И прекрасна, и сильна Математика-страна
методическая разработка по алгебре (6 класс) по теме
Конкурс-игра по математике для 5-6 классов
Скачать:
Вложение | Размер |
---|---|
i_prekrasna._i_silna.odt | 21.07 КБ |
testovye_zadaniya_po_matematike_6_kl.odt | 21.27 КБ |
Предварительный просмотр:
Конкурсная программа «И прекрасна. И сильна, Математика- страна!»
Цели:
1.фронтальное повторение учебного материала по математике;
2.развитие логического мышления, речи, внимания, и памяти;
3.расширение кругозора учащихся;
4.воспитание интереса к математике.
Оформление класса: математические газеты; плакаты с высказываниями.
В игре учавствуют две команды по 7 человек из 5-7классов.
Программа начинается с выступления двух учащихся:
1-й учащийся: Тем, кто учит математику,
Тем, кто учит математике,
Тем, кто любит математику,
Тем, кто ещё не знает,
Что может полюбить математику,
Наша викторина посвящается!
2-й учащийся: Математика повсюду.
Глазом только поведёшь
И примеров сразу уйму
Ты вокруг себя найдёшь.
Каждый день, вставая бодро,
Начинаешь уж решать:
Идти тихо или быстро.
Чтобы в класс не опоздать.
Вот строительство большое.
Прежде,чем его начать.
Нужно всё ёщё подробно
Начертить и рассчитать.
А иначе рамы будут с перекосом,
Потолок провалится.
А кому, друзья, скажите,
Это может нравиться?
Ох, скажу я вам, ребята,
Все примеры не назвать.
Но должно быть всем понятно,
Что математику
нам нужно знать на пять.
Если хочешь строить мост,
Наблюдать движенье звёзд,
управлять машиной в поле
Иль вести машину ввысь,
хорошо работай в школе,
Добросовестно учись.
- Представление команд:
Название команды, внешний вид учащихся оцениваются жюри.
1___________________________________________________________________
2___________________________________________________________________
3__________________________________________________________________
4___________________________________________________________________
5___________________________________________________________________
6___________________________________________________________________
7.___________________________________________________________________
Конкурс «Слабое звено»
Вопросы для 1 команды:
1.Как называется результат сложения?
2 Сколько минут в 1 часе?
3 Как называется прибор для измерения углов?
4 На что похожа половина яблока?
5 Назовите наименьшее трёхзначное число?
6 Тройка лошадей пробежала 30 км. Какое расстояние пробежала каждая лошадь?
7 Количество лет в веке?
8 Как называется дробь, в которой числитель равен знаменателю?
9 Чему равна сумма смежных углов?
10 72:8
11 Третий месяц лета?
12 Сколько козлят было у «многодетной» козы?
13 Часть прямой,ограниченная двумя точками?
14 Прямоугольник, у которого все стороны равны?
15 Одна сотая часть числа?
Вопросы для 2 команды:
1 Как называется результат умножения?
2 Сколько секунд в 1 минуте?
3 Назовите наибольшее трёхзначное число?
4 Как называется прибор для измерения отрезков?
5 Петух, стоя на одной ноге, весит 5 кг.Сколько он будет весить, если встанет на обе ноги?
6 Сколько нулей в записи числа «миллион»?
7 Как называется дробь, у которой числитель больше знаменателя?
9 Как называется угол 90 0?
10 56:7
11 Последний месяц зимы?
12 День недели, предшествующий пятнице?
13 Сколько сторон у квадрата?
14 Фигура, образованная двумя лучами с общим началом?
15 Единица измерения углов?
2 Конкурс « Третий лишний»
Участникам даются таблички с номерами и названиями различных объектов.
Два из них имеют какое-то общее свойство, а третий-нет. Участники должны исключить лишний объект.
Уравнение, корень, число.
Окружность.диагональ радиус.
Время, вес, год.
Гектар, метр, сотка.
