Рабочая программа по алгебре для индивидуального обучения в 7 классе
рабочая программа по алгебре (7 класс) на тему
Рабочая общеобразовательная программа для индивидуального обучения по алгебре в 7 классе. Всего 35 часов.
Скачать:
Вложение | Размер |
---|---|
alg7_individualnaya.docx | 80.33 КБ |
Предварительный просмотр:
Раздел 1. Пояснительная записка
Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования, планируемыми результатами основного общего образования по математике, требованиями Основной образовательной программы МКОУ «РепьёвскаяОШ» и ориентирована на работу по учебно-методическому комплекту:
- МакарычевЮ. Н.Алгебра. 7 класс: учебник / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под ред. С. А. Теляковского. -М.: Просвещение, 2013-2014.
- БурмистроваТ. А. Алгебра, 7-9 классы. «Сборник рабочих программ. 7-9 классы: пособие для учителей общеобразовательных учреждений»/сост. Т. А. Бурмистрова. – М.: Просвещение,2011, - 96с.
- Макарычев Ю. Н. Алгебра, 7 класс.: дидактические материалы / Ю. Н. Макарычев, Н. Г. Миндюк, Л. Б. Крайнева. – М.: Просвещение, 2013.
- Жохов В. И., Крайнева Л. Б.Уроки алгебры в 7 классе:пособие для учителей общеобразовательных организаций/ В. И Жохов, Л.Б. Крайнева. – 3-е изд. – М.: Просвещение, 2014. - 160с.
- Дудицын Ю. П. Алгебра,7 класс: тематические тесты/ Ю. П. Дудицын, В. Л. Кронгауз. – М.: Просвещение,2014. -96с.
Рабочая программа выполняет две основные функции:
- Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
- Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Основные развивающие и воспитательные цели
Развитие:
- Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- Математической речи;
- Сенсорной сферы; двигательной моторики;
- Внимания; памяти;
- Навыков само и взаимопроверки.
Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
Воспитание:
- Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
- Волевых качеств;
- Коммуникабельности;
- Ответственности.
Задачи учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
В рамках указанных содержательных линий решаются следующиезадачи:
- систематизация сведений о числах; изучение новых видов числовых выражений и формул;
- совершенствование практических навыков и вычислительной культуры; приобретение практических навыков, необходимых для повседневной жизни;
- формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности;
- развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений;
- развитие воображения, способностей к математическому творчеству;
- важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры;
- формирование функциональной грамотности — умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты в простейших прикладных задачах.
Раздел 2. Общая характеристика курса
Практическая направленность курса в достижении обучающимися планируемых личностных, метапредметных и предметных результатов.
Изучение математики в основной школе дает возможность учащимся достичь следующих результатов развития:
- в личностном направлении:
- уметь ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контр примеры;
- уметь распознавать логически некорректные высказывания, отличать гипотезу от факта, вырабатывать критичность мышления;
- представлять математическую науку как сферу человеческой деятельности, представлять этапы её развития и значимость для развития цивилизации;
- вырабатывать креативность мышления, инициативу, находчивость, активность при решении математических задач;
- уметь контролировать процесс и результат учебной математической деятельности;
- вырабатывать способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
- в метапредметном направлении:
- уметь самостоятельно планировать альтернативные пути достижения целей,
осознанно выбирать наиболее эффективные способы решения учебных и
познавательных задач;
- уметь осуществлять контроль по результату и по способу действия на уровне
произвольного внимания и вносить необходимые коррективы;
- уметь адекватно оценивать правильность или ошибочность выполнения учебнойзадачи, её объективную трудность и собственные возможности её решения;
- уметь осознанно владеть логическими действиями определения понятий, обобщения,
установления аналогий, классификации на основе самостоятельного выбора
оснований и критериев, установления родовидовых связей;
- уметь устанавливать причинно-следственные связи; строить логическое
рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
- уметь создавать, применять и преобразовывать знаково- символические средства,модели и схемы для решения учебных и познавательных задач;
- уметь организовывать учебное сотрудничество и совместную деятельность с
учителем и сверстниками: определять цели, распределение функций и ролей
участников, взаимодействие и общие способы работы;
- уметь работать в группе:находить общее решение и разрешать конфликты на основе согласования позицийи учёта интересов; слушать партнёра; формулировать, аргументировать иотстаивать своё мнение;
- овладеть учебной и общепользовательской компетентностями в области
использования информационно-коммуникационных технологий (ИКТ-
компетентности);
- иметь первоначальное представление об идеях и методах математики как об универсальном языке науки и техники, о средствах моделирования явлений и процессов;
- уметь видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- уметь находить в различных источниках информацию, необходимую длярешения математических проблем, и представлять её в понятной форме;
