Рабочая программа для 5-9-х классов по математике
рабочая программа по алгебре (5, 6, 7, 8, 9 класс) на тему

Азарова Ольга Евгеньевна

Составлена по УМК к учебникам "Математика 5-6" Виленкин Н.Я., " Алгебра 7-9" Макарычев Ю.Н., "Геометрия 7-9" Атанасян Л.С.

Скачать:


Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение Школа № 9 городского округа город Уфа Республики Башкортостан

Рассмотрено на заседании МО                                                    Согласовано                                                                              Утверждаю

протокол №______                                                                         зам. дир по УВР                                                            директор МБОУ Школа № 9

от «___»____________20___г.                                                      _______Гориева Д.Р.                                                   __________ А.З.Мулюков

Принято                                                                                                                                                                 приказ №____ от _____________2016г.

на заседании научно – методического                                                                                          

совета   протокол №_____                                                                                                                    

от «___»______________20___г.

Рабочая программа

по математике  для 5-9 классов (2016 -2020)

Составлена по УМК

к учебникам «Математика. 5-6 класс»(Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд.); 

«Алгебра. 7-9 класс» (Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; под ред. С.А. Теляковского); 

        «Геометрия. 7 – 9 классы» (Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.)

                                                                          Разработана

                                                                              Азаровой О.Е.

                                                                                          учителем математики

                                                                                                                     высшей квалификационной категории

Уфа – 2016

  Рабочая программа по математике для 5-9 классов разработана на основе:

- требований к результатам освоения ООП МБОУ Школа №9;

-«Федерального государственного образовательного стандарта основного общего образования» ;

-примерных программ по учебным предметам. Математика 5-9 классы. Москва «Просвещение», 2010 год.

-сборника рабочих программ « Математика 5-6 классы»: пособие для учителей общеобразоват. организаций / [сост. Т.А. Бурмистрова]. – М.: Просвещение, 2014.

-Алгебра. Рабочие программы. Предметная линия учебников Ю.Н. Макарычева и других. 7- 9 классы: пособие для учителей общеобразоват. организаций /Н.Г. Миндюк. – 2-е изд., дораб. – М.: Просвещение, 2014.

-Геометрия. Сборник рабочих программ. 7—9 классы: пособие для учителей общеобразов. организаций / [сост.Т. А. Бурмистрова]. — 2-е изд., дораб. — М.: Просвещение, 2014.

Для реализации обучения математике по данной программе используется учебно-методический комплект:

1.        Математика. 5 класс: учеб. для общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. — М., 2015.

2.        Математика. 6 класс: учеб. для общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. — М., 2015.

3.        Алгебра. 7 класс: учеб. для общеобразоват. учреждений / [Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова]; под ред. С.А. Теляковского. – М.: Просвещение, 2015.

4.        Алгебра. 8 класс: учеб. для общеобразоват. организаций с прил. на электрон. носителе / [Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова]; под ред. С.А. Теляковского. – М.: Просвещение, 2015.

5.        Алгебра. 9 класс: учеб. для общеобразоват. организаций / [Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова]; под ред. С.А. Теляковского. – М.: Просвещение, 2014.

6.        Геометрия. 7 – 9 классы: учеб. для общеобразоват. организаций / [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.]. – М.: Просвещение, 2015.

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 850 ч из расчета 5 ч в неделю с 5 по 9 класс.

1.Планируемые результаты освоения учебного предмета

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;

6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

в метапредметном направлении:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

 в предметном направлении:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;

6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

7) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

8) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

9) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

10) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 56 класс – «Математика», 79 класс – «Математика» («Алгебра» и «Геометрия») являются следующие качества:

независимость и критичность мышления;

воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

система заданий учебников;

представленная в учебниках в явном виде организация материала по принципу минимакса;

использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно- деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

56-й классы

– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

79-й классы

– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;

– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

планировать свою индивидуальную образовательную траекторию;

работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

уметь оценить степень успешности своей индивидуальной образовательной деятельности;

давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

    Средством формирования регулятивных УУД служат технология системно-деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных  достижений (учебных успехов).

Познавательные УУД:

59-й классы

анализировать, сравнивать, классифицировать и обобщать факты и явления;

осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

вычитывать все уровни текстовой информации.

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

   Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

– Использование математических знаний для решения различных математических задач и оценки полученных результатов.

