рабочая программа 11 класс алгебра, С.М.Никольский, ФГОС
рабочая программа по алгебре (11 класс) на тему
Рабочая программа учебного курса по алгебре и началам математического анализа для 11 класса к учебнику СМ. Никольского, М.К. Потапова, Н.Н. Решетникова, А.В. Шевкина модифицирована на основе Примерной программы среднего (полного) общего образования по математике с учётом требований федерального компонента государственного стандарта среднего (полного) общего образования с использованием рекомендаций авторской программы СМ. Никольского.
Данная рабочая программа полностью отражает профильный уровень подготовки школьников по разделам программы. Она конкретизирует содержание тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_11_klass_algebra.docx | 38.04 КБ |
Предварительный просмотр:
- Пояснительная записка
Рабочая программа учебного курса по алгебре и началам математического анализа для 11 класса к учебнику СМ. Никольского, М.К. Потапова, Н.Н. Решетникова, А.В. Шевкина модифицирована на основе Примерной программы среднего (полного) общего образования по математике с учётом требований федерального компонента государственного стандарта среднего (полного) общего образования с использованием рекомендаций авторской программы СМ. Никольского.
Данная рабочая программа полностью отражает профильный уровень подготовки школьников по разделам программы. Она конкретизирует содержание тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.
Цели обучения
- Формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, а также для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
- воспитание средствами математики культуры личности (отношение к математике как к части общечеловеческой культуры, знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса).
- Общая характеристика учебного предмета
В профильном курсе содержание образования старшей школы, материал, изученный в основной школе, развивается в следующих направлениях:
- систематизация сведений о числах;
- формирование представлений о расширении числовых множеств (от натуральных до комплексных) как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;
- развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
- систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;
- расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;
- развитие представлений о вероятностно-статистических закономерностях в окружающем мире;
- совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;
- формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.
Цели:
Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:
- формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
- овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;
- развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
- воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.
Общеучебные умения, навыки и способы деятельности
В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:
- проведения доказательных рассуждений, логического обоснования выводов,
использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства; - решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;
- планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале;
- использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента;
- выполнения расчетов практического характера;
- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни;
- проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;
- самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.
Результаты обучения
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все выпускники, изучавшие курс математики по профильному уровню, и достижение которых является обязательным условием положительной аттестации ученика за курс средней (полной) школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние две компоненты представлены отдельно по каждому из разделов, содержания.
- Место предмета в базисном учебном плане
Данная рабочая программа рассчитана на 136 часов, 4 часа в неделю. Предусмотрено 7 тематических контрольных работ: «Функции и графики. Предел функции и непрерывность. Обратные функции», «Производная», «Применение производной», «Первообразная и интеграл», «Равносильность уравнений и неравенств. Уравнения-следствия», «Равносильность неравенств на множествах. Метод промежутков для уравнений и неравенств», «Системы уравнений с несколькими неизвестными».
При организации повторения курса алгебры за 11 класс будет обращено внимание на наиболее трудные темы для данного класса и использованы задачи из раздела «Задачи для повторения» и тренировочные упражнения открытого банка заданий ЕГЭ.
Формой промежуточной и итоговой аттестации являются:
- контрольная работа;
- самостоятельная работа;
- тест.
Итоговое повторение завершается контрольной работой. Формой государственной итоговой аттестации является ЕГЭ.
- Описание ценностных ориентиров содержания учебного предмета
Требования к уровню подготовки выпускников
В результате изучения математики на профильном уровне в старшей школе учащийся должен
знать/понимать:
- значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
- идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
- универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
- различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
- роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
- вероятностный характер различных процессов и закономерностей окружающего мира;
- Личностные, метапредметные и предметные результаты освоения учебного предмета
К важнейшим результатам обучения математике в 11 классах по данному УМК относятся следующие:
в личностном направлении:
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- умение планировать деятельность;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
в метапредметном направлении:
- первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
в предметном направлении:
- понимание значения математической науки для решения задач, возникающих в теории и практике; широты и ограниченности применения математических методов к анализу и исследованию процессов и явлений в природе и обществе; значения практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
- знакомство с идеей расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- умение определить значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
- умение различать требования, предъявляемые к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
- применять универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности; вероятностных характер различных процессов и закономерностей окружающего мира;
- использовать роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
- владение геометрическим языком как средством описания свойств реальных предметов и их взаимного расположения.