- принимать решение в условиях неполной и избыточной, точной и вероятностной
информации;
- понимать и использовать математические средства наглядности (рисунки,
чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- уметь выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- уметь применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;
- уметь самостоятельно ставить цели, выбирать и создавать алгоритм для решения учебных математических проблем;
- уметь планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
- в предметном направлении:
- уметь работать с математическим текстом (структурирование, извлечение
необходимой информации), точно и грамотно выражать свои мысли в устной и
письменной речи, применяя математическую терминологию и символику,
использовать различные языки математики (словесный, символический,графический), обосновывать суждения, проводить классификацию, доказыватьматематические утверждения;
- овладеть базовым понятийным аппаратом: иметь представление о числе, владение
символьным языком алгебры, знание элементарных функциональных
зависимостей, формирование представлений о статистических закономерностях в
реальном мире и о различных способах их изучения, об особенностях выводов и
прогнозов, носящих вероятностный характер;
- уметь выполнять алгебраические преобразования рациональных выражений,
применять их для решения учебных математических задач и задач, возникающих в
смежных учебных предметах;
- уметь пользоваться математическими формулами и самостоятельно составлять
формулы зависимостей между величинами на основе обобщения частных случаев
и эксперимента;
- уметь решать линейные уравнения и неравенства, а также приводимые к ним
уравнения, неравенства, системы; применять графические представления для
решения и исследования уравнений, неравенств, систем; применять полученные
- умения для решения задач из математики, смежных предметов, практики;
овладеть системой функциональных понятий, функциональным языком и
символикой, уметь строить графики функций, описывать их свойства,
использовать функционально-графические представления для описания и анализа
математических задач и реальных зависимостей;
- овладеть основными способами представления и анализа статистических данных;
- уметь применять изученные понятия, результаты и методы при решении задач из
различных разделов курса, в том числе задач, не сводящихся к непосредственному
применению известных алгоритмов.
Место предмета в базисном учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч из расчета 5 ч в неделю с 5 по 9 класс.
Рабочая программа для индивидуального обучения в 7 классе рассчитана на 1час в неделю (согласно индивидуальному учебному плану МКОУ «Репьёвская ОШ» на 2016-2017 учебный год), всего 35 часов.
Раздел 3. Содержание учебного предмета, курса.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и показывает распределение учебных часов по разделам курса.
Содержание курса алгебры 7 класса:
Отбор содержания обучения осуществляется на основе следующих дидактических принципов: систематизация знаний, полученных учащимися в начальной школе; соответствие обязательному минимуму содержания образования в основной школе; Усиление общекультурной направленности материала; учёт психолого-педагогических особенностей, актуальных для этого возрастного периода; создание условий для понимания и осознания воспринимаемого материала. В предлагаемом курсе алгебры выделяются следующие основные содержательные линии:
- Выражения и их преобразования. Уравнения - 8 ч
Числовые выражения и выражения с переменными. Простейшие преобразования выражений. Уравнение с одним неизвестным и его корень, линейное уравнение. Решение задач методом уравнений.
Цель–систематизировать и обобщить сведения о преобразовании выражений и решении уравнений с одним неизвестным, полученные учащимися в курсе математики 5,6 классов.
Знатькакие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».
Уметьосуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.
- Функции - 4 ч
Функция, область определения функции, Способы задания функции. График функции. Функция y=kx+b и её график. Функция y=kx и её график.
Цель–познакомить учащихся с основными функциональными понятиями и с графиками функций y=kx+b, y=kx.
Знать определения функции, области определения функции, области значений, что такое аргумент, какая переменная называется зависимой, какая независимой; понимать, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная) описывают большое разнообразие реальных зависимостей.
Уметьправильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач; находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы
- Степень с натуральным показателем - 4 ч
Степень с натуральным показателем и её свойства. Одночлен. Функции y=x2, y=x3, и их графики.
Цель – выработать умение выполнять действия над степенями с натуральными показателями.
Знать определение степени, одночлена, многочлена; свойства степени с натуральным показателем, свойства функций у=х2, у=х3.
Уметьнаходить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики функций у=х2, у=х3; выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.
- Многочлены – 5 ч
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители.
Цель– выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.