– Совокупность умений по использованию доказательной математической речи.

– Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

Умения использовать математические средства для изучения и описания реальных процессов и явлений.

Независимость и критичность мышления.

Воля и настойчивость в достижении цели.

Коммуникативные УУД:

59-й классы

– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и системно- деятельностного обучения.

      Предметными результатами изучения предмета «Математика» являются следующие умения.

5-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

- названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

- как образуется каждая следующая счётная единица;

- названия и последовательность разрядов в записи числа;

- названия и последовательность первых трёх классов;

- сколько разрядов содержится в каждом классе;

- соотношение между разрядами;

- сколько единиц каждого класса содержится в записи числа;

- как устроена позиционная десятичная система счисления;

- единицы измерения величин (длина, масса, время, площадь), соотношения между ними;

- десятичных дробях и правилах действий с ними;

- сравнивать десятичные дроби;

- выполнять операции над десятичными дробями;

- преобразовывать десятичную дробь в обыкновенную и наоборот;

- округлять целые числа и десятичные дроби;

- находить приближённые значения величин с недостатком и избытком;

- выполнять приближённые вычисления и оценку числового выражения;

- функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).

Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;

- выполнять умножение и деление с 1000;

- вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;

- решать простые и составные текстовые задачи;

- выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

- находить вероятности простейших случайных событий;

- решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

- решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

- читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;

- строить простейшие линейные, столбчатые и круговые диаграммы;

-находить решения «жизненных» (компетентностных) задач, в которых используются  математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

6-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- раскладывать натуральное число на простые множители;

- находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;

- отношениях и пропорциях; основном свойстве пропорции;

- прямой и обратной пропорциональных зависимостях и их свойствах;

- процентах;

- целых и дробных отрицательных числах; рациональных числах;

- правиле сравнения рациональных чисел;

- правилах выполнения операций над рациональными числами; свойствах операций.

- делить число в данном отношении;

- находить неизвестный член пропорции;

- находить данное количество процентов от числа и число по известному количеству процентов от него;

- находить, сколько процентов одно число составляет от другого;

- увеличивать и уменьшать число на данное количество процентов;

- решать текстовые задачи на отношения, пропорции и проценты;

- сравнивать два рациональных числа;

- выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;

- решать комбинаторные задачи с помощью правила умножения;

- находить вероятности простейших случайных событий;

- решать простейшие задачи на осевую и центральную симметрию;

- решать простейшие задачи на разрезание и составление геометрических фигур;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

7-й класс

Алгебра

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- натуральных, целых, рациональных, иррациональных, действительных числах;

- степени с натуральными показателями и их свойствах;

- одночленах и правилах действий с ними;

- многочленах и правилах действий с ними;

- формулах сокращённого умножения;

- тождествах; методах доказательства тождеств;

- линейных уравнениях с одной неизвестной и методах их решения;

- системах двух линейных уравнений с двумя неизвестными и методах их решения.

- Выполнять действия с одночленами и многочленами;

- узнавать в выражениях формулы сокращённого умножения и применять их;

-раскладывать многочлены на множители;

- выполнять тождественные преобразования целых алгебраических выражений;

- доказывать простейшие тождества;

- находить число сочетаний и число размещений;

- решать линейные уравнения с одной неизвестной;

- решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;

- решать текстовые задачи с помощью линейных уравнений и систем;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

7-й класс

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- основных геометрических понятиях: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;

- определении угла, биссектрисы угла, смежных и вертикальных углов;

- свойствах смежных и вертикальных углов;

- определении равенства геометрических фигур; признаках равенства треугольников;

- геометрических местах точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;

- определении параллельных прямых; признаках и свойствах параллельных прямых;

- аксиоме параллельности и её краткой истории;

- формуле суммы углов треугольника;

- определении и свойствах средней линии треугольника;

- теореме Фалеса.

