Рабочая программа по математике 5 класс пл УМК А.Г. Мерзляк по ФГОС
рабочая программа по алгебре (5 класс) на тему
пояснительная записка, основное содержание, учебно-тематический план, требования к уровню подготовки обучающихся, список литературы, календарно-тематический план.
Скачать:
Вложение | Размер |
---|---|
programma_po_umk_mirzlyak.doc | 106.5 КБ |
Предварительный просмотр:
Муниципальное общеобразовательное учреждение Сатинская средняя
общеобразовательная школа
Рассмотрена на заседании Утверждена приказом
педагогического совета протокол № от
№ от
Рабочая программа
по учебному предмету
математика
5 класс
Составила учитель математики Шеина Н.В.
2015 — 2016 учебный год
Пояснительная записка
Рабочая программа по математике для 5 класса составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования на основе фундаментального ядра содержания общего образования; Требований к результатам основного общего образования, представленных в федеральном государственном образовательном стандарте общего образования; примерной программы по математике и учебного авторского коллектива в составе: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко , входящего в Федеральный перечень учебников, рекомендованных Министерством образования и науки Российской Федерации.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта для 5 классов и дает распределение учебных часов по разделам курса.
Рабочая программа выполняет две основные функции.
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Структура документа
Рабочая программа включает: пояснительную записку, основное содержание, учебно-тематический план, требования к уровню подготовки обучающихся, список литературы, календарно-тематический план.
Общая характеристика учебного предмета
Содержание математического образования в 5 классе представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Геометрические фигуры. Измерение геометрических величин», «Элементы статистики, вероятности. Комбинаторные задачи», «Математика в историческом развитии».
Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию вычислительной культуры и логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе связано с изучением рациональных чисел: натуральных чисел, обыкновенных и десятичных дробей, положительных и отрицательных чисел.
Содержание раздела «Числовые и буквенные выражения. Уравнения» формируют знания о математическом языке. Существенная роль при этом отводится овладению формальным аппаратом буквенного исчисления. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений.
Содержание раздела «Геометрические фигуры. Измерения геометрических величин» формирует у учащихся понятия геометрических фигур на плоскости и в пространстве, закладывает основы формирования геометрической «речи», развивает пространственное воображение и логическое мышление.
Содержание раздела «Элементы статистики, вероятности. Комбинаторные задачи» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор вариантов, в том числе в простейших прикладных задачах.
Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.
Цели обучения
Изучение математики в 5 классе направлено на достижение следующих целей:
В направлении личностного развития:
- воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных ученых в развитие мировой науки;
- ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учетом устойчивых познавательных интересов;
- умение контролировать процесс и результат учебной и математической деятельности;
- критичность мышления, инициатива, находчивость, активность при решении математических задач.
в метапредметном направлении:
- умение определять цели своего обучения, ставить и формулировать для себя новые задачи в учебе, развивать мотивы и интересы своей познавательной деятельности;
- умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;
- умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- развитие компетентности в области использования информационно-коммуникационных технологий;
- первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении задачи, понимать необходимость их проверки;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
в предметном направлении:
- осознание значения математики для повседневной жизни человека;
- представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
- развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
- владение базовым понятийным аппаратом по основным разделам содержания;
- практически значимые математические умения и навыки, их применение к решению математических и нематематических задач, предполагающее умения:
- выполнять вычисления с натуральными числами, обыкновенными и десятичными дробями, положительными и отрицательными числами;
- решать текстовые задачи арифметическим способом и с помощью составления и решения уравнений;
- изображать фигуры на плоскости;
- использовать геометрический «язык» для описания предметов окружающего мира;
- измерять длины отрезков, величины углов, вычислять площади и объёмы фигур;
- распознавать и изображать равные и симметричные фигуры;
- проводить несложные практические вычисления с процентами, использовать прикидку и оценку; выполнять необходимые измерения;
- использовать буквенную символику для записи общих утверждений, формул, выражений, уравнений;
- строить на координатной плоскости точки по заданным координатам, определять координаты точек;
- читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой), в графическом виде;
решать простейшие комбинаторные задачи перебором возможных вариантов
Место предмета в федеральном базисном учебном плане
Согласно учебному плану МОУ Сатинской СОШ на изучение математики в 5 классе отводится 210 часов из расчета 6 часов в неделю. Рабочая программа рассчитана на 210 часов.
Результаты обучения
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие 5 класс, и достижение которых является обязательным условием для продолжения образования в 6 классе.