Знатьопределение многочлена, понимать формулировку заданий: «упростить выражение», «разложить на множители».
Уметьприводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки; умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества.
- Формулы сокращённого умножения – 7 ч
Формулы. Применение формул сокращённого умножения к разложению на множители.
Цель– выработать умение применять в несложных случаях формулы сокращённого умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители.
Знатьформулы сокращенного умножения: квадратов суммы и разности двух выражений; различные способы разложения многочленов на множители.
Уметьчитать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму; выполнять разложение разности квадратов двух выражений на множители; применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.
- Системы линейных уравнений – 5 ч
Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений.
Цель– познакомить учащихся со способами решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.
Знать, что такое линейное уравнение с двумя переменными, система уравнений, знать различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения; понимать, что уравнение – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.
Уметьправильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными; решать системы уравнений с двумя переменными различными способами.
- Повторение. Решение задач – 2 ч
Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).
Характеристика основных видов деятельности ученика
(на уровне учебных действий)
Характеристики универсальных учебных действий, осваиваемых в рамках изучаемого предмета:
Реализации программы способствует достижению следующих результатов:
- в сфереличностныхуниверсальных учебных действий учащиеся смогут:
- осознавать необходимость изучения;
- формировать адекватное положительное отношение к школе и к процессу учебной деятельности
- в сфере регулятивных универсальных учебных действий учащиеся овладеют следующими типами учебных действий:
- сличать свой способ действия с эталоном;
- сличать способ и результат своих действий с заданным эталоном, обнаруживать отклонения и отличия от эталона;
- вносить коррективы и дополнения в составленные планы;
- вносить коррективы и дополнения в способ своих действий в случае расхождения эталона, реального действия и его продукта
- выделять и осознавать то, что уже усвоено и что еще подлежит усвоению
- осознавать качество и уровень усвоения
- оценивать достигнутый результат
- определять последовательность промежуточных целей с учетом конечного результата
- составлять план и последовательность действий
- предвосхищать временные характеристики результата (когда будет результат?)
- предвосхищать результат и уровень усвоения (какой будет результат?)
- ставить учебную задачу на основе соотнесения того, что уже известно и усвоено, и того, что еще не известно
- принимать познавательную цель, сохранять ее при выполнении учебных действий, регулировать весь процесс их выполнения и четко выполнять требования познавательной задачи
- самостоятельно формировать познавательную цель и строить действия в соответствии с ней
- в сфере познавательных универсальных учебных действий учащиеся научаться:
- выбирать смысловые единицы текста и устанавливать отношения между ними
- создавать структуру взаимосвязей смысловых единиц текста
- выделять количественные характеристики объектов, заданных словами
- восстанавливать предметную ситуацию, описанную в задаче, путем переформулирования, упрощенного пересказа текста, с выделением только существенной для решения задачи информации
- выделять обобщенный смысл и формальную структуру задачи
- заменять термины определениями
- выводить следствия из имеющихся в условии задачи данных
- выделять формальную структуру задачи
- выделять объекты и процессы с точки зрения целого и частей
- анализировать условия и требования задачи
- выбирать вид графической модели, адекватной выделенным смысловым единицам
- выбирать знаково-символические средства для построения модели
- выражать смысл ситуации различными средствами (рисунки, символы, схемы, знаки)
- выражать структуру задачи разными средствами
- выполнять операции со знаками и символами
- выбирать, сопоставлять и обосновывать способы решения задачи
- проводить анализ способов решения задачи с точки зрения их рациональности и экономичности
- выбирать обобщенные стратегии решения задачи
- выделять и формулируют познавательную цель
- осуществлять поиск и выделение необходимой информации
- применять методы информационного поиска, в том числе с помощью компьютерных средств
- в сфере коммуникативных универсальных учебных действий учащиеся научаться:
- учатся организовывать и планировать учебное сотрудничество с учителем
- планируют общие способы работы
- умеют (или развивают способность) брать на себя инициативу в организации совместного действия
- умеют (или развивают способность) с помощью вопросов добывать недостающую информацию
- придерживаются морально-этических и психологических принципов общения и сотрудничества
- проявляют уважительное отношение к партнерам, внимание к личности другого, адекватное межличностное восприятие
- демонстрируют способность к эмпатии, стремление устанавливать доверительные отношения
- регулируют собственную деятельность посредством речевых действий
- используют адекватные языковые средства для отображения своих чувств, мыслей и побуждений
- описывают содержание совершаемых действий с целью ориентировки предметно-практической или иной деятельности
Предметными результатами изучения учебного предмета являются следующие умения:
- планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
- решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
- исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
- ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
- проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
- поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
В ходе освоения содержания курса учащиеся получают возможность:
- развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
- изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
- развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
- получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контр примеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
АЛГЕБРА
знать/понимать
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов.
