Применение производной
материал для подготовки к егэ (гиа) по алгебре (11 класс) на тему

Камалутдинова Светлана Михайловна

Самостоятельная работа для учащихся 11 класса в рамках подготовки к ЕГЭ по теме "Применение производной". Работа дана в двух вариантах.

Скачать:


Предварительный просмотр:

Вариант 1

1) На рисунке изображен график функции y=f(x), определенной на интервале (-7; 7). Определите количество целых точек, в которых производная функции отрицательна.

task-1/ps/task-1.9

2) На рисунке изображен график функции y=f(x), определенной на интервале (-6; 8). Определите количество целых точек, в которых производная функции положительна.

task-1/ps/task-1.2

3) На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-3; 10). В какой точке отрезка [0; 4 ]f(x)принимает наибольшее значение?

task-4/ps/task-4.3

4) На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-2; 21). Найдите количество точек минимума функции f(x), принадлежащих отрезку [2;19].

task-5/ps/task-5.9

5) На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-12; 5). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [-10;0].

task-5/ps/task-5.11

6) На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-11; 11). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [-10;10].

task-5/ps/task-5.5

7) На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-4; 8). Найдите точку экстремума функции f(x), принадлежащую отрезку [-2; 6 ].

task-9/ps/task-9.2

8) На рисунке изображены график функции y=f(x)и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x)в точке x_0.

task-14/ps/task-14.14

9) На рисунке изображены график функции y=f(x)и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x)в точке x_0.

task-14/ps/task-14.148   

10) На рисунке изображен график функции y=f(x), определенной на интервале (-11; 2). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=-6.

task-2/ps/task-2.8

Вариант 2

1) На рисунке изображен график функции y=f(x), определенной на интервале (-6; 8). Определите количество целых точек, в которых производная функции положительна.

task-1/ps/task-1.2

2) На рисунке изображен график функции y=f(x), определенной на интервале (-11; 2). Найдите количество точек, в которых касательная к графику функции параллельна прямой y=-6.

task-2/ps/task-2.8

3) На рисунке изображен график функции y=f(x), определенной на интервале (-2; 12). Найдите сумму точек экстремума функции f(x).

task-3/ps/task-3.2

4) На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-7; 5). В какой точке отрезка [-6; -1 ]f(x)принимает наименьшее значение?

task-4/ps/task-4.9

5) На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-6;9].

task-5/ps/task-5.1

6) На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-11; 11). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [-10;10].

task-5/ps/task-5.5

7) На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-7; 5). Найдите промежутки убывания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

task-6/ps/task-6.17

8) На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-10; 2). Найдите количество точек, в которых касательная к графику функции f(x)параллельна прямой y=-2x  -11или совпадает с ней.

task-8/ps/task-8.1

9) На рисунке изображены график функции y=f(x)и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x)в точке x_0.

task-14/ps/task-14.14

10) На рисунке изображен график функции y=f(x), определенной на интервале (-4; 7). Найдите количество точек, в которых производная функции f(x)равна 0 .

task-2/ps/task-2.27


По теме: методические разработки, презентации и конспекты

« Геометрический и физический смысл производной. Применение производной»

Урок   обобщающего  повторения по теме:« Геометрический и физический смысл производной. Применение производной». Урок сопровождается презентацией....

Производная. Геометрический смысл производной. Применение производной для исследования функций на монотонность и экстремумы

Урок обобщения и систематизации знаний. Осуществляется подготовка к ЕГЭ по заданиям с производной. Используются различные формы работы (фронтальная, групповая, самостоятельная работа учащихся)....

Зачеты по алгебре по темам: "Производная", "Применение производной". 10 класс.

Зачет имеет большое обучающее и воспитывающее значение для учащихся.В вечерней школе зачеты проводятся после каждой большой темы или раздела программы. Подготовка к зачетам должна начинаться с п...

Геометрический смысл производной. Применение производной к исследованию функций

В данной презентации рассматриваются задачи, взятые из открытого банка задач ЕГЭ по математике. Каждая рассматриваемая задача визуально анимированная, что способствует хорошему осмыслению изучаемого м...

Презентация к уроку «Производная. Применение производной».

Данная  презентация может быть  использована для систематизации и обобщения тем  «Производная. Применение производной» в 10-11 классе....

Самостоятельная работа по алгебре 10 класс "Применение производной к исследованию функции. Геометрический смысл производной, касательная."

Самостоятельная работа представлена в 4 вариантах. Состоит из заданий В-7 открытого банка заданий ЕГЭ,  профильный уровень....


 

Комментарии

Яватова Эльмира Райхановна

Светлана Михайловна, огромное спасибо вам за самостоятельную работу!!! Она мне очень помогла при подготовке к уроку)