Основное содержание учебного предмета (210 часов)
Арифметика
Натуральные числа
• Ряд натуральных чисел. Десятичная запись натуральных чисел. Округление натуральных чисел.
• Координатный луч.
• Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.
• Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.
• Решение текстовых задач арифметическими способами.
Дроби
• Обыкновенные дроби. Правильные и неправильные дроби. Смешанные числа.
• Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.
• Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.
• Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.
• Решение текстовых задач арифметическими способами.
Величины. Зависимости между величинами
• Единицы длины, площади, объёма, массы, времени, скорости.
• Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.
Числовые и буквенные выражения. Уравнения
• Числовые выражения. Значение числового выражения.
• Порядок действий в числовых выражениях. Буквенные выражения. Формулы.
• Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.
Элементы статистики, вероятности. Комбинаторные задачи
• Представление данных в виде таблиц, графиков.
• Среднее арифметическое. Среднее значение величины.
• Решение комбинаторных задач.
Геометрические фигуры. Измерения геометрических величин
• Отрезок. Построение отрезка. Длина отрезка, ломаной. Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.
• Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.
• Прямоугольник. Квадрат. Треугольник. Виды треугольников.
• Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Ось симметрии фигуры.
• Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб. Примеры развёрток многогранников. Понятие и свойства объёма. Объём прямоугольного параллелепипеда и куба.
Математика в историческом развитии
Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метрическая система мер в России, в Европе. История формирования математических символов. Дроби в Вавилоне, Египте, Риме, на Руси.
Учебно-тематический план
Название тема, раздела | Количество часов | В том числе контрольных работ | Характеристика основных видов деятельности ученика (на уровне УУД) |
Натуральные числа | 23 | 1 | Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их. Распознавать на чертежах, рисунках, в окружающем мире отрезок, прямую, луч, плоскость. Приводить примеры моделей этих фигур. Измерять длины отрезков. Строить отрезки заданной длины. Решать задачи на нахождение длин отрезков. Выражать одни единицы длин через другие. Приводить примеры приборов со шкалами. Строить на координатном луче точку с заданной координатой, определять координату точки |
Сложение и вычитание | 38 | 2 | Формулировать свойства сложения и вычитания натуральных чисел, записывать эти свойства в виде формул. Приводить примеры числовых и буквенных выражений, формул. Составлять числовые и буквенные выражения по условию задачи. Решать уравнения на основании зависимостей между компонентами действий сложения и вычитания. Решать текстовые задачи с помощью составления уравнений. Распознавать на чертежах и рисунках углы, многоугольники, в частности треугольники, прямоугольники. Распознавать в окружающем мире модели этих фигур. С помощью транспортира измерять градусные меры углов, строить углы заданной градусной меры, строить биссектрису данного угла. Классифицировать углы. Классифицировать треугольники по количеству равных сторон и по видам их углов. Описывать свойства прямоугольника. Находить с помощью формул периметры прямоугольника и квадрата. Решать задачи на нахождение периметров прямоугольника и квадрата, градусной меры углов. Строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи. Распознавать фигуры, имеющие ось симметрии |
Умножение и деление | 45 | 2 | Формулировать свойства умножения и деления натуральных чисел, записывать эти свойства в виде формул. Решать уравнения на основании зависимостей между компонентами арифметических действий. Находить остаток при делении натуральных чисел. По заданному основанию и показателю степени находить значение степени числа. Находить площади прямоугольника и квадрата с помощью формул. Выражать одни единицы площади через другие. Распознавать на чертежах и рисунках прямоугольный параллелепипед, пирамиду. Распознавать в окружающем мире модели этих фигур. Изображать развёртки прямоугольного параллелепипеда и пирамиды. Находить объёмы прямоугольного параллелепипеда и куба с помощью формул. Выражать одни единицы объёма через другие. Решать комбинаторные задачи с помощью перебора вариантов |
Обыкновенные дроби | 20 | 1 | Распознавать обыкновенную дробь, правильные и неправильные дроби, смешанные числа. Читать и записывать обыкновенные дроби, смешанные числа. Сравнивать обыкновенные дроби с равными знаменателями. Складывать и вычитать обыкновенные дроби с равными знаменателями. Преобразовывать неправильную дробь в смешанное число, смешанное число в неправильную дробь. Уметь записывать результат деления двух натуральных чисел в виде обыкновенной дроби |
Десятичные дроби | 55 | 3 | Распознавать, читать и записывать десятичные дроби. Называть разряды десятичных знаков в записи десятичных дробей. Сравнивать десятичные дроби. Округлять десятичные дроби и натуральные числа. Выполнять прикидку результатов вычислений. Выполнять арифметические действия над десятичными дробями. Находить среднее арифметическое нескольких чисел. Приводить примеры средних значений величины. Разъяснять, что такое «один процент». Представлять проценты в виде десятичных дробей и десятичные дроби в виде процентов. Находить процент от числа и число по его процентам |
Повторение и систематизация | 29 | 1 |
Требования к уровню подготовки учащихся 5 класса
По окончании изучения курса учащийся научится:
- понимать особенности десятичной системы счисления;
- выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
- сравнивать и упорядочивать рациональные числа;
- выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
- использовать понятия и умения, связанные с процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;
- научиться некоторым специальным приёмам решения комбинаторных задач.
- распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;
- строить углы, определять их градусную меру;
- распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
- определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
- вычислять объём прямоугольного параллелепипеда и куба.
Учащийся получит возможность:
- познакомиться с позиционными системами счисления с основаниями, отличными от 10;
- углубить и развить представления о натуральных числах
- выполнять вычисления с натуральными числами, обыкновенными и десятичными дробями;
- решать текстовые задачи арифметическим способом и с помощью составления и решения уравнений;
- изображать фигуры на плоскости;
- использовать геометрический язык для описания предметов окружающего мира;
- измерять длины отрезков, величины углов, вычислять площади и объёмы фигур;
- распознавать и изображать равные и симметричные фигуры;
- проводить несложные практические вычисления с процентами, использовать прикидку и оценку; выполнять необходимые измерения;
- использовать буквенную символику для записи общих утверждений, формул, выражений, уравнений;
- читать и использовать информацию, представленную в виде таблицы, диаграммы (столбчатой или круговой), в графическом виде;
- решать простейшие комбинаторные задачи на нахождение количества объектов или комбинаций.
Литература:
1. Математика: 5 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2015.
2. Математика: 5 класс: дидактические материалы: сборник задач и контрольных работ / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2015.
3. Математика: 5 класс: рабочая тетрадь №1, №2 / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2015.
4. Математика: 5 класс: методическое пособие / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2015.
5. . Фарков А.В. Математические олимпиады в школе. 5-11 класс. – М.: Айрис- пресс, 2005.
6. Депман И. Я., Виленкин Н. Я. За страницами учебника математики. 5-6 класс. – М.: Просвещение, 2004.
7. Энциклопедия для детей. Математика. Том 11. – М.: Аванта+, 2003.
8. http://www.kvant.info/ Научно-популярный физико-математический журнал для школьников и студентов «Квант».
9. Левитас Г.Г. Нестандартные задачи по математике. – М.: ИЛЕКСА, 2007.
11. Гаврилова Т.Д. Занимательная математика. 5-11 класс. – Волгоград: Учитель, 2008.
12. Интернет-ресурсы:
http://matemproekt56.blogspot.ru/
http://school-collection.edu.ru/
http://infourok.ru/
По теме: методические разработки, презентации и конспекты
Рабочая программа для 5 класса к УМК Биболетова М.З. по ФГОС ООО
Рабочая программа состоит из пояснительной записки и календарно-тематического планирования по УМК Биболетовой М.З. под новой редакцией. Рабочая программа соответствует требованиям Стандартов второго п...
Рабочая программа для 5 класса по музыке авторы Сергеева, Критская по ФГОС
рабочая программа для 5 класса по музыке по программе Сергеевой Критской ФГОС...
Рабочая программа 2-4 классы по УМКа Кузовлев В.П (согласно ФГОС)
Данная программа составлена на основе авторской программы «Английский язык 2-4 классы» (авторы В.П. Кузовлев, Н.М. Лапа, Э.Ш. Перегудова и др.) /Программы об...
Рабочая программа 5-6 класс к учебнику А.Г. Мерзляк
Рабочая программа 5-6 класс к учебнику А.Г. Мерзляк...
Рабочая программа по математике,5класс. УМК авт. А.Г. Мерзляк, В.Б. Полонский, М.С. Якир,
Данная рабочая программа по математике для 5 класса разработана в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования, утвержд...
Рабочая программа по математике 5-9 клаcсы к УМК Мерзляк А.Г.
Рабочая программа по математике 5-9 классы к УМК Мерзляк А.Г....
Рабочая программа по математике на уровень основного общего образования (базовый уровень) ФГОС ООО
Изучение математики по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного обр...