- Применять свойства смежных и вертикальных углов при решении задач;

- находить в конкретных ситуациях равные треугольники и доказывать их равенство;

- устанавливать параллельность прямых и применять свойства параллельных прямых;

- применять теорему о сумме углов треугольника;

- использовать теорему о средней линии треугольника и теорему Фалеса при решении задач;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

8-й класс

Алгебра

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- алгебраической дроби; основном свойстве дроби;

- правилах действий с алгебраическими дробями;

- степенях с целыми показателями и их свойствах;

-стандартном виде числа;

- функциях y = kx+b , y = x2 , y = k/ x , их свойствах и графиках;

- понятии квадратного корня и арифметического квадратного корня;

- свойствах арифметических квадратных корней;

- функции y = x , её свойствах и графике;

- формуле для корней квадратного уравнения;

- теореме Виета для приведённого и общего квадратного уравнения;

- основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;

- методе решения дробных рациональных уравнений;

- основных методах решения систем рациональных уравнений.

- Сокращать алгебраические дроби;

- выполнять арифметические действия с алгебраическими дробями;

- использовать свойства степеней с целыми показателями при решении задач;

- записывать числа в стандартном виде;

- выполнять тождественные преобразования рациональных выражений;

- строить графики функций y = kx+b , y = x2 , y = k/ x , и использовать их свойства при решении задач;

- вычислять арифметические квадратные корни;

- применять свойства арифметических квадратных корней при решении задач;

- строить график функции y = x и использовать его свойства при решении задач;

- решать квадратные уравнения;

- применять теорему Виета при решении задач;

- решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;

- решать дробные уравнения;

- решать системы рациональных уравнений;

- решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

8-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;

- определении трапеции; элементах трапеции; теореме о средней линии трапеции;

- определении окружности, круга и их элементов;

- теореме об измерении углов, связанных с окружностью;

- определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;

- определении вписанной и описанной окружностей, их свойствах;

- определении тригонометрические функции острого угла, основных соотношений между ними;

- приёмах решения прямоугольных треугольников;

- тригонометрических функциях углов от 0 до 180°;

- теореме косинусов и теореме синусов;

- приёмах решения произвольных треугольников;

- формулах для площади треугольника, параллелограмма, трапеции;

- теореме Пифагора.

- Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;

- решать простейшие задачи на трапецию;

- находить градусную меру углов, связанных с окружностью; устанавливать их равенство;

- применять свойства касательных к окружности при решении задач;

- решать задачи на вписанную и описанную окружность;

- выполнять основные геометрические построения с помощью циркуля и линейки;

- находить значения тригонометрических функций острого угла через стороны прямоугольного треугольника;

- применять соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;

- решать прямоугольные треугольники;

- сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;

- применять теорему косинусов и теорему синусов при решении задач;

- решать произвольные треугольники;

- находить площади треугольников, параллелограммов, трапеций;

- применять теорему Пифагора при решении задач;

- находить простейшие геометрические вероятности;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

9-й класс.

Алгебра

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- свойствах числовых неравенств;

- методах решения линейных неравенств;

- свойствах квадратичной функции;

- методах решения квадратных неравенств;

- методе интервалов для решения рациональных неравенств;

- методах решения систем неравенств;

- свойствах и графике функции y = xn при натуральном n;

- определении и свойствах корней степени n;

- степенях с рациональными показателями и их свойствах;

- определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;

- определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;

- формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.

- Использовать свойства числовых неравенств для преобразования неравенств;

- доказывать простейшие неравенства;

- решать линейные неравенства;

- строить график квадратичной функции и использовать его при решении задач;

- решать квадратные неравенства;

- решать рациональные неравенства методом интервалов;

- решать системы неравенств;

- строить график функции y = xn при натуральном n и использовать его при решении задач;

- находить корни степени n;

- использовать свойства корней степени n при тождественных преобразованиях;

- находить значения степеней с рациональными показателями;

- решать основные задачи на арифметическую и геометрическую прогрессии;

- находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

9-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- признаках подобия треугольников;

- теореме о пропорциональных отрезках;

- свойстве биссектрисы треугольника;

- пропорциональных отрезках в прямоугольном треугольнике;

- пропорциональных отрезках в круге;

- теореме об отношении площадей подобных многоугольников;

- свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;

- определении длины окружности и формуле для её вычисления;

- формуле площади правильного многоугольника;

- определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;

- правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;

- определении координат вектора и методах их нахождения;

- правиле выполнений операций над векторами в координатной форме;

- определении скалярного произведения векторов и формуле для его нахождения;

- связи между координатами векторов и координатами точек;

- векторным и координатным методах решения геометрических задач.

- формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.