Транспортир, линейка, угол.
Треугольник, прямоугольник, квадрат.
- Конкурс « Глазомер»
Нужно на «глаз» отрезать 50 см верёвки, а остальную разрезать на 3 равные части.(Учитывается точность
- Конкурс для болельщиков:
Число- как много в этом звуке
Для математики, друзья!
Но и в простой, обычной жизни
Без чисел нам никак нельзя!
Числа вторгаются в каждый наш день: встать в семь часов, сесть на сто сорок седьмой автобус, успеть к 9часам. Мы все привыкли к этому и не придаём числам особого значения. Но так было не всегда: древние люди считали числа особым кодом,часто придавали им сказочный и мифический смысл. Например: «7» считалось магическим счастливым числом(7 цветов радуги. 7 тонов музыки,) «13»- наоборот. Число несчастливое(чертова дюжина), «2»- лежит в основе противопоставлений(жизнь-смерть,холодно- горячо.день-ночь), «3»-получило значение священного. Древние пифагорийцы считали его совершенным, т.к. оно имеет начало,ередину и конец иобозначают его в виде треугольника. И так. Наш конкурс посвящен числам и этот конкурс для болельщиков :
Сейчас для болельщиков конкурс у нас
Они пусть покажут смекалку и класс.
Команды свои пусть поддержат хоть баллом,
Ведь им от команд отставать не пристало!
Учитель предлагает назвать строки из песен. Стихов. Сказок. Где есть числа.Ведущие считают,кто больше назовёт за 3 минуты.
Предварительный просмотр:
Тест по теме «НОД и НОК»
Фамилия, имя _____________________________________________________________________
1. Натуральные числа называются взаимно простыми, если:
а) у них более двух делителей; б) их НОД равен 1; в) у них один делитель.
2. Наибольшим общим делителем чисел а и в называется:
а) наибольшее натуральное число, на которое делятся без остатка эти числа;
б) наименьшее натуральное число, которое кратно и а, и в;
в) наибольшее натуральное число, которое делится без остатка на эти числа.
3. Наименьшим общим кратным чисел а и в называется:
а) наибольшее натуральное число, на которое делятся без остатка эти числа;
б) наименьшее натуральное число, которое делится без остатка на эти числа;
в) наименьшее натуральное число, которое кратно и а, и в.
4. Чтобы найти НОК нескольких натуральных чисел, надо:
а) разложить их на простые множители. Выписать множители, входящие в разложение одного из чисел; добавить к ним недостающие множители из разложения остальных чисел. Найти произведение получившихся множителей.
б) разложить их на простые множители. Выписать множители, входящие в разложение одного из чисел; добавить к ним все множители из разложения остальных чисел. Найти произведение получившихся множителей.
в) разложить их на простые множители. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел. Найти произведение оставшихся множителей.
5. Чтобы найти НОД нескольких натуральных чисел, надо:
а) разложить их на простые множители. Выписать множители, входящие в разложение одного из чисел; добавить к ним недостающие множители из разложения остальных чисел. Найти произведение получившихся множителей.
б) разложить их на простые множители. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые входят в разложение других чисел. Найти произведение получившихся множителей.
в) разложить их на простые множители. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел. Найти произведение оставшихся множителей.
Тест по теме «Сокращение дробей. Сравнение, сложение и вычитание дробей с разными знаменателями»
Фамилия, имя __________________________________________________________________________
1. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится:
а) дробь, противоположная данной; б) более двух делителей; в) равная ей дробь.
2. Наименьший общий знаменатель должен:
а) быть делителем данных дробей;
б) делиться на знаменатели данных дробей без остатка;
в) делиться на знаменатели данных дробей с остатком.
