Магические квадраты
занимательные факты по алгебре на тему
Магический, или волшебный квадрат — это квадратная таблица , заполненная n2 числами, таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях оказывается одинаковой.
Скачать:
Вложение | Размер |
---|---|
magicheskie_kvadraty.doc | 237.5 КБ |
Предварительный просмотр:
Магические квадраты.
Магический, или волшебный квадрат — это квадратная таблица , заполненная n2 числами, таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях оказывается одинаковой. Нормальным называется магический квадрат, заполненный целыми числами от 1 до n2.
Магические квадраты существуют для всех порядков , за исключением n = 2, хотя случай n = 1 тривиален — квадрат состоит из одного числа. Минимальный нетривиальный случай показан ниже, он имеет порядок 3.
Сумма чисел в каждой строке, столбце и на диагоналях, называется магической константой, M. Магическая константа нормального волшебного квадрата зависит только от n и определяется формулой
Первые значения магических констант приведены в следующей таблице:
Порядок n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
M (n) | 15 | 34 | 65 | 111 | 175 | 260 | 369 | 505 | 671 | 870 | 1105 |
Исторически значимые магические квадраты.
Квадрат Ло Шу
Изображение Ло Шу в книге эпохи Мин.
Ло Шу (кит. трад. 洛書, упрощ. 洛书, пиньинь luò shū) Единственный нормальный магический квадрат 3×3. Был известен ещё в Древнем Китае, первое изображение на черепаховом панцире датируется 2200 до н.э..
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
Квадрат, найденный в Кхаджурахо (Индия)
Самый ранний уникальный магический квадрат обнаружен в надписи XI века в индийском городе Кхаджурахо:
7 | 12 | 1 | 14 |
2 | 13 | 8 | 11 |
16 | 3 | 10 | 5 |
9 | 6 | 15 | 4 |
Это первый магический квадрат, относящийся к разновидности так называемых "дьявольских" квадратов.
Квадрат Альбрехта Дюрера
Фрагмент гравюры Дюрера «Меланхолия»
Магический квадрат 4×4, изображённый на гравюре Альбрехта Дюрера «Меланхолия I», считается самым ранним в европейском искусстве. Два средних числа в нижнем ряду указывают дату создания картины (1514)
16 | 3 | 2 | 13 |
5 | 10 | 11 | 8 |
9 | 6 | 7 | 12 |
4 | 15 | 14 | 1 |
Сумма чисел на любой горизонтали, вертикали и диагонали равна 34. Эта сумма также встречается во всех угловых квадратах 2×2, в центральном квадрате (10+11+6+7), в квадрате из угловых клеток (16+13+4+1), в квадратах, построенных «ходом коня» (2+8+9+15 и 3+5+12+14), в прямоугольниках, образованных парами средних клеток на противоположных сторонах (3+2+15+14 и 5+8+9+12). Большинство дополнительных симметрий связано с тем, что сумма любых двух центрально симметрично расположенных чисел равна 17.
Квадраты Генри Э. Дьюдени и Аллана У. Джонсона - младшего.
Если в квадратную матрицу n × n заносится не строго натуральный ряд чисел, то данный магический квадрат — нетрадиционный. Ниже представлены два таких магических квадрата, заполненные в основном простыми числами. Первый имеет порядок n=3 (квадрат Дьюдени); второй (размером 4x4) — квадрат Джонсона. Оба они были разработаны в начале двадцатого столетия:
|
|
Есть еще несколько подобных примеров:
17 | 89 | 71 | |||||||||
113 | 59 | 5 | |||||||||
47 | 29 | 101 | |||||||||
1 | 823 | 821 | 809 | 811 | 797 | 19 | 29 | 313 | 31 | 23 | 37 |
89 | 83 | 211 | 79 | 641 | 631 | 619 | 709 | 617 | 53 | 43 | 739 |
97 | 227 | 103 | 107 | 193 | 557 | 719 | 727 | 607 | 139 | 757 | 281 |
223 | 653 | 499 | 197 | 109 | 113 | 563 | 479 | 173 | 761 | 587 | 157 |
367 | 379 | 521 | 383 | 241 | 467 | 257 | 263 | 269 | 167 | 601 | 599 |
349 | 359 | 353 | 647 | 389 | 331 | 317 | 311 | 409 | 307 | 293 | 449 |
503 | 523 | 233 | 337 | 547 | 397 | 421 | 17 | 401 | 271 | 431 | 433 |
229 | 491 | 373 | 487 | 461 | 251 | 443 | 463 | 137 | 439 | 457 | 283 |
509 | 199 | 73 | 541 | 347 | 191 | 181 | 569 | 577 | 571 | 163 | 593 |
661 | 101 | 643 | 239 | 691 | 701 | 127 | 131 | 179 | 613 | 277 | 151 |
659 | 673 | 677 | 683 | 71 | 67 | 61 | 47 | 59 | 743 | 733 | 41 |
827 | 3 | 7 | 5 | 13 | 11 | 787 | 769 | 773 | 419 | 149 | 751 |
Последний квадрат примечателен тем, что он составлен из 143 последовательных простых чисел за исключением двух моментов: привлечена единица, которая не является простым числом, и не использовано единственное чётное простое число 2.