- Применять признаки подобия треугольников при решении задач;

- решать простейшие задачи на пропорциональные отрезки;

- решать простейшие задачи на правильные многоугольники;

- находить длину окружности, площадь круга и его частей;

- выполнять операции над векторами в геометрической и координатной форме;

- находить скалярное произведение векторов и применять его для нахождения различных геометрических величин;

- решать геометрические задачи векторным и координатным методом;

- применять геометрические преобразования плоскости при решении геометрических задач;

- находить объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни».

При этом последние два компонента представлены отдельно по каждому из разделов содержания.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

          В результате изучения математики ученик должен

         знать/понимать:

Математика. Алгебра. Геометрия.

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

понимать особенности десятичной системы счисления;

оперировать понятиями, связанными с делимостью натуральных чисел;

выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

сравнивать и упорядочивать рациональные числа;

выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

познакомиться с позиционными системами счисления с основаниями, отличными от 10;

углубить и развить представления о натуральных числах и свойствах делимости;

научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

использовать начальные представления о множестве действительных чисел;

оперировать понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

понять, что числовые данные, которые используются для характеристики объектовокружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения

Выпускник научится:

оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

выполнять многошаговые преобразования рациональных выражений, применяя широкий набор пособов и приёмов;

применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

Уравнения

Выпускник научится:

решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

понимать и использовать функциональные понятия и язык (термины, символические обозначения);

строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

понимать и использовать язык последовательностей (термины, символические обозначения);

применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ,представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

строить развёртки куба и прямоугольного параллелепипеда;

определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

углубить и развить представления о пространственных геометрических фигурах;

научиться применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры

Выпускник научится:

пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

научиться решать задачи на построение методом геометрического места точек и методом подобия;

приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

вычислять длину окружности, длину дуги окружности;

вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

овладеть координатным методом решения задач на вычисления и доказательства;

приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы

Выпускник научится:

оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

овладеть векторным методом для решения задач на вычисления и доказательства;

приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».

2. Содержание учебного предмета

МАТЕМАТИКА 5 - 6 КЛАССЫ

5 класс (5 ч в неделю, всего 170 ч)

Натуральные числа и шкалы.(15ч) Натуральный ряд. Десятичная система счисления. Обозначение натуральных чисел.

Отрезок. Длина отрезка. Треугольник. Плоскость. Прямая. Луч. Шкалы и координаты. Единицы измерения длины, площади, объёма, массы, времени, скорости. Примеры зависимостей между величинами скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул. Вычисления по формулам. Решение текстовых задач арифметическими способами.

Сложение и вычитание натуральных чисел(20ч)Арифметические действия с натуральными числами. Свойства арифметических действий. Числовые и буквенные выражения. Числовое выражение, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами.

Умножение и деление натуральных чисел. (23 ч). Умножение натуральных чисел и его свойства. Упрощение выражений. Деление с остатком. Применяют буквы для обозначения чисел и записи выражений, находят и выбирают удобный способ решения задания.

Решают простейшие уравнения на основе зависимостей между компонентами и результатом арифметических действий. Понятие о степени с натуральным показателем. Квадрат и куб числа.

Площади и объемы (13 ч.) Применяют буквы для обозначения чисел и записи общих утверждений прогнозируют результат вычислений.

Составляют  буквенные выражения по условиям, заданным рисунком или таблицей.

Обыкновенные дроби. (26 ч.) Изображают окружность, круг; указывают радиус и диаметр, соотносят реальные предметы с моделями  рассматриваемых фигур. Исследуют ситуации, требующие сравнения чисел, их упорядочения; объясняют ход решения задачи. Доли. Обыкновенные дроби. Сравнение дробей. Указывают правильные и неправильные дроби, объясняют ход решения задачи. Складывают и вычитают дроби с одинаковыми знаменателями. Обнаруживают и устраняют ошибки логического и арифметического  характера.

Десятичные дроби. Сложение и вычитание десятичных дробей. (15 ч.) Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Читают и записывают десятичные дроби, сравнивают числа по классам и разрядам, планируют решение задачи. Складывают и вычитают десятичные дроби. Округляют числа до заданного разряда.

Умножение и деление десятичных дробей. (24 ч.) Умножают десятичные числа на натуральное число, прогнозируют результат вычислений. Делят десятичные дроби на натуральные числа. Умножают десятичные дроби; решают задачи на умножение десятичных дробей.