3. Чтобы привести дробь к наименьшему общему знаменателю, надо:
а) найти НОК знаменателей этих дробей; умножить наименьший общий знаменатель на знаменатели данных дробей, т.е. найти для каждой дроби дополнительный множитель; умножить числитель каждой дроби на дополнительный множитель;
б) найти НОК знаменателей этих дробей; разделить наименьший общий знаменатель на знаменатели данных дробей, т.е. найти для каждой дроби дополнительный множитель; умножить знаменатель каждой дроби на дополнительный множитель;
в) найти НОК знаменателей этих дробей; разделить наименьший общий знаменатель на знаменатели данных дробей, т.е. найти для каждой дроби дополнительный множитель; умножить числитель и знаменатель каждой дроби на дополнительный множитель.
4. Чтобы сравнить (сложить или вычесть) дроби с разными знаменателями, надо:
а) привести данные дроби к наименьшему общему знаменателю; сравнить (сложить или вычесть дроби);
б) разложить числитель на простые множители; сравнить (сложить или вычесть дроби);
в) разложить знаменатель на простые множители; сравнить (сложить или вычесть дроби).
5. Чтобы сложить смешанные числа, надо
а) привести дробные части этих чисел к НОЗ; выполнить сложение целых частей и дробных частей вместе. Если при сложении дробных частей получится неправильная дробь, выделить целую часть из этой дроби и прибавить её к полученной целой части;
б) привести дробные части этих чисел к НОЗ; отдельно выполнить сложение целых частей и отдельно дробных частей. Если при сложении дробных частей получится неправильная дробь, выделить целую часть из этой дроби и прибавить её к полученной целой части;
в) привести дробные части этих чисел к НОЗ; отдельно выполнить сложение целых частей и отдельно дробных частей. Если при сложении целых частей получится неправильная дробь, выделить целую часть из этой целой части и прибавить её к полученной дробной части.
- Чтобы выполнить вычитание смешанных чисел, надо:
а) привести дробные части этих чисел к НОЗ; если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить её в неправильную дробь, уменьшив на единицу целую часть; отдельно выполнить вычитание целых частей и отдельно дробных частей;
б) привести дробные части этих чисел к НОЗ; если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить её в неправильную дробь, уменьшив на единицу целую часть; отдельно выполнить сложение целых частей и отдельно дробных частей;
в) привести дробные части этих чисел к НОЗ; если дробная часть уменьшаемого больше дробной части вычитаемого, превратить её в неправильную дробь, уменьшив на единицу целую часть; отдельно выполнить вычитание целых частей и отдельно дробных частей.
Тест по теме «Применение распределительного свойства умножения»
Фамилия, имя_________________________________________________
1. Чтобы умножить дробь на натуральное число, надо:
а) её числитель умножить на это число, а знаменатель оставить без изменения;
б) её знаменатель умножить на это число, а числитель оставить без изменения;
в) её числитель и знаменатель умножить на это число.
2. Чтобы умножить дробь на дробь, надо:
а) найти произведение числителей и произведение знаменателей этих дробей; первое произведение записать знаменателем, а второе – числителем;
б) найти произведение числителей, а знаменатель оставить прежним;
в) найти произведение числителей и произведение знаменателей этих дробей; первое произведение записать числителем, а второе – знаменателем;
3. Для того чтобы выполнить умножение смешанных чисел, надо:
а) отдельно умножить целые числа, отдельно дробные;
б) записать их в виде неправильных дробей, а затем воспользоваться правилом умножения дробей.
4. Чтобы найти дробь от числа, надо:
а) сложить число и эту дробь;
б) умножить число на эту дробь;
в) разделить число на эту дробь.
5. Чтобы умножить смешанное число на натуральное число, можно:
а) умножить целую часть на натуральное число; умножить дробную часть на это натуральное число; сложить полученные результаты;
б) умножить целую часть на натуральное число; умножить дробную часть на это натуральное число; вычесть полученные результаты;
в) умножить целую часть на натуральное число; умножить дробную часть на это натуральное число; умножить полученные результаты.
Тест по теме «Отношения и пропорции»
Фамилия,имя_____________________________________________________________
1. Отношением двух чисел называют:
а) произведение этих чисел; б) частное этих чисел.
