значительно превышает оптимальную, так и ее восстановлению, если она уменьшается ниже оптимальных значений.

Каждой популяции и виду в целом свойственен так называемый биотический потенциал, под которым понимают теоретически возможное потомство от одной пары особей при реализации способности организмов к биологически обусловленному размножению. Обычно биотический потенциал тем выше, чем ниже уровень организации организмов. Так, дрожжевые клетки, размножающиеся простым делением, при наличии условий для реализации биотического потенциала могли бы освоить все пространство земного шара за несколько часов; гриб дождевик, приносящий до 7,5 млрд. спор, уже во втором поколении освоил бы весь земной шар. Крупным организмам с низким потенциалом размножения потребовалось бы для этого несколько десятилетий или столетий.

Однако биотический потенциал реализуется организмами со значительной степенью полноты только в отдельных случаях и в течение коротких промежутков времени. Например, если быстроразмножающиеся организмы (насекомые, микроорганизмы) осваивают какой-либо субстрат или среду, где нет конкурентов. Такие условия создаются, в частности, при освоении экскрементов крупных животных насекомыми, при размножении организмов в средах, богатых питательными веществами, например в загрязненных органическими или биогенными веществами водоемах и т. п. В этом случае увеличение численности идет по j-образной кривой. Такой тип роста носит название экспоненциального. Близкий к экспоненциальному тип роста характерен в настоящее время для популяции человека. Он обусловлен прежде всего резким снижением смертности в детском возрасте. Для человека характерна кривая увеличения численности первого типа (рис. 6).

Рис. 6

Экспоненциальная (А) и логистическая (Б) кривые роста популяций

Для большинства же популяций и видов рост численности характеризуется кривой второго типа, которая отражает высокую смертность молодых особей или их зачатков (яйца, икринки, споры, семена и т. п.). При таком типе выживаемости (смертности) численность популяции обычно выражается s-образнои кривой (см. рис.6). Такая кривая носит название логистической. Но и в этом случае периодические колебания численности особей значительны. Такие отклонения от средней численности имеют сезонный (как у многих насекомых), взрывной (как у некоторых грызунов - лемминги, белки) или сглаженный (как у крупных млекопитающих) характер. Численность при этом может существенно отличаться от средних значений: для насекомых - в 107- 106 раз, для позвоночных животных, например грызунов, - в 105  - 106 раз.

Периоды резкого изменения численности носят название «популяционных волн», «волн жизни», «волн численности». Причины таких колебаний до конца не ясны. В одних случаях их связывают с пищевым фактором, в других - с погодными (климатическими) явлениями (например, для леммингов - с количеством тепла, приносимого Гольфстримом), в третьих - с солнечной активностью или комплексом взаимосвязанных факторов, что наиболее вероятно.

Резкие изменения численности относительно средних значений имеют обычно отрицательные следствия для жизни популяций: при высокой численности - из-за ослабления всех особей в результате недостатка пищи, самоотравления среды, возможных массовых заболеваний и т. п.; при низкой численности - из-за превышения порога ее минимальных значений.

В целом можно выделить динамику популяций, независимую от плотности (численности) ее особей и зависимую от плотности. Для первого типа характерна отмеченная выше экспоненциальная кривая роста. Для второго - логистическая кривая. Соответственно различаются и механизмы (факторы), оказывающие влияние на плотность (численность) особей. При независимом от плотности типе изменения численности последняя обусловливается в основном абиотическими факторами (погодные явления, наличие пищи, различного рода катастрофы и т. п.). Эти факторы могут обеспечивать условия как для неограниченного, хотя и кратковременного роста популяций, так и для снижения их численности до нулевой. Такие факторы обычно называют модифицирующими (лат. модификацио-изменение).

Зависимая от плотности динамика популяций обеспечивается биотическими факторами. Их называют регулирующими. Они «работают» по принципу обратной отрицательной связи: чем значительнее численность. Тем сильнее срабатывают механизмы, обусловливающие ее снижение, и наоборот - при низкой численности сила этих механизмов ослабевает и создаются условия для более полной реализации биотического потенциала. Факторы такого типа лежат в основе популяционного гомеостаза, обеспечивающего поддержание численности в определенных границах значений.

К числу регулирующих факторов относится, в частности, взаимоотношение организмов типа хищник-жертва. Высокая численность жертвы создает условия (пищевые) для размножения хищника. Последний, в свою очередь, увеличив численность, снижает количество жертвы. Численность обоих видов в результате этого носит синхронно-колебательный характер. Регулирующие факторы, в отличие от модифицирующих, никогда не доводят численность популяций до нулевых значений вследствие того, что сила их действия уменьшается по мере уменьшения численности популяций.