Инструменты для вычислений и измерений.( 15 ч.) Записывают проценты в виде десятичных дробей, и наоборот, решают задачи на проценты. Определяют геометрические фигуры при изменение их расположения на плоскости.

Первое знакомство со статистикой, комбинаторикой и элементами теории вероятностей. (5ч.) Представление данных в виде таблиц, диаграмм. Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов. Решение комбинаторных задач перебором вариантов. Множество, элемент множества. Пустое множество. Подмножество. Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Повторение. (13 ч.) Обобщение и систематизация знаний, полученных в 5 классе.

6 класс (5 ч в неделю, всего 170 ч)

Делимость чисел    (20 часов)Делители и кратные. Наибольший общий делитель, наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Сложение и вычитание дробей с разными знаменателями.  (22 часа) Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Приведение дробей к общему знаменателю.                        

Сравнение, сложение и вычитание дробей с разными знаменателями.

 Умножение и деление обыкновенных дробей. (32 часа) Нахождение части от целого и целого по его части. Применение распределительного свойства умножения.          

Отношения и пропорции.(18 часов) Отношение. Пропорция; основное свойство пропорции. Проценты; нахождение процента от величины и величины по ее процентам, выражение отношения в процентах. Масштаб. Длина окружности и площадь круга.Решение текстовых задач арифметическими способами.

Положительные и отрицательные числа. (13 часов)Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа. Множество целых чисел.

Сложение и вычитание положительных отрицательных чисел (12 часов) Множество рациональных чисел.

Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий.

Умножение и деление положительных и отрицательных чисел( 11 часов)Рациональные числа.

Свойства действий с рациональными числами

Решение уравнений.( 16 часов) Использование букв для обозначения чисел; для записи свойств арифметических действий. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий.

Координаты на плоскости.( 12 часов)  Декартовы координаты на плоскости. Построение точки по её координатам, определение координат точки на плоскости. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный многоугольник, окружность, круг. Четырёхугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины. Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата.

Итоговое повторение курса (14 часов)

АЛГЕБРА 7 – 9 КЛАССЫ

7 класс (3 ч в неделю, всего 102 ч)

1.Выражения и их преобразования. Уравнения (15 ч)

Числовые выражения и выражения с переменными. Простейшие преобразования выражений. Уравнение с одним неизвестным и его корень, линейное уравнение. Решение задач методом уравнений.

 Цель – систематизировать и обобщить сведения о преобразовании выражений и решении уравнений с одним неизвестным, полученные учащимися в курсе математики 5,6 классов.

Знать какие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».

Уметь осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.

2. Функции (12 ч)

Функция, область определения функции, Способы задания функции. График функции. Функция  y=kx+b и её график. Функция y=kx и её график.Цель – познакомить  учащихся с основными функциональными понятиями и с графиками функций y=kx+b,  y=kx.

Знать определения функции, области определения функции, области значений, что такое аргумент, какая переменная называется зависимой, какая независимой; понимать, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная) описывают большое разнообразие реальных зависимостей.

Уметь правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач; находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы

3. Степень с натуральным показателем (15 ч)

Степень с натуральным показателем и её свойства. Одночлен.

Цель – выработать умение выполнять действия над степенями с натуральными показателями.

Знать определение степени, одночлена, многочлена; свойства степени с натуральным показателем.

Уметь выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.

4. Многочлен. Формулы сокращённого умножения  (36 ч)

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители. Формулы . Применение формул сокращённого умножения к разложению на множители.

Цель – выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители, выработать умение применять в несложных случаях формулы сокращённого умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители.

Знать определение многочлена, понимать формулировку заданий: «упростить выражение», «разложить на множители».

Знать формулы сокращенного умножения: квадратов суммы и разности двух выражений; различные способы разложения многочленов на множители.

Уметь приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки; умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества, читать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму;  выполнять разложение разности квадратов двух выражений на множители; применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.

5. Системы линейных уравнений  (12 ч)

Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений..

Цель – познакомить учащихся со способами решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и прменять их при решении текстовых задач.

Знать, что такое линейное уравнение с двумя переменными, система уравнений,  знать различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения; понимать, что уравнение – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.

Уметь правильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему  уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными;  решать системы уравнений с двумя переменными различными способами.

