Программа элективного курса «Подготовка к ОГЭ по математике»
элективный курс по алгебре (9 класс) на тему
Программа элективного курса ставит своей задачей помочь учащимся системно и в короткие сроки рассмотреть основные типы задач, входящих в ОГЭ.
Скачать:
Вложение | Размер |
---|---|
programma_elektivnogo_kursa_9_klass.docx | 34.63 КБ |
Предварительный просмотр:
Муниципальное общеобразовательное учреждение
«Средняя общеобразовательная школа № 3 г. Козьмодемьянска»
Программа элективного курса
«Подготовка к ОГЭ по математике». 9 класс
Автор – составитель программы
учитель математики высшей
квалификационной категории
МОУ «Средняя общеобразовательная школа № 3 г.Козьмодемьянска» Республики Марий Эл
Кудрявцев Сергей Владимирович
Пояснительная записка
Основной задачей математического образования в школе является формирование у обучающихся системы математических знаний и умений, необходимых для применения в практической деятельности, а также для продолжения образования. На занятиях по математике школьники учатся логически рассуждать, четко высказывать мысли, работать по различным алгоритмам, использовать математический язык для краткой и лаконичной записи рассуждений, творческому мышлению, умению применять теоретические знания по математике в различных жизненных ситуациях.
Учащимся 9 класса предстоит сдача ОГЭ, содержание которого включает в себя материал всего курса математики основного общего образования. Программа ставит своей задачей помочь учащимся системно и в короткие сроки рассмотреть основные типы задач, входящих, как в первую, так и во вторую часть контрольно- измерительных материалов ОГЭ.
Спецкурс предполагает теоретические и практические занятия. Особое внимание будет уделено изучению критериев оценивания и оформлению решения и ответа в каждой задаче.
Цели спецкурса: подготовить обучающихся к сдаче ОГЭ в соответствии с требованиями, предъявляемыми образовательными стандартами.
Задачи:
- Повторить и обобщить знания по алгебре и геометрии за курс основной общеобразовательной школы;
- Расширить знания по отдельным темам курса Алгебра 5-9 класс и Геометрия 7-9 класс;
- Выработать умение пользоваться контрольно-измерительными материалами.
Ожидаемые результаты:
На основе поставленных задач предполагается, что обучающиеся достигнут следующих результатов:
- Овладеют общими универсальными приемами и подходами к решению заданий ОГЭ;
- Усвоят основные приемы мыслительного поиска.
- Выработают умения:
- самоконтроль времени выполнения заданий;
- оценка объективной и субъективной трудности заданий и, соответственно, разумный выбор этих заданий;
- прикидка границ результатов.
Структура курса
Курс рассчитан на 68 занятий. Включенный в программу материал предполагает повторение и углубление следующих разделов алгебры:
- Проценты
- Выражения и их преобразования
- Уравнения и системы уравнений
- Неравенства
- Функции
- Текстовые задачи
- Геометрия
Формы организации учебных занятий
Формы проведения занятий включают в себя лекции, практические работы, тренинги по использованию методов поиска решений. Основной тип занятий комбинированный урок. Каждая тема курса начинается с постановки задачи. Теоретический материал излагается в форме мини лекции. После изучения теоретического материала выполняются практические задания для его закрепления. Занятия строятся с учётом индивидуальных особенностей обучающихся, их темпа восприятия и уровня усвоения материала.
В ходе обучения периодически проводятся непродолжительные, рассчитанные на 30-45 минут, контрольные работы и тестовые испытания для определения глубины знаний и скорости выполнения заданий. Контрольные замеры обеспечивают эффективную обратную связь, позволяющую обучающим и обучающимся корректировать свою деятельность. Систематическое повторение способствует более целостному осмыслению изученного материала, поскольку целенаправленное обращение к изученным ранее темам позволяет обучающимся встраивать новые понятия в систему уже освоенных знаний.
Формы контроля знаний и система оценивания
Текущий контроль уровня усвоения материала осуществляется по результатам выполнения обучающимися самостоятельных и практических и работ. Присутствует как качественная, так и количественная оценка деятельности. Качественная оценка базируется на анализе уровня мотивации обучающихся, их общественном поведении, самостоятельности в организации учебного труда, а так же оценке уровня адаптации к предложенной жизненной ситуации (сдачи ОГЭ). Количественная оценка предназначена для снабжения обучающихся объективной информацией об овладении ими учебным материалом и производится по пятибалльной системе. Итоговый контроль реализуется в двух формах: традиционного зачёта и тестирования.