Вообще действие регулирующих факторов можно рассматривать на уровне межвидовых и внутривидовых (внутрипопуляционных) взаимоотношений организмов.

К межвидовым механизмам гомеостаза относятся отмеченные выше взаимоотношения типа хищник-жертва. В таком же плане действуют и взаимоотношения паразит- хозяин. При высокой численности создаются условия для увеличения количества паразитов и паразитарных заболеваний как в результате скученности, так и вследствие ослабления организмов. К межвидовым механизмам относится также конкуренция, острота которой находится в прямой зависимости от численности организмов.

Конкуренция лежит и в основе внутрипопуляционного гомеостаза. Она здесь может проявляться в жестких и смягченных формах. Жесткие формы обычно заканчиваются гибелью части особей. В растительном мире это проявляется в явлениях так называемого самоизреживания фитоценозов. Например, на стадии всходов и молодых растений в лесных сообществах на одном гектаре насчитывается до нескольких сотен тысяч древесных растений. К возрасту спелости (100-120 лет для хвойных видов и 50-70 лет для лиственных) число экземпляров обычно не превышает 1000 на 1 га, но чаще исчисляется несколькими сотнями. Остальные погибают в процессе острой конкурентной борьбы (рис. 7). В результате этого, с одной стороны, освобождается пространство для остающихся более сильных особей, а с другой - ослабленные и погибающие особи выполняют положительную роль для сохранения популяции через включение в процессы круговорота, обогащение почвы минеральными веществами и гумусом. Часть ослабленных особей еще при жизни становится донорами для питания более сильных экземпляров. Это возможно в результате имеющего место срастания корней. Частным подтверждением таких явлений служат не единичные случаи нарастания годичных колец на пнях деревьев («растущие пни»). 

Рис. 7 

Ход самоизреживания соснового леса с возрастом (по Г. Ф. Морозову). 

В животном мире результат острой внутривидовой борьбы проявляется часто в форме каннибализма (поедания себе подобных). Такие явления наиболее часты среди хищников. Например, взрослые окуни при высокой численности популяции, особенно в небольших водоемах, начинают питаться мальками своего вида. Явления каннибализма характерны также для некоторых грызунов, личинок насекомых, особенно в случаях существования в ограниченном пространстве. Поедание потомства домашними животными, по-видимому, один из случаев атавизма (лат. атавус - отдаленный предок) данного явления, которое раньше имело место в природных популяциях.

Смягченные формы внутривидовой конкуренции проявляются обычно через ослабление части особей, выключения их из процессов размножения. Случаи гибели особей при таких формах борьбы менее вероятны. К таким механизмам внутрипопуляционного гомеостаза относятся угнетающие (ингибирующие) выделения веществ во внешнюю среду более сильными особями, стрессовые явления, разграничение территорий (территориальность), миграции между популяциями.

Выделения во внешнюю среду характерны как для растительных, так и для животных организмов. Показано, в частности, что молодое поколение леса не появляется под материнским пологом либо находится в сильно угнетенном состоянии не только в результате дефицита светового и других факторов (минеральное питание, влагообеспеченность и т. п.). Опытным путем было установлено, что в этих процессах существенную роль играют ингибирующие выделения корней, а в ряде случаев атмосферные осадки, обогащенные химическими элементами и соединениями, вымывающимися из надземных органов взрослых растений. Препятствием для молодого поколения может также являться мощный слой слаборазложившегося мертвого органического вещества (лесной подстилки), препятствующий прорастанию семян и укоренению всходов. В спелых лесах сила влияния этих факторов обычно уменьшается, и молодое поколение постепенно сменяет теряющих конкурентную способность особей.

На примере лабораторных животных (крысах, мышах) показано, что воздух, подаваемый из помещений, где имеет место перенаселенность, в помещения, где животные свободно размещаются и нормально развиваются, приводит к замедлению роста и угнетению последних. Аналогичные результаты наблюдались в опытах с головастиками лягушек, когда в аквариумы, где они хорошо развивались, добавляли воду из аквариумов, в которых плотность организмов была чрезвычайно высокой.

Явления территориальности наиболее четко выражены в животном мире. Сюда относятся различные способы охраны занимаемых территорий. Например, пение птиц - это прежде всего сигнал о занятости территории в период размножения и последующего выкармливания потомства. У кошачьих и собачьих территориальность проявляется через мечение границ участков выделением желез, мочой или механическими отметинами на деревьях, почве и т. п.

