Задание 17. Финансовая математика
учебно-методический материал по алгебре (11 класс)
Как научиться решать «экономические» задачи. С чего начать,
Две схемы решения задач на кредиты и как их распознать,
Комбинированные задачи,
В чем основная сложность «экономической задачи»,
Задания на оптимальный выбор. В том числе — с применением производной.
Скачать:
Вложение | Размер |
---|---|
zadanie_17.docx | 63.07 КБ |
Предварительный просмотр:
Задание 17. Финансовая математика — профильный ЕГЭ по математике
Задание 17 Профильного ЕГЭ по математике — «экономическая» задача. Речь, как вы уже поняли, речь пойдет о деньгах. О кредитах и вкладах. О ситуациях, где нужно узнать, при каких значениях переменной будет максимальна прибыль или минимальны издержки. Кстати, само задание 17 оценивается на ЕГЭ в 3 первичных балла.
В этой статье:
Как научиться решать «экономические» задачи. С чего начать,
Две схемы решения задач на кредиты и как их распознать,
Комбинированные задачи,
В чем основная сложность «экономической задачи»,
Задания на оптимальный выбор. В том числе — с применением производной.
Вы уже сейчас сможете ответить на такие вопросы:
- Что принимается за 100%?
- Величина х увеличилась на p%. Как это записать?
- Величина y дважды уменьшилась на р%. Как это записать?
В задачах первого типа обычно применяется формула для суммы геометрической прогрессии. В задачах второго типа — формула суммы арифметической прогрессии.
Посмотрите, чем эти схемы отличаются друг от друга. На какие ключевые слова в условии надо обратить внимание.
Потому что первое, что надо сделать, когда решаете «экономическую» задачу на кредиты или вклады, — определить, к какому типу она относится.
Давайте потренируемся.
1. 31 декабря 2014 года Аристарх взял в банке 6 902 000 рублей в кредит под 12,5% годовых. Схема выплаты кредита следующая — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 12,5%), затем Аристарх переводит в банк X рублей. Какой должна быть сумма X, чтобы Аристарх выплатил долг четырьмя равными платежами (то есть за четыре года)?
Конечно, это задача первого типа. Есть информация о платежах. В условии сказано, что Аристарх выплатит долг четырьмя равными платежами.
Введем обозначения:
тыс. рублей - сумма долга. Расчеты будем вести в тысячах рублей.
- процент банка,
- коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов,
— сумма ежегодного платежа.
Составим схему погашения кредита. Заметим, что здесь 4 раза (то есть в течение 4 лет) повторяются одни и те же действия:
- сумма долга увеличивается в раз,
- Аристарх вносит на счет сумму в счет погашения кредита, и сумма долга уменьшается на . Вот что получается:
Раскроем скобки:
Что у нас в скобках? Да, это геометрическая прогрессия, и ее проще записать как
. В этой прогрессии первый член равен 1, а каждый следующий в k раз больше предыдущего, то есть знаменатель прогрессии равен k.
Применим формулу суммы геометрической прогрессии:
И выразим из этой формулы .
Что же, можно подставить численные данные. Стараемся, чтобы наши вычисления были максимально простыми. Поменьше столбиков! Например, коэффициент k лучше записать не в виде десятичной дроби 1,125 — а в виде обыкновенной дроби , Иначе у вас будет 12 знаков после запятой!
И конечно, не спешить возводить эту дробь в четвертую степень или умножать на S = 6902000 рублей.
тыс.руб.
Ответ: 2296350 рублей
Вот следующая задача.
2. Жанна взяла в банке в кредит 1,8 млн рублей на срок 24 месяца. По договору Жанна должна возвращать банку часть денег в конце каждого месяца. Каждый месяц общая сумма долга возрастает на 1 %, а затем уменьшается на сумму, уплаченную Жанной банку в конце месяца. Суммы, выплачиваемые Жанной, подбираются так, чтобы сумма долга уменьшалась равномерно, то есть на одну и ту же величину каждый месяц. Какую сумму Жанна вернёт банку в течение первого года кредитования?
В этой задаче сумма долга уменьшается равномерно — задача второго типа.
Пусть S — первоначальная сумма долга, S = 1800 тысяч рублей.
Нарисуем схему начисления процентов и выплат. И заметим некоторые закономерности.
Как обычно,
Сумма долга уменьшается равномерно. Можно сказать — равными ступеньками. И каждая ступенька равна После первой выплаты сумма долга равна после второй
Тогда первая выплата Вторая выплата,
Последняя в году выплата
Сумма всех выплат в течение первого года:
В первой «скобке» — сумма 12 членов арифметической прогрессии, в которой Обозначим эту сумму
Во второй скобке — также сумма 12 членов арифметической прогрессии, в которой Эту сумму обозначим
Общая сумма выплат за год:
тыс. рублей
Ответ: 1066500 рублей.