- Содержание курса обучения
Числовые и буквенные выражения
уметь:
- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- применять понятия, связанные с делимостью целых чисел, при решении математических задач;
- находить корни многочленов с одной переменной, раскладывать многочлены на множители;
- выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;
- проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости обращаясь к справочным материалам и простейшим вычислительным устройствам;
Функции и графики
уметь:
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций, выполнять преобразования графиков;
- описывать по графику и по формуле поведение и свойства функций;
- решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов;
Начала математического анализа
уметь:
- находить сумму бесконечно убывающей геометрический прогрессии;
- вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;
- исследовать функции и строить их графики с помощью производной;
- решать задачи с применением уравнения касательной к графику функции;
- решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;
- вычислять площадь криволинейной трапеции;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа;
Уравнения и неравенства
уметь:
- решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;
- доказывать несложные неравенства;
- решать текстовые задачи с помощью составления уравнений и неравенств, интерпретируя результат с учетом ограничений условия задачи;
- изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
- находить приближенные решения уравнений и их систем, используя графический метод;
- решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для построения и исследования простейших математических моделей;
Элементы комбинаторики, статистики и теории вероятностей
уметь:
- решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;
- вычислять (в простейших случаях) вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для анализа реальных числовых данных, представленных в виде диаграмм, графиков, и информации статистического характера.
8. Учебно-методический комплект включает в себя:
- Алгебра и начала математического анализа. 11 класс: учебник для общеобразовательных учреждений : базовый и профил. уровни / С. М. Никольский [и др.]. – М: Просвещение, 2010. - (МГУ - школе).
- Потапов, М. К. Алгебра и начала анализа: дидактические материалы для 11 кл.: базовый и профил. уровни / М. К. Потапов. - М.: Просвещение, 2010.
- Потапов, М. К. Алгебра и начала математического анализа : 11 кл. : базовый и профил. уровни : кн. для учителя / М. К. Потапов, А. В. Шевкин. - М. : Просвещение, 2008.
- Шепелева, Ю. В. Алгебра и начала математического анализа. Тематические тесты. 11 класс: базовый и профил. уровни / Ю. В. Шепелева. - М.: Просвещение, 2009.
- Программы общеобразовательных учреждений. Алгебра и начала математического анализа. 10-11 классы / сост. Т. А. Бурмистрова. - М. : Просвещение, 2010.
Дополнительная литература:
- Вавилов, В. В. Начала анализа : задачник : 10-11 кл.: учебное пособие для общеобразоват. учебных заведений / В. В. Вавилов [и др.]. - М.: Дрофа, 1996.
- Математика в школе : науч.-теор. и метод, журн. -М: Школа-Пресс, 2004-2010.
- Математика : учеб.-метод. газ. -М: Издательский дом «Первое сентября», 2004-2010.
- Самсонов, П. И. Математика : полный курс логарифмов. Естественно-научный профиль / П. И. Самсонов. - М. : Школьная Пресса, 2005.
По теме: методические разработки, презентации и конспекты
рабочая программа 10 класс алгебра, С.М.Никольский, ФГОС
Рабочая программа учебного курса по алгебре и началам математического анализа для 10 класса модифицирована на основе Примерной программы среднего (полного) общего образования пор математике с уч...
Рабочая программа по алгебре 7-9 (Мордкович,ФГОС)
Рабочая программа составлена с учетом требований ФГОС 2016 года....
Рабочая программа по алгебре в 9 классе фгос по учебнику Никольского
Рабочая программа составлена в соответствии с учебным планом на основе федерального государственного образовательного стандарта основного общего образования, Примерной программы по учебным предм...
Рабочая программа по алгебре для 7 кл ФГОС
Данная рабочая программа разработана к учебнику Колягина Ю.М. "Агебра 7", 3 ч в неделю....
Рабочая программа по алгебре 7-9 по ФГОС
Рабочая программа составлена к УМК Ю. Н. Макарычева...
Рабочая программа по алгебре и началам анализа в 10 классе по учебнику Никольского ФГОС
Пояснительная записка и КТП с УУД...
Рабочая программа по алгебре 7кл. по новым ФГОС-21
Рабочая программа составлена в конструкторе...