При высокой скученности особей в популяциях регулирующим механизмом численности могут являться стрессовые явления. Они наиболее характерны для млекопитающих. При стрессах обычно часть особей снижает или теряет репродукционные функции (выключается из процессов размножения). Более сильные особи в меньшей степени подвержены стрессу и его следствиям. При ослаблении или прекращении стрессовых явлений организмы обычно восстанавливают функции жизнедеятельности и репродукционного процесса.

Миграции как фактор гомеостаза проявляются чаще всего в двух видах. Первый из них относится к массовому исходу особей из популяции при явлениях перенаселенности (нашествия). Такие явления особенно характерны для леммингов, белок и некоторых других видов с взрывным типом динамики численности. Особи, оставившие популяцию (как правило, молодняк), обычно не возвращаются на прежнее место. Значительное количество их погибает при подобных перемещениях.

Второй вид миграций связан с более постепенным (спокойным) уходом части особей в другие популяции с меньшей плотностью населения.

Вообще и при численности, близкой к оптимальной, популяции обмениваются, хотя и в меньшей степени, особями. Это важно как для исключения или уменьшения вероятности близкородственного скрещивания, так и для обмена информацией, которая имеет свою специфику в разных популяциях.

Неоднозначны реакции популяций на иммигрантов. В периоды высокой численности они препятствуют вселению особей из других популяций. При низкой численности имеет место явление противоположного порядка: резко уменьшается количество особей, оставляющих популяции, снимаются механизмы, препятствующие вселению особей из других популяций (иммигрантов).

Среди насекомых выселительная способность связана часто с появлением специфических особей, выделяемых обычно в отдельную фазу, характеризующихся большей подвижностью, стремлением к перемещениям. У тлей, например, появляется фаза с хорошо развитыми крыльями, у пустынной саранчи, кроме лучшего развития летательного аппарата, подвижность увеличивается за счет более темной окраски и в связи с этим лучшей прогреваемости тела, что для холоднокровных организмов является важнейшим фактором усиления активности.

Ясно, что гомеостаз в полной мере проявляется, если срабатывают все механизмы, лежащие в его основе. Например, не нарушается резко соотношение численностей хищников и жертв, не имеет места действие факторов, ослабляющих популяции (загрязнение, нарушение местообитаний и др.), не превышаются критические пределы численности и т. п.

В настоящее время подобные нарушения гомеостатических механизмов вызываются в большинстве случаев антропогенными факторами. В связи с этим одной из важнейших задач человека является исключение или резкое снижение действия подобных факторов. Решение вопросов такого плана относится прежде всего к области прикладной экологии, знакомству с которой посвящен следующий раздел настоящего пособия.

Вопросы и задания

1. Вспомните и воспроизведите определение популяции. Какие основные критерии используются при расчленении вида на популяции?

2. Назовите основные виды структуры популяций. Покажите прикладное значение возрастной структуры популяций.

3. Что понимается под биотическим потенциалом популяции (вида)? Почему он не реализуется полностью в природных условиях? Какие факторы препятствуют реализации потенциала? Нарисуйте теоретически возможную и реальную кривую роста численности особей в популяциях. Как называются эти кривые?

4. Назовите механизмы, за счет которых регулируется численность особей в популяциях. Перечислите механизмы межвидового и внутрипопуляционного регулирования численности особей в популяциях.

5. Применим ли к популяциям термин «гомеостаз» и в чем он проявляется?

Рекомендуемая литература

1. Вернадский В.И. Биосфера. - М.,1975.

2. Вернадский В.И. Живое вещество. - М., 1978.

3. Лапо А.В. Следы былых биосфер. - М., 1987.

4. Одум Ю. Экология. - Т. 1 и 2. - М.,1986.

5. Пономарева И.Н. Общая экология. - М., 1994.

6. Реймерс Н.Ф. Экология. - М., 1994;

7. Уиттекер Н.М. Сообщества и экосистемы. - М., 1980.

8. Чернова Н.М., Былова А.М. Экология. - М., 1988.

9. Шилов И.А. Экология. - М., 1997.

