Сборник "Задачи на проценты"
материал для подготовки к егэ (гиа) по алгебре (9 класс) на тему
Проценты – это одна из сложнейших тем математики и химии, физики и очень многие учащиеся затрудняются или вообще не умеют решать задачи на проценты. А понимание процентов, и умение производить процентные расчёты в других предметных областях, необходимы для каждого человека.
Прикладное значение темы "Проценты" велико и затрагивает финансовую, экономическую и другие сферы нашей жизни.
Умение выполнять процентные вычисления и расчёты необходимо всем, так как с процентами мы сталкиваемся в повседневной жизни.
Сделана подборка задач по математике из ОГЭ и ЕГЭ для подготовки учащихся к сдаче экзамена по математике.
Скачать:
Вложение | Размер |
---|---|
sbornik_zadach_na_protsenty.doc | 58.5 КБ |
Предварительный просмотр:
Муниципальное бюджетное образовательное учреждение
«Средняя общеобразовательная школа №14»
СБОРНИК
ЗАДАЧИ НА ПРОЦЕНТЫ
9 КЛАСС
подготовила Вакалова Н.Н.,
учитель математики
высшей категории
НИЖНЕВАРТОВСК
2015
- Основные типы задач по теме «Проценты».
- Задачи на проценты в вариантах ОГЭ по математике
- Городской бюджет составляет 45 млн. р., а расходы на одну из его статей составили 12,5%. Сколько рублей потрачено на эту статью бюджета?
1)5625000 р. 2)562,5 р. 3)50625000 р. 4) 562500 р.
- Перед представлением в цирк для продажи было заготовлено некоторое количество шариков. Перед началом представления было продано 2/5 всех воздушных шариков, а в антракте – еще 12 штук. После этого осталась половина всех шариков. Сколько шариков было первоначально?
1) 40 2) 80 3) 120 4) 160
- Сберегательный банк начисляет на срочный вклад 20% годовых. Вкладчик положил на счет 800 р. Какая сумма будет на этом счете через год, если никаких операций со счетом проводиться не будет?
1) 960 р. 2) 820 р. 3) 160 р. 4) 1600 р.
- Товар на распродаже уценили на 20%, при этом он стал стоить 680 р. Сколько стоил товар до распродажи?
1) 136 р. 2) 816 р. 3) 700 р. 4) 850 р.
- Государству принадлежит 60% акций предприятия, остальные акции принадлежат частным лицам. Общая прибыль предприятия после уплаты налогов за год составила 40 млн. р. Какая сумма из этой прибыли должна пойти на выплату частным акционерам?
1) 400000 р. 2) 16000000 р. 3) 24000000 р. 4) 100000000 р.
- Акции предприятия распределены между государством и частными лицами в отношении 3:5. Общая прибыль предприятия после уплаты налогов за год составила 32 млн. р. Какая сумма из этой прибыли должна пойти на выплату частным акционерам?
1) 4000000 р. 2) 12000000 р. 3) 20000000 р. 4) 6400000 р.
- На пост председателя школьного совета претендовали два кандидата. В голосовании приняли участие 120 человек. Голоса между кандидатами распределились в отношении 3:5. Сколько голосов получил победитель?
1) 15 2) 24 3) 45 4) 75 - Число хвойных деревьев в парке относится к числу лиственных как 1:4. Сколько процентов деревьев в парке составляют лиственные?
1) 20% 2) 25% 3) 40% 4) 80%
- Средний вес мальчиков того же возраста, что и Сергей, равен 48 кг. Вес Сергея составляет 120% среднего веса. Сколько весит Сергей?
1) 60 кг 2) 57,6 кг 3) 40 кг 4) 9,6 кг
- В начале года число абонентов телефонной компании «Север» составляло 200 тыс. чел., а в конце года их стало 210 тыс. чел. На сколько процентов увеличилось за год число абонентов этой компании?
1) На 5% 2) На 10% 3) На 0,05% 4) На 105%
- Тест по математике содержит 30 заданий, из которых 18 заданий по алгебре, остальные – по геометрии. В каком отношении содержатся в тесте алгебраические и геометрические задания?