уметь
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
- решать линейные и квадратные неравенства с одной переменной и их системы;
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- изображать числа точками на координатной прямой;
- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
- находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
Тематическое планирование
№ | Тема | Количество часов | Контрольных работ |
Выражения, тождества, уравнения. | 7 | 1 | |
Статистические характеристики | 1 | ||
Функции. | 4 | ||
Степень с натуральным показателем. | 4 | 1 | |
Многочлены. | 5 | ||
Формулы сокращённого умножения. | 7 | ||
Системы линейных уравнений. | 5 | ||
Повторение. Решение задач по курсу алгебры 7 | 2 | 1 | |
Итого | 35 ч | 3 |
Раздел 4. Учебно-методическое и материально-техническое обеспечение.
Печатные пособия:
- «Алгебра. Сборник рабочих программ. 7-9 классы: пособие для учителей общеобразовательных учреждений»/сост. Т. А. Бурмистрова. – М.: Просвещение, 2015г.
- Макарычев Ю. Н. Алгебра. 7 класс: учебник / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под ред. С. А. Теляковского. -М.: Просвещение, 2015.
- Жохов В. И., Крайнева Л. Б. Уроки алгебры в 7 классе: пособие для учителей общеобразовательных организаций/ В. И Жохов, Л.Б. Крайнева. – 3-е изд. – М.: Просвещение, 2014. - 160с.
- Алгебра. Тесты. 7-9 классы / П.И.Алтынов – М.: Дрофа, 2013 ;
- Алгебра. Тесты для промежуточной аттестации. 7-8 классы / Ф.Ф.Лысенко – Ростов-на-Дону: Легион, 2013;
- Дидактические материалы по алгебре для 7 класса / Л.И.Звавич, Л.В.Кузнецова, С.Б.Суворова – М.: Просвещение, 2013;
- Алгебра. 7 класс: поурочные планы по учебнику Ю.Н.Макарычева и др. / Л.А.Тапилина, Т.Л.Афанасьева – Волгоград: Учитель, 2013
Информационно-коммуникативные средства:
- Тематические презентации
- Компакт-диск Алгебра, 7 класс: поурочные планы по учебнику Ю.Н. Макарычева «Учитель», 2010.
Интернет- ресурсы:
http://festival.1september.ru/ - Я иду на урок математики ( методические разработки)
http://pedsovet.su/load/18 - Уроки, конспекты.
http://www.prosv.ru- сайт издательства «Просвещение» (рубрика «Математика»)
http://www.fipi.ru- портал информационной поддержки мониторинга качества образования, здесь можно найти Федеральный банк тестовых заданий.
http://www.fipi.ru- портал информационной поддержки мониторинга качества образования, здесь можно найти Федеральный банк тестовых заданий.
Приложение. Календарно-тематическое планирование.
Дата по плану | Дата факт | № п/п | Тема урока | Виды учебной деятельности | Примечание | |||
Глава 1. Выражения, тождества, уравнения. 7 ч | ||||||||
05.09 | 1 | Числовые выражения. | ||||||
12.09 | 2 | Выражения с переменными.Сравнение значений выражений. | Учебная практическая работа | |||||
19.09 | 3 | Свойства действий над числами. | ||||||
26.09 | 4 | Тождества. Тождественные преобразования выражений. | Работа с учебником | |||||
03.10 | 5 | Уравнение и его корни. | ||||||
10.10 | 6 | Линейное уравнение с одной переменной. | Индивидуальная работа с самооценкой. | |||||
17.10 | 7 | Решение задач с помощью уравнений. Кратковременная контрольная работа №1 «Выражения.Тождества. Уравнения» № 1. | Учебная практическая работа | |||||
§ 4. Статистические характеристики. (1 час) | Составление опорного конспекта | |||||||
24.10 | 8. | Среднее арифметическое, размах и мода.Медиана как статистическая характеристика. | ||||||
Глава 2. Функции. 4 ч | ||||||||
07.11 | 9. | Что такое функция.Вычисление значений функции по формуле.Графики функций. | Работа с учебником | |||||
14.11 | 10. | Прямая пропорциональность и её график. | Решение задач с комментированием | |||||
21.11 | 11. | Линейная функция и её график. | Решение задач с комментированием | |||||
28.11 | 12. | Линейная функция и её график. Взаимное расположение графиков линейных функций. | Индивидуальная работа с самооценкой. | |||||