2. Отношение показывает:
а) во сколько раз первое число больше второго или какую часть первое составляет от второго;
б) на сколько первое число больше второго или какую часть второе составляет от первого.
3. Что нужно сделать, если величины измерены разными единицами измерениями?
4. Что называют пропорцией?__________________________________________________
5. Подпишите название членов пропорции: а : в = с : d
6. Запишите основное свойство пропорции: _________________________________________________________________________
7. Что можно найти, используя основное свойство дроби?___
8. Новые пропорции верны, если:
а) поменять местами числитель и знаменатель в пропорции;
б) поменять местами средние члены или крайние члены.
9. Две величины называют прямо пропорциональными, если:
а) при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз;
б) при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.
10. Две величины называют обратно пропорциональными, если:
а) при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз;
б) при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.
Тест по теме «Положительные и отрицательные числа»
Фамилия,имя_____________________________________________________________
1. Какие числа называются положительными?
а) со знаком «+»; б) со знаком «-».
2. Какие числа называют отрицательными?
а) со знаком «+»; б) со знаком «-».
3. Два числа, отличающиеся друг от друга только знаками, называют:
а) положительными; б) противоположными; в) отрицательными.
4. Любое отрицательное число ______________ любого положительного.
5. Любое положительное число ________________ нуля.
6. Любое отрицательное число __________________ нуля.
7. Из двух отрицательных чисел меньше то, модуль которого________ .
8. Чему равна сумма двух противоположных чисел? _______________
9. Чтобы сложить два отрицательных числа, надо:
а) из большего модуля слагаемых вычесть меньший; поставить перед полученным числом знак того слагаемого, модуль которого больше;
б) сложить их модули; поставить перед полученным числом знак « - ».
10. Чтобы сложить два числа с разными знаками, надо:
а) из большего модуля слагаемых вычесть меньший; поставить перед полученным числом знак того слагаемого, модуль которого больше;
б) сложить их модули; поставить перед полученным числом знак « - ».
11. Найдите значение суммы:
а) – 36 + (-54)= ; б) -23 + 23= ; в) -145 + 0 = ; г) -127,3 + (-13,9)= ;
д) 26 + (-83)= ; е) ; ж) - 0,28 + 0,18= ; з) 0,8 + (- 0,4)= .
12. Найдите значение выражения х + 2,6, если: х = -1,47 _________
Тест по теме «Отношения и пропорции»
Фамилия,имя_____________________________________________________________
1. Отношением двух чисел называют:
а) произведение этих чисел; б) частное этих чисел.
2. Отношение показывает:
а) во сколько раз первое число больше второго или какую часть первое составляет от второго;
б) на сколько первое число больше второго или какую часть второе составляет от первого.
3. Что нужно сделать, если величины измерены разными единицами измерениями?
4. Что называют пропорцией?__________________________________________________
5. Подпишите название членов пропорции: а : в = с : d
6. Запишите основное свойство пропорции: _________________________________________________________________________
7. Что можно найти, используя основное свойство дроби?___
8. Новые пропорции верны, если:
а) поменять местами числитель и знаменатель в пропорции;
б) поменять местами средние члены или крайние члены.
9. Две величины называют прямо пропорциональными, если:
а) при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз;
б) при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.
10. Две величины называют обратно пропорциональными, если:
а) при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз;
б) при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.
Тест по теме «Положительные и отрицательные числа»
Фамилия,имя_____________________________________________________________
1. Какие числа называются положительными?
а) со знаком «+»; б) со знаком «-».
2. Какие числа называют отрицательными?
а) со знаком «+»; б) со знаком «-».
3. Два числа, отличающиеся друг от друга только знаками, называют:
а) положительными; б) противоположными; в) отрицательными.
4. Любое отрицательное число ______________ любого положительного.
5. Любое положительное число ________________ нуля.