6. Элементы статистики и теории вероятностей(3ч)

Цель – познакомить с основными статистическими характеристиками: мода, размах числового  ряда, среднее арифметическое, среднее геометрическое.

 7. Повторение. Решение задач  (9ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).

8 класс (3 ч в неделю, всего 102 ч)

1.Повторение курса алгебры 7 класса (3ч)

2.Рациональные дроби(21ч)

Рациональные выражения. Основное свойство дроби.  Сокращение дробей. Сумма и разность дробей. Умножение и деление алгебраических дробей. Преобразование рациональных выражений Функция у=к/х..

 Цель – систематизировать и обобщить сведения о преобразовании выражений и решении уравнений с одним неизвестным, полученные учащимися в курсе математики 5-7 классов.

Знать какие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».

Уметь осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений. Изучение темы завершается рассмотрением свойств графика функции.

3. Квадратные корни.(21 ч.)

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный

Корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразование выражений, содержащих квадратные корни. Функция ,ее свойства и график.

Цель – систематизировать  сведения о рациональных числах и дать представление об иррациональных числа ,расширив тем самым понятие о числе ,выработать умение выполнять преобразования выражений ,содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.                                                                                                                                                                               Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество, которые получают применение в преобразованиях              выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби.Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры ,так и в курсах геометрии, алгебры и начал анализа.

 4. Квадратные уравнения(22ч)

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Основная цель-выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.        

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделять решению полных квадратных уравнений с использованием формулы корней. Учащиеся знакомятся с теоремой Виета, выражающей связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.  

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение  таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

5.Неравенства(14ч.)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Основная цель-ознакомить учащихся с применением неравенств для оценки значений выражений, выработать умения решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательство неравенств.  

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление учащихся с понятием пересечения и объединения множеств.

При решении  неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства.                                                    

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

6.Степень с целым показателем. Элементы статистики.(16ч.)

Степень с целым показателем и ее свойства. Стандартный вид числа. Приближенные вычисления.

Основная цель-выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний. Уметь наглядно представлять статистическую информацию.

7.Повторение(5ч)

9 класс (4 ч в неделю, всего 136 ч)

Повторение(4 ч)

Глава 1. Квадратичная функция (34 ч)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.

Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функции у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Формирование умений решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n.. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида , hello_html_m187d0ff8.gif. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

Глава 2. Уравнения и системы уравнений(20ч)

Целые уравнения. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени.

Цель: систематизировать и обобщить сведения о решении целых с одной переменной, Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной.

Глава 4. Арифметическая и геометрическая прогрессии (16 ч)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач

Глава 5. Свойства степени с рациональным  показателем.(19ч) Цель: дать понятия арифметического корня, степени с дробным показателем. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби.Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры ,так и в курсах геометрии, алгебры и начал анализа.

Глава 6. Элементы комбинаторики и теории вероятностей (12ч)

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитатьих число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

6. Повторение(31ч)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.

ГЕОМЕТРИЯ 7 – 9 КЛАССЫ

7 класс (2 ч в неделю, всего 68 ч)

Начальные геометрические сведения.        (11ч)

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся путем обобщения очевидных или известных из курса математики I— 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

Треугольники         (18ч)

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки.

Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников.

 Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.

Параллельные прямые         (13ч)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Цель: ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.

Соотношение между сторонами и углами треугольника         (22ч)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Цель: рассмотреть новые интересные и важные свойства треугольников.

В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, и частности используется в задачах на построение. При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.

Повторение(4ч)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7 класса.

8 класс (2 ч в неделю, всего 68 ч)

 Четырехугольники(14ч)  Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.        14

Площадь (14ч)Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.

Подобные треугольники        (19ч) Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках  в  прямоугольном  треугольнике.   Дается  представление о методе подобия в задачах на построение.

        В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Окружность (17ч) Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная  и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.

Повторение. Решение задач.(6ч)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.

9 класс (2 ч в неделю, всего 68 ч)

Векторы(8 ч)

Основная цель:

- сформировать понятие вектора как направленного отрезка, показать учащимся применение вектора к решению простейших задач.

- сформировать понятие нулевого вектора, длины вектора, коллинеарных векторов. Равенство векторов. Операции над векторами в геометрической форме (правило треугольника, правило параллелограмма, правило многоугольника, правило построения разности векторов и вектора, получающегося при умножении вектора на число).