11Глава 3. Степень с натуральным показателем. 4 ч | ||||||||
05.12 | 13. | Определение степени с натуральным показателем.Умножение и деление степеней. | Составление опорного конспекта | |||||
12.12 | 14. | Возведение в степень произведения и степени.Одночлен и его стандартный вид. | Работа с учебником | |||||
19.12 | 15. | Умножение одночленов. Возведение одночлена в степень.Функции y = x² и y = x³ и их графики. | Составление опорного конспекта | |||||
26.12 | 16. | Контрольная работа по итогам 1 полугодия | Индивидуальная работа | |||||
Глава 4. Многочлены. 5 ч | ||||||||
16.01 | 17. | Многочлен и его стандартный вид.Сложение и вычитание многочленов. | Составление опорного конспекта | |||||
23.01 | 18. | Умножение одночлена на многочлен. | Составление опорного конспекта | |||||
30.01 | 19. | Вынесение общего множителя за скобки. | Индивидуальная работа с самооценкой. | |||||
-6.02 | 20. | Умножение многочлена на многочлен. | Составление опорного конспекта | |||||
13.02 | 21. | Разложение многочлена на множители способом группировки.Доказательство тождеств. | Работа с учебником | |||||
Глава 5. Формулы сокращённого умножения. 7 ч | ||||||||
20.02 | 22. | Возведение в квадрат и в куб суммы и разности двух выражений. | Работа с учебником | |||||
27.02 | 23. | Разложение на множители с помощью формул квадрата суммы и квадрата разности. | Работа с учебником | |||||
06.03 | 24. | Умножение разности двух выражений на их сумму. | Составление опорного конспекта | |||||
13.03 | 25. | Разложение разности квадратов на множители. | Учебная практическая работа | |||||
20.03 | 26. | Разложение на множители суммы и разности кубов | ||||||
03.04 | 27. | Преобразование целого выражения в многочлен. | Работа с учебником | |||||
10.04 | 28. | Применение различных способов для разложения на множители. | Работа с учебником | |||||
Глава 6. Системы линейных уравнений. 5 ч | ||||||||
17.04 | 29. | Линейное уравнение с двумя переменными. | Работа с учебником | |||||
24.04 | 30. | График линейного уравнения с двумя переменными. | Учебная практическая работа | |||||
01.04 | 31. | Системы линейных уравнений с двумя переменными.Способ подстановки. | Работа с учебником | |||||
08.04 | 32. | Способ сложения. | Индивидуальная работа с самооценкой. | |||||
15.04 | 33. | Решение задач с помощью систем уравнений. | Работа с учебником | |||||
Повторение. 2 ч | ||||||||
22.04 | 34. | Повторительно-обобщающий урок | Практикум решения выражений | |||||
29.04 | 35. | Итоговая контрольная работа . |
По теме: методические разработки, презентации и конспекты
Рабочая программа по истории для индивидуального обучения с обучающимся 7 класса
Программа разработана для обучения на дому обучающихся 7 класса специальной корркционной школы VIII вида....
Методическая разработка "Рабочая программа по алгебре для надомного обучения 10 класс".
Методическая разработка "Рабочая программа по алгебре для надомного обучения 10 класс"....
Рабочая программа по алгебре и началам анализа 10 класс (индивидуальное обучение)
Рабочая программа по алгебре и началам анализа 10 класс ( индивидуальное обучение, 2 ч. в неделю) учебник М.Ю.Колягина...
Рабочая программа по физике для индивидуального обучения 7 класс по учебнику А,В,Перышкин
Рабочая программа по физике для индивидуального обучения 7 класс по учебнику А,В,Перышкин, Программа адаптирована для учащихся с ОВЗ...
Рабочая программа по алгебре для индивидуального обучения на дому 7 класс
Программа разработана на основе учебника Никольского С.М....
Рабочая программа по истории для индивидуального обучения 5 класс
Рабочая программа по истории для индивидуального обучения 5 класс (к учебнику В.О.Нинишин, А.В.Стрелков, О.В.Томашевич, Ф.А.Михайловский Всеобщая история История Древнего мира издательство "Русск...
Рабочая программа по физике для индивидуального обучения (7 класс).
Предмет: физика. Класс: 7. ФИО учащегося:...