6. Любое отрицательное число __________________ нуля.
7. Из двух отрицательных чисел меньше то, модуль которого________ .
8. Чему равна сумма двух противоположных чисел? _______________
9. Чтобы сложить два отрицательных числа, надо:
а) из большего модуля слагаемых вычесть меньший; поставить перед полученным числом знак того слагаемого, модуль которого больше;
б) сложить их модули; поставить перед полученным числом знак « - ».
10. Чтобы сложить два числа с разными знаками, надо:
а) из большего модуля слагаемых вычесть меньший; поставить перед полученным числом знак того слагаемого, модуль которого больше;
б) сложить их модули; поставить перед полученным числом знак « - ».
11. Найдите значение суммы:
а) – 36 + (-54)= ; б) -23 + 23= ; в) -145 + 0 = ; г) -127,3 + (-13,9)= ;
д) 26 + (-83)= ; е) ; ж) - 0,28 + 0,18= ; з) 0,8 + (- 0,4)= .
12. Найдите значение выражения х + 2,6, если: х = -1,47 _________
.
Тест по теме «Умножение и деление положительных и отрицательных
чисел»
Фамилия,имя__________________________________________________
1. Чтобы перемножить два числа с разными знаками, надо:
а) перемножить модули этих чисел и поставить перед полученным числом знак « - »;
б) перемножить модули этих чисел.
2. Чтобы перемножить два отрицательных числа, надо
а) перемножить модули этих чисел и поставить перед полученным числом знак « - »;
б) перемножить модули этих чисел.
3. Поставьте знак:
а) -3,2 ... 1,8; б) 0...- 5;
4. Чтобы разделить отрицательное число на отрицательное число, надо:
а) разделить модуль делимого на модуль делителя, поставить перед полученным числом знак « - »;
б) разделить модуль делимого на модуль делителя.
5. При делении чисел с разными знаками, надо:
а) разделить модуль делимого на модуль делителя, поставить перед полученным числом знак « - »;
б) разделить модуль делимого на модуль делителя.
6. Найдите значения выражений:
(4,3 – 7,8) х(- 5,6 +8,3)
Тест по теме «Рациональные числа и свойства действий над ними»
Фамилия,имя____________________________________________________________
1. Какое число называется рациональным?
а) число, которое можно записать в виде отношения , где а – целое число; п – натуральное;
б) число, которое можно записать в виде отношения , где а – целое число; п – натуральное.
2. Любое целое число а можно записать в виде , а значит оно является:
а) натуральным; б) рациональным.
3. Верно ли, что любое рациональное число можно записать либо в виде десятичной дроби, либо в виде периодической?
а) да; б) нет.
4. Сложение рациональных чисел обладает свойствами:
а) сочетательным, переместительным, распределительным;
б) сочетательным, переместительным.
5. Запишите свойства сложения рациональных чисел (все вам известные).
_________________________________________________________________________
_________________________________________________________________________
6. Умножение рациональных чисел обладает свойствами:
а) сочетательным, переместительным, распределительным относительно сложения;
б) сочетательным, переместительным.
7. Запишите свойства умножения рациональных чисел (все вам известные).
_________________________________________________________________________
8. Произведение может быть равно нулю лишь в том случае, когда:
а) обязательно два множителя равны нулю;
б) хотя бы один из множителей равен нулю.
9. Выразите в виде десятичной или периодической дроби числа:
5/9; 7/12;
Тест по теме «Раскрытие скобок. Коэффициент. Подобные слагаемые»
Фамилия, имя___________________________________________________________
1. Если перед скобками стоит знак «+», то :
а) знаки всех слагаемых в скобках меняются на противоположные;
б) знаки всех слагаемых в скобках не изменяются.
2. Если перед скобками стоит знак «-», то :
а) знаки всех слагаемых в скобках меняются на противоположные;
б) знаки всех слагаемых в скобках не изменяются.