1) 3:2 2) 2:3 3) 3:5 4) 5:3
- На счет в банке, доход по которому составляет 15% годовых, внесли 24 тыс. р. Сколько тысяч рублей будет на этом счете через год, если никаких операций со счетом проводиться не будет?
- Какая сумма (в рублях) будет проставлена в кассовом чеке, если стоимость товара 520 р., и покупатель оплачивает его по дисконтной карте с 5%-ной скидкой?
- В понедельник некоторый товар поступил в продажу по цене 1000 р. В соответствии с принятыми в магазине правилами цена товара в течение недели остается неизменной, а в первый день каждой следующей недели снижается на 20% от предыдущей цены. Сколько рублей будет стоить товар на девятый день после поступления в продажу?
- В период распродажи магазин снижал цены дважды: в первый раз на 30%, во второй – на 50%. Сколько рублей стал стоить чайник после второго снижения цен, если до начала распродажи он стоил 700 р.?
- При оплате услуг через платежный терминал взимается комиссия 5%. Терминал принимает суммы кратные 10 рублям. Николай хочет положить на счёт своего мобильного телефона не меньше 300 рублей. Какую минимальную сумму он должен положить в приемное устройство данного терминала?
- Мобильный телефон стоил 5000 рублей. Через некоторое время цену на эту модель снизили до 3000 рублей. На сколько процентов была снижена цена?
- На покупку планшета взяли кредит 20000 р на 1 год под 16 % годовых. Вычислите, сколько денег необходимо вернуть банку, какова ежемесячная сумма выплат?
- Число увеличили на 10%, потом ещё на 10%. На сколько процентов увеличили число за два раза?
- Пачка чая стоила 100 рублей. Сначала цену повысили на 10%, а затем снизили на 10% (от новой цены). Сколько теперь стоит пачка чая?
- Пачка сливочного масла стоит 60 рублей. Пенсионерам магазин делает скидку 5%. Сколько рублей стоит пачка масла для пенсионера?
- Только 94% из 27500 выпускников города правильно решили задачу B1. Сколько человек правильно решили задачу В1?
- В сентябре 1 кг винограда стоил 60 рублей, в октябре виноград подорожал на 25%, а в ноябре еще на 20%. Сколько рублей стоил 1 кг винограда после подорожания в ноябре?
- В школе 800 учеников, из них 30% — ученики начальной школы. Среди учеников средней и старшей школы 20% изучают немецкий язык. Сколько учеников в школе изучают немецкий язык, если в начальной школе немецкий язык не изучается?
- Формула сложного процента
- В книжном магазине энциклопедию по физике стоимостью 380 рублей уценили дважды на одно и то же число процентов. Найти это число, если известно, что что после двойного снижения цен энциклопедия стоит 307 рублей 80 копеек.
- Цену на автомобиль «Волга» снизили сначала на 20%, а затем ещё на 15%. При этом он стал стоить 238000 рублей. Какова была первоначальная цена автомобиля?
- Цену товара уменьшили на 50%, потом на 30%, потом на 20%. На сколько % уменьшилась цена товара?
- До снижения цен книга в киоске стоила 120 рублей. Вычислите цену книги после двух последовательных снижений, если первое снижение было на 10%, а второе на 5%.
- После снижения цен в магазине на 30% свитер стал стоить 2100 рублей. Сколько стоил свитер до снижения цен?
- Вкладчик положил некоторую сумму на вклад «Доверительный» в Сбербанк России. Через два года вклад достиг 16854 рубля. Каков был первоначальный вклад при 6% годовых?
- На сколько % 5 больше 4?
- На сколько % 4 меньше 5?
- Задачи на процентное содержание, концентрацию и процентный раствор
- Килограмм соли растворили в 9 л воды. Чему равна концентрация полученного раствора?
- Сколько соли получится при выпаривании 375 граммов 12%-го раствора?