Дьявольский магический квадрат
Дьявольский магический квадрат — магический квадрат, в котором с магической константой совпадают суммы чисел по ломаным диагоналям (диагонали, которые образуются при сворачивании квадрата в тор) в обоих направлениях.
Тор — поверхность вращения в форме бублика, получаемая вращением окружности вокруг оси, лежащей в плоскости окружности и её не пересекающей.
Такие квадраты называются ещё пандиагональными.
Существует 48 дьявольских магических квадратов 4×4 с точностью до поворотов и отражений. Если принять во внимание еще и их дополнительную симметрию — торические параллельные переносы, то останется только 3 существенно различных квадрата:
|
|
|
Однако было доказано, что из последнего третьего варианта простейшими перестановками чисел получаются первые два квадрата. То есть третий вариант — это базовый дьявольский квадрат, из которого различными преобразованиями можно построить все остальные.
Пандиагональные квадраты существуют для нечётного порядка n>3, для любого порядка двойной чётности n=4k (k=1,2,3…) и не существуют для порядка одинарной чётности n = 4k + 2 ().
Пандиагональные квадраты четвёртого порядка обладают рядом дополнительных свойств, за которые их называют совершенными.
Совершенных квадратов нечётного порядка не существует. Среди пандиагональных квадратов двойной чётности выше 4 имеются совершенные.
Пандиагональных квадратов пятого порядка 3600. С учётом торических параллельных переносов имеется 144 различных пандиагональных квадратов. Один из них показан ниже.
1 | 15 | 24 | 8 | 17 |
9 | 18 | 2 | 11 | 25 |
12 | 21 | 10 | 19 | 3 |
20 | 4 | 13 | 22 | 6 |
23 | 7 | 16 | 5 | 14 |
Если пандиагональный квадрат еще и ассоциативный, то он носит название идеальный. Пример идеального магического квадрата:
21 | 32 | 70 | 26 | 28 | 69 | 22 | 36 | 65 |
40 | 81 | 2 | 39 | 77 | 7 | 44 | 73 | 6 |
62 | 10 | 51 | 58 | 18 | 47 | 57 | 14 | 52 |
66 | 23 | 34 | 71 | 19 | 33 | 67 | 27 | 29 |
4 | 45 | 74 | 3 | 41 | 79 | 8 | 37 | 78 |
53 | 55 | 15 | 49 | 63 | 11 | 48 | 59 | 16 |
30 | 68 | 25 | 35 | 64 | 24 | 31 | 72 | 20 |
76 | 9 | 38 | 75 | 5 | 43 | 80 | 1 | 42 |
17 | 46 | 60 | 13 | 54 | 56 | 12 | 50 | 61 |
Известно, что не существует идеальных магических квадратов порядка n = 4k+2 и квадрата порядка n = 4. В то же время, существуют идеальные квадраты порядка n = 8.Методом построения составных квадратов можно построить на базе данного квадрата восьмого порядка идеальные квадраты порядка n = 8k, k=5,7,9...и порядка n = 8^p, p=2,3,4... В 2008 г. разработан комбинаторный метод построения идеальных квадратов порядка n = 4k , k = 2, 3, 4,... Идеальные магические квадраты легко строятся с использованием цепей Александрова.
По теме: методические разработки, презентации и конспекты
Магический квадрат
Однажды в мои руки попала газета, в которой была напечатана популярная игра Судоку. И у меня появилось большое желание попробовать самой составить такой квадрат. Поначалу я долго мучалась в его ...
Дидактическая игра «Магический квадрат»
Дидактическая игра «Магический квадрат» проводится для учащихся 6-7 классов с целью обобщения и повторения изученного материала....
Bahnhof магический квадрат
"Путешествие по германии" 8 класс...
Berufe магический квадрат
"Выбор профессии" 9 класс...
Schulsystem магический квадрат
"Школьная сичтема в Германии" 8 класс...
Магические квадраты
В статье приведена информация о различных магических квадратах....
Магический квадрат
материал поможет ближе познакомиться с правила составления магических квадратов...