3. Если выражение является произведением числа и одной или нескольких букв, то это число называют:
а) подобным слагаемым;
б) коэффициентом.
4. Слагаемые имеющие одинаковую буквенную часть называются ____________
5. Что нужно сделать, чтобы сложить (привести) подобные слагаемые _______________________________________________________________________
6. Раскройте скобки и найдите значение выражения:
а) – 0,6 + (-4,4 + 3,8) = б) – 1,8 – (- 4,8 + 2,9) = в)
7. Приведите подобные слагаемые:
а) 3х + 15у – 2х – 20у + 7х = б)
8. Упростите выражение и подчеркните коэффициент:
а) -3 ∙ (-7с) ∙ 4р = б) -2,4m ∙ (-3.2) ∙ 5.5 =
Тест по теме «Решение уравнений»
Фамилия, имя___________________________________________________________
1. Корни уравнения не изменяются, если:
а) обе части уравнения умножить или разделить на одно и то же число, не равное нулю;
б) к обе им частям уравнения прибавить одно и то же число, не равное нулю.
в) какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак;
г)какое-нибудь слагаемое перенести из одной части уравнения в другую, не меняя при этом его знак.
2. Решите уравнение:
а) 14 +5 х =4х + 3; х =
б) 3а + 5 = 8а – 15; а =
Тест по теме «Перпендикулярные и параллельные прямые. Координатная плоскость »
Фамилия, имя__________________________________________________
- Перпендикулярными прямыми называются:
а) две непересекающиеся прямые;
б) две прямые, образующие при пересечении прямые углы.
2. Параллельными прямыми называются:
а) две непересекающиеся прямые;
б) две прямые, образующие при пересечении прямые углы.
3. Если две прямые в плоскости перпендикулярны третьей прямой, то они:
а) перпендикулярны; б) параллельны.
4. Сколько прямых можно провести через каждую точку плоскости, не лежащую на данной прямой:
а) одну; б) ни одной; в) множество.
5. Ось ординат – это: а) х; б) у.
6. Ось абсцисс – это: а) х; б) у.
7. Прямые х и у называют - …
8. Точка О – это…
9. Постройте в координатной плоскости точкиК(-3;-2), L(-3;5), M(-4;0), N(0;2), P(4;-2), T(4;4).
По теме: методические разработки, презентации и конспекты
и прекрасна и сильна математики страна
"И прекрасна и сильна математики страна" - внекласное мероприятие для обучающихся училища. Проводится в виде конкурса между группами по окончании первого курса. Цель мероприятия: повышение интереса к ...
Внеклассное мероприятие Игра - КВН «И прекрасна и сильна математики страна»
Цели:- Развитие интеллектуальной деятельности учащихся, через использование заданий занимательного характера- Воспитывать чувство юмора и смекалки, интерес к предмету математики. Задачи:- П...
КВН "И прекрасна, и сильна Математика-страна"
Разработка КВН между командами учителей и учеников для использования во внеурочной деятельности или на предметных неделях...
Внеклассное мероприятие "И прекрасна, и сильна математики страна"
Данное внеклассное мероприятие по математике рассчитано на учащихся 5 класа . Здесь содержится и программный материал, и задания на смекалку. Мероприятие состоит из 8этапов. Команды заранее готовят пр...
Внеклассное мероприятие по математике на тему: "И прекрасна и сильна математики страна…"
Внеклассное мероприятие по математике направлено на развитие у учащихся интереса к предмету, математических способностей школьников и формирование умения использовать знания в нестандартной ситуации....
Математический КВН для учащихся 5-х классов «И ПРЕКРАСНА И СИЛЬНА МАТЕМАТИКИ СТРАНА»
Мы, играя, проверяем, что умеем и что знаем!...
Внеклассное мероприятие по математике для учащихся начальной и средней школы «И прекрасна, и сильна математика – страна»
Внеклассное мероприятие по математике для учащихся начальной и средней школы «И прекрасна, и сильна математика – страна»...