Еще одна задача — комбинированная. Здесь мы рисуем такую же схему выплаты кредита, как в задачах второго типа.
3. В июле 2016 года планируется взять кредит в банке на пять лет в размереSтыс. рублей. Условия его возврата таковы:
− каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
− с февраля по июнь каждого года необходимо выплатить часть долга;
− в июле 2017,2018 и 2019 долг остаётся равным S тыс. рублей;
− выплаты в 2020 и 2021 годах равны по 625 тыс. рублей;
− к июлю 2021 долг будет выплачен полностью.
Найдите общую сумму выплат за пять лет.
Введем переменные: тысяч рублей. Рисуем схему погашения кредита:
Общая сумма выплат: Кроме того, долг был полностью погашен последней выплатой .
Это значит, что и тогда
тысяч рублей.
Но не только задачи на кредиты и вклады могут встретиться в задании 17 Профильного ЕГЭ по математике. Есть еще задачи на оптимальный выбор. Например, нужно найти максимальную прибыль (при соблюдении каких-либо дополнительных условий), или минимальные затраты. Сначала в такой задаче нужно понять, как одна из величин зависит от другой (или других). Другими словами, нужна та функция, наибольшее или наименьшее значение которой мы ищем. А затем — найти это наибольшее или наименьшее значение. Иногда — с помощью производной. А если повезет и функция получится линейная или квадратичная — можно просто воспользоваться свойствами этих функций.
4. Консервный завод выпускает фруктовые компоты в двух видах тары—стеклянной и жестяной. Производственные мощности завода позволяют выпускать в день 90 центнеров компотов в стеклянной таре или 80 центнеров в жестяной таре. Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции в каждом из видов тары должно быть выпущено не менее 20 центнеров. В таблице приведены себестоимость и отпускная цена завода за 1 центнер продукции для обоих видов тары.
Вид тары | Себестоимость, 1 центнера | Отпускная цена, 1 центнера |
стеклянная | 1500 руб | 2100 руб |
жестяная | 1100 руб | 1750 руб |
Предполагая, что вся продукция завода находит спрос (реализуется без остатка), найдите максимально возможную прибыль завода за один день (прибылью называется разница между отпускной стоимостью всей продукции и её себестоимостью).
По условию, завод не может выпускать компот только в стеклянных банках или только в жестяных — должны быть и те, и другие.
Пусть x — доля мощностей завода, занятых под поизводство компотов в стеклянных банках, а y — доля мощностей, занятых под производство компттов в жестяных банках, Тогда x+y=1. (Например, х=0,3 и у = 0,7 — то есть 30% производства — это компот в стеклянных банках, а 70% - компот в жестяных банках.
Если бы завод выпускал только компот в стеклянных банках, их бы получилось 90 центнеров в сутки. Однако выпускаются и те, и другие, и компотов в стеклянных банках производится 90x центнеров, а в жестяных банках - 80y центнеров в сутки.
Составим таблицу.
Вид тары | Доля в общем количестве | Производится в сутки | Прибыль за 1 центнер |
стеклянная | 2100 - 1500 = 600 руб | ||
жестяная | 1750 - 1100 = 650 руб |
Общая прибыль завода за сутки равна
По условию, и , то есть и
Нужно найти наибольшее значение выражения при выполнении следующих условий:
Подставим в выражение для прибыли завода за сутки. Получим, что она равна Это линейная функция от x. Она монотонно возрастает и свое наибольшее значение принимает при Тогда и максимально возможная прибыль завода за день равна
руб.
Ответ: 53500 руб.
По теме: методические разработки, презентации и конспекты
Задачи по финансовой математике, как средство формирования финансовой грамотности у школьников
финансовая грамотность...
Педагогическая мастерская «Учим финансовой грамотности: различные виды заданий по финансовой грамотности и возможность их использования в рамках изучения отдельных учебных предметов»
Финансовая грамотность – знание и понимание финансовых понятий и финансовых рисков, навыки, мотивация и уверенность, необходимые для принятия эффективных решений в разнообразных финансовых ситуа...
задания по финансовой грамотности
задания...
Задание по финансовой грамотности
Тема информатики: Обработка числовых данных в электронных (динамических) таблицах и визуализация числовых данных Тема финансовой грамотности: Расходы9 классРекомендуемый тип задачи для организац...
Подборка заданий для курса: "Финансовая математика: задачи для подготовки к ЕГЭ (профиль)"
В статье содержится подборка занач для подготовки учеников 10-11 классов к решению экономической задачи профильного ЕГЭ...
Задачи и занимательные задания по финансовой грамотности для учащихся коррекционной школы
Задачи и занимательные задания по финансовой грамотности для учащихся коррекционной школы...
Портфель творческих, познавательных, занимательных заданий по финансовой грамотности
В документе представлены примеры заданий к курсу занятий внеурочной деятельности "Основы финансовой грамотности" 6 класс....