- Смешали 8 литров 15 %-го водного раствора некоторого вещества с 12 литрами 25 %-го водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
- Имеются два сплава с разным содержанием золота. В первом сплаве содержится 30%, а во втором – 55% золота. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 40% золота.
- Смешали 30%-й раствор соляной кислоты с 10%-ым раствором и получили 600 г 15%-го раствора. Сколько граммов каждого раствора надо было взять?
- Имеется два кислотных раствора: один 20%, другой 30%. Взяли 0,5 л первого и 1,5 л второго раствора и образовали новый раствор. Какова концентрация кислоты в новом растворе?
- Имеется руда из двух пластов с содержанием меди 6% и 11%. Сколько «бедной» руды надо взять, чтобы получить при смешивании с «богатой» 20 т руды с содержанием меди 8%?
- Старинный способ решения задач на смеси, сплавы и растворы
(правило креста)
- Для приготовления 30 г 80%-го раствора H3PO4 требуется взять 20 г 90%-го и 10 г 60%-го растворов кислоты. В каких пропорциях нужно смешать раствор?
- От двух кусков сплава с массами 3 кг и 2 кг и с концентрацией меди 0,6 и 0,8 отрезали по куску равной массы. Каждый из отрезанных кусков сплавлен с остатком другого куска, после чего концентрация меди в обоих сплавах стала одинаковой. Какова масса каждого из отрезанных кусков?
- Латунь – сплав меди и цинка. Кусок латуни содержит меди на 11 кг больше, чем цинка. Этот кусок латуни сплавили с 12 кг меди и получили латунь, в котором 75% меди. Сколько килограммов меди было в куске латуни первоначально?
- В бидон налили 4л молока трехпроцентной жирности и 6л молока шестипроцентной жирности. Сколько процентов составляет жирность молока в бидоне?
1. Математика. 8–9 классы: сборник элективных курсов. Выпуск 1/ авт.-сост. В. Н. Студенецкая, Л. С. Сагателова. - Волгоград: Учитель, 2006.
2. http://opengia.ru/subjects/mathematics-9/topics/1
3. http://opengia.ru/subjects/mathematics-11/topics/1?page=358
По теме: методические разработки, презентации и конспекты
Проценты. Задачи на проценты
Это презентация для самостоятельного изучения или повторения данной темы. Применима для учащихся 5-6 классов. Содержит в себе примеры и задания для самостоятельного выполнения....
Проценты. Нахождение процентов от числа
Методическая разработка урока математики в 5 классе по теме "Проценты. Нахождение процентов от числа"....
МЕТОДИЧЕСКАЯ РАЗРАБОТКА по математике "Проценты. Методика решения задач различных типов на проценты."
МЕТОДИЧЕСКАЯ РАЗРАБОТКА по математикена тему:«Проценты. Методика решения задач различных типов на проценты»Обобщение методики изучения процентов. Решение задач при подготовке к ГИА и ...
Презентация к уроку "Проценты" в 5 классе. Материал полезен и для повторения темы проценты и 6 классе и в 9 классе по подготовке к ГИА. Разобраны все типы задач. Приведены образцы решения двумя способами.
Материал подготовлен для учащихся 5 класса для изучения темы "Проценты". Так же эти слайды будут полезны для повторения этой темы в 6 классе, и для подготовки к ГИА в 9 классе. Здесь разобраны все тип...
Программа элективного курса "Проценты, сложные проценты. Смеси и сплавы"
Рабочая программа данного предметно-ориентированного элективного курса расчитана на решение практических задач по теме "Проценты, сложные проценты", что способствует:1.подготовке к успешной...
Урок математики в 5 классе по теме "Проценты. Решение задач на проценты"
Обобщающий урок математики в 5 классе по теме "Проценты. Решение задач на проценты"...
разработка урока "Проценты. Основные задачи на проценты"
Краткое изучение темы «Проценты» в 5 классе не дает больших результатов. Учащиеся в силу возрастных особенностей еще не могут полноценное представления о процентах, об их роли в повседневной жизни. На...