Законы сложения векторов. Операции над векторами в геометрической форме

(построение вектора, получающегося при умножении вектора на число).

Закон умножения вектора на число. Формула для вычисления средней линии трапеции.

Метод координат (10ч)

Лемма и теорема о разложении вектора по двум неколлинеарным векторам. Понятие координат вектора, правила действий над векторами с заданными координатами. Понятие радиуса-вектора точки. Формулы координат вектора через координаты его конца и начала, координат середины отрезка, длины вектора и расстояния между двумя точками. Уравнения окружности и прямой, осей координат.

Соотношения между сторонами и углами треугольника (11ч)

Основная цель:        

- познакомить учащихся с основными алгоритмами решения произвольных треугольников.

Понятия синуса, косинуса и тангенса для углов от 0о до 180о, основное тригонометрическое  тождество, формулы приведения, формулы для вычисления координат точки. Соотношения между сторонами и углами треугольника.

Теорема о площади треугольника, теоремы синусов и косинусов, измерительные работы, основанные на использовании этих теорем, методы решения треугольников.

 Определение скалярного  произведения векторов, условие перпендикулярности ненулевых векторов, выражение скалярного произведения в координатах и его свойства.

Длина окружности и площадь круга (12 ч)

Основная цель:

-  расширить и систематизировать знания учащихся об окружностях и многоугольниках

Определение правильного многоугольника. Окружности вписанной  и описанной в правильный многоугольник. Формулы вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности. Формула длина окружности и дуги окружности, площадь круга и кругового сектора.                                        

 Движение (8 ч)

Основная цель:

- познакомить с понятием движения на плоскости:  симметриями, параллельным переносом, поворотом.

Определение движения и его свойства. Примеры движения: осевая и центральная симметрии, параллельный перенос и поворот. Эквивалентность понятий наложения и движения.

Начальные сведения из стереометрии(8ч)

Повторение(9ч) Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7-9 класса.

3. Тематическое планирование с указанием количества часов, отводимых для каждой темы

темы

раздела

Тема раздела программы

Количество отводимых учебных часов

 в рабочей программе

5 класс

6 класс

7 класс

8 класс

9 класс

Арифметика

102

109

Элементы алгебры

15

19

Алгебра

76

78

58

Функции

12

26

Вероятность и статистика

5

5

3

4

12

Наглядная геометрия

13

12

8

Геометрические фигуры

7

59

48

12

Измерение геометрических величин

5

8

11

Координаты

10

Векторы

18

Итого:

135

152

155

138

155


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике (алгебре) 5-9 классы и рабочая программа по геометрии 7-9 класс

Рабочая программа составлена на основе примерных программ основного общего образования по математике 2004 года по учебным комплектам: математика 5-6 класс - Н. Я. Виленкин и др., алгебра - Ю. Н. Макар...

Рабочие программы для 5,6,7 классов попредметам: математика, алгебра, геометрия, физика.

Представляю Вашему  вниманию рабочие программы используемые для заполнения бумажного журнала....

Рабочие программы для 5,6,7 классов попредметам: математика, алгебра, геометрия, физика.

Представляю Вашему  вниманию рабочие программы используемые для заполнения бумажного журнала....

РАБОЧАЯ ПРОГРАММА по математике для 5-х классов Разработана на основе примерной рабочей программы ( автор – составитель О.С. Кузнецова ) учителем математики ГБОУ школы № 645 Старковской С.Н

Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике....

Рабочая программа элективного курса в 9 классе по математике «Практикум по решению задач для подготовки к ОГЭ.»

Данная программа элективного курса предназначена для обучающихся 9-х классов общеобразовательных учреждений и рассчитана на 17 часов. Она предназначена для повышения эффективности подготовки обу...

Рабочая программа по общеинтеллектуальному направлению 6 класс занимательная математика

Успешное овладение знаниями  невозможно без интереса детей к учебе. Основной формой обучения в школе является урок. Строгие рамки урока математики и насыщенность программы не всегда позвол...

Рабочая программа внеурочной деятельности в 8 классе "Реальная математика"

Учащиеся 8 класса уже начинают готовиться к ОГЭ по математике. Рабочая программа составлена таким образом, что в ней рассматриваются все виды практико-ориенированных заданий №1-5....