Содержание программы
1. Выражения и преобразования
Числовые подстановки в буквенные выражения. Формулы. Приближенные значения. Округление чисел. Буквенные выражения. Степень с целым показателем. Многочлены. Преобразование выражений. Квадратные корни Алгебраические дроби. Квадратные корни. Числовые последовательности. Арифметическая и геометрическая прогрессия
2. Уравнения и неравенства
Равносильность уравнений. Теоремы о равносильности уравнений. Общие приемы решения уравнений: метод разложения на множители, метод замены переменной, использование свойств функций, использование графиков. Решение уравнений. Системы уравнений с двумя переменными. Неравенства с одной переменной. Иррациональные уравнения. Уравнения, содержащие неизвестное под знаком модуля. Неравенства, содержащие переменную под знаком модуля
3. Функции
Числовые функции и их свойства: монотонность, ограниченность, наибольшее и наименьшее значения функции на заданном промежутке. Определение функции. Способы задания функции. Четные и нечетные функции, особенности их графиков. Наглядно геометрические представления о непрерывности и выпуклости функций.
4. Числа и вычисления
Проценты. Пропорции. Решение текстовых задач: задачи на движение, задачи на работу, задачи на десятичную форму записи числа, задачи на концентрацию, смеси и сплавы.
Требования к уровню подготовки девятиклассников
В результате изучения программы на повышенном уровне ученик должен
знать / понимать:
– значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
– идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
– значение идей, методов и результатов алгебры для построения моделей реальных процессов и ситуаций;
– универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
– различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
– вероятностный характер различных процессов и закономерностей окружающего мира.
Числовые и буквенные выражения
уметь:
– выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; пользоваться оценкой и прикидкой при практических расчетах;
– применять понятия, связанные с делимостью целых чисел при решении математических задач;
– проводить преобразование числовых и буквенных выражений.
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: практических расчетов по формулам, используя при необходимости справочные материалы и простейшие вычислительные устройства.
- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
Функции и графики
уметь:
– определять значение функции по значению аргумента при различных способах задания функции;
– строить графики изученных функций, выполнять преобразование графиков;
– описывать по графику и по формуле поведение и свойства функций;
– решать уравнения, системы уравнений, неравенства; используя свойства функций и их графические представления;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
– описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.
Уравнения и неравенства
уметь:
– решать уравнения;
– доказывать несложные неравенства;
– находить приближенные решения уравнений и их систем, используя графический метод;
– решать уравнения, неравенства и системы с применением графических представлений;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
– построения и исследования простейших математических моделей.
Календарно-тематическое планирование элективного курса
«Подготовка к ОГЭ по математике»
2ч в неделю, всего 68 ч.
Тематическое планирование составил(а) ________________ Кудрявцев С.В. подпись расшифровка подписи
Список электронных ресурсов:
http://www.prosv.ru - сайт издательства «Просвещение» (рубрика «Математика»)
http:/www.drofa.ru - сайт издательства Дрофа (рубрика «Математика»)
http://www.center.fio.ru/som - методические рекомендации учителю-предметнику (представлены все школьные предметы). Материалы для самостоятельной разработки профильных проб и
Сайт Ларина
Диагностические и тренировочные работы по системе СтатГрад
Сайт Гущина «Решу ЕГЭ»
По теме: методические разработки, презентации и конспекты
Программа факультативного курса "Подготовка учащихся 9 класса к ГИА по математике"
Факультативный курс «Подготовка учащихся 9 класса к ГИА» входит в образовательную область «Математика» и представляет углубленное изучение теоретического материала укр...
Программа курса: «Подготовка к ГИА по математике».
Программа курса: «Подготовка к ГИА по математике»....
План занятия элективного курса Подготовка к ЕГЭ по математике "Вычисление площадей фигур"
План занятия элективного курса "Подготовка к ЕГЭ" по математике "Вычисление площадей фигур".В плане занятия элективного курса, проводимого в нашей школе с целью подготовки учащихся 11 клас...
Программа курса "Подготовка к ГИА по математике"
Программа дистанционного курса "Подготовка к ГИА по математике". Программа содержит: пояснительную записку, описание содержания и календарно-тематическое планирование. Карта курса....
Программа спецкурса по математике «Интенсивный курс подготовки к ОГЭ по математике, 9 класс»
Программа рассчитана на 35 часов, основана на материале Открытого банка ОГЭ 2015 (вторая часть), состоит из двух блоков: АЛГЕБРА и ГЕОМЕТРИЯ ...
РАБОЧАЯ ПРОГРАММА Элективного курса «Подготовка к ГИА (ОГЭ) по математике»
РАБОЧАЯ ПРОГРАММА Элективного курса по математике для 9 класса «Подготовка к ГИА (ОГЭ) по математике»...
ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ «Интенсивный курс подготовки к ОГЭ» для 9 класса в рамках предпрофильной подготовки
Интенсивный курс подготовки к ОГЭ ориентирован на учащихся 9 класса в рамках предпрофильной подготовки и рассчитан на 34 часа аудиторного времени....