СОДЕРЖАНИЕ

СЛОВО К ЧИТАТЕЛЮ! (вместо предисловия)        

ВВЕДЕНИЕ        

I. ОСНОВНЫЕ ПОНЯТИЯ (ТЕРМИНЫ) ЭКОЛОГИИ. ЕЕ СИСТЕМНОСТЬ        

I.1. Основные понятия        

I.2. Структура общей экологии        

II. СРЕДА ОБИТАНИЯ. ФАКТОРЫ СРЕДЫ И АДАПТАЦИИ К НИМ ОРГАНИЗМОВ. СРЕДЫ ЖИЗНИ        

II.1. Среда и факторы среды, их классификация        

II.2. Некоторые общие закономерности действия факторов среды на организмы        

II.3. Среды жизни и адаптации к ним организмов        

III. БИОСФЕРА        

III.1. Биосфера как глобальная экосистема        

III.2. Живое вещество, его средообразующие свойства и функции в биосфере        

III.3. Основные свойства биосферы        

IV. ЭКОСИСТЕМНЫЙ УРОВЕНЬ ЖИЗНИ        

IV. 1. Организация (структура) экосистем        

IV.2. Связи организмов в экосистемах        

IV.3. Экологическая ниша        

IV.4. Энергетика экосистем        

IV.5. Продуктивность и биомасса экосистем        

IV.6. Экологические пирамиды        

IV.7. Динамика и развитие экосистем. Сукцессии        

IV.8. Стабильность и устойчивость экосистем        

IV.9. Агроценозы и естественные экосистемы        

V. ПОПУЛЯЦИОННЫЙ УРОВЕНЬ ЖИЗНИ        

V.1. Структура популяций        

V.2. Динамика популяций. Гомеостаз        

Рекомендуемая литература        

Воронков Н.А.

Основы общей экологии

(общеобразовательный курс)

Директор В.В.Миненков

Редактор О.А.Блинникова

Корректор Н.В.Миненкова

Оформление обложки Н.Ю.Медведева

Подписано в печать 02.11.99. Формат 69х90/16.

Бумага газетная. Гарнитура «Таймс». Печать офсетная.

Усл. печ. л. 6. Тираж 10000 экз. Заказ № 2849.

Издательство «Агар»

103045, Москва, Костянский пер., д.6

Тел./факс (095) 956-76-15

232-29-90

Лицензия № ЛР №064411 от 22.01.96

Издательство "Равдеву-АМ"

129272, Москва, Олимпийский проспект, 30

Тел. (095) 976-24-44

Факс 900-70-98

Лицензия ЛР № 065494 от 31.10.1997

По вопросу приобретения обращаться в ООО ЦГЛ «РОН» 

103 045, а/я 44, Москва, Костянский пер. д.6

(095) 232-29-90,956-76-15

E-mail: ron @ comail.ru

Отпечатано с готовых диапозитивов

в Государственном ордена Октябрьской Революции,

ордена Трудового Красного Знамени Московском

предприятии «Первая Образцовая типография»

Государственного комитета Российской Федерации

по печати. 113054, Москва, Валовая, 28


По теме: методические разработки, презентации и конспекты

Сборник задач для подготовки к олимпиадам.

В брошюре собраны задачи, которые могут быть полезны ученикам 7-9 класса, готовящимся к школьным и муниципальным олимпиадам по математике. Тематика задач разная:  принцип Дерихле, четность-нечетн...

Сборник книг для подготовки к олимпиадам по биологии.

Данные книги помогут более полно представить основные тенденции науки биология, а также успешно подготовиться к олимпиадам по биологии....

Проверочные тесты для подготовки к олимпиадам по экологии.

Проверочные тесты для подготовки к олимпиадам по экологии....

Проверочные тесты для подготовки к олимпиадам по экологии

Проверочные тесты для подготовки к олимпиадам по экологии...

Система подготовки к олимпиадам по биологии и экологии.

В этой статье обобщается мой опыт по подготовке школьников к олимпиадам и творческим конкурсам по биологии и экологии....

Сборник задач для подготовки к олимпиадам по математике 5-11 классы

Дорогой читатель! Этотмини-сборниксостоитизизбранныхзадачонлайн-олимпиады Фоксфорда по математике в 2016/2017 учебном году (IV, V и VI сезоны). Задачи разбиты по разделам: 1) логика, 2) алгебра, 3) ге...

Рабочая программа по экологии. "Подготовка к ВСОШ по экологии, региональный этап"

ммм     Предметная олимпиада - это форма интеллектуального соревнования учащихся в определенной образовательной области, позволяющая выявить умение применять знания фактического ма...


 

Комментарии

Малярчук Лариса Васильевна

Евгений Александрович,спасибо,замечательный материал!