«Решение квадратных уравнений способом «переброски»
план-конспект занятия по алгебре (8 класс) на тему

Забненкова Надежда Владимировна

Ознакомление с одним из способов решения квадратных уравнений, который можно назвать способом "переброски".

Скачать:

ВложениеРазмер
Microsoft Office document icon sposob_perebroski.doc93 КБ

Предварительный просмотр:

Материал к занятию по теме «Решение квадратных уравнений способом «переброски»

Тема: «Решение квадратных уравнений способом «переброски»

Тип занятия: Изучение нового материала и первичное закрепление с комплексным применением знаний и способов деятельности

Вид занятия: Урок  углубления знаний

Возраст учащихся: 8 класс

Форма работы: индивидуальная, групповая

Оборудование: мультимедийный компьютер

Методы обучения:

  • Познавательный
  • Систематизирующий
  • Коммуникативный
  • Логический

Цель:

Формирование знания решения квадратных уравнений с помощью способа «переброски»

Задачи:

Обучающие:

  • Познакомить с теорией способа решения квадратных уравнений с помощью способа «переброски»
  • Познакомить с применением способа решения квадратных уравнений с помощью способа «переброски»
  • Сформировать умения составлять алгоритмы для данного способа решения квадратных уравнений
  • Развитие вычислительных навыков
  • Развитие  кругозора учащихся

Развивающие:

  • Развитие умения наблюдать, анализировать
  • Способствовать интеллектуальному развитию учащихся, формированию качеств мышления, познавательных интересов, творческих способностей учащихся
  • Познакомить учащихся с интересными фактами из истории
  • Развитие коммуникативных качеств личности

Воспитательные:

  • Воспитание навыков сотрудничества в процессе совместной работы.
  • Содействовать воспитанию интереса к математике, активности, мобильности, отношения ответственной зависимости, взаимопомощи, умения общаться, толерантности у детей
  • Воспитание самостоятельности, умения представлять выбранный способ решения уравнения

Структура занятия

  1. Организационный момент. Вступительное слово учителя
  2. Актуализация опорных теоретических и практических знаний о  квадратных уравнениях
  3. Объяснение нового материала
  4. Закрепление нового материала
  5. Подведение итогов

Оформление доски: на доске написано

«Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, кто желает к ним приобщиться, должен достигнуть этого собственной деятельностью, собственными силами, собственным напряжением. Извне он может получить только возбуждение».  А Дистервег

Организационный момент.          

Вступительное слово учителя. Сообщается цель, задачи занятия, план работы на занятии.

Актуализация опорных теоретических и практических знаний.

Коллективная работа. Устно.

  Прежде всего, вспомним, какие уравнения называются квадратными. /Уравнение вида , где х- переменная, a,b,c – числа , называется квадратным./ Квадратное уравнение, записанное в таком виде, является стандартным видом уравнения. Как называются числа  a, b, c ?

/ а – старший коэффициент, b – второй коэффициент, с – свободный член/

Вспомним, как традиционно решаются квадратные уравнения разных видов. Первый вид квадратных уравнений – неполные квадратные уравнения. С этим видом квадратных уравнений мы познакомились на первых уроках изучения квадратных уравнений. Вспомним, какие виды неполных квадратных уравнений бывают и как они решаются.

Вспомним, как традиционно решаются квадратные уравнения, записанные в стандартном виде. Прежде всего, обратимся к понятию дискриминанта. Для чего и зачем он нужен? Вспомните слово “дискриминация”, что оно означает? Оно означает унижение одних и возвышение других, т.е. различное отношение к разным людям. Оба слова (и дискриминант, и дискриминация) происходят от одного латинского слова, означающего “различающий”. Дискриминант различает квадратные уравнения по числу корней (анализ слайда). Важное дополнение: в таких случаях (D<0) обычно уточняют – нет действительных корней. Дело в том, что в математике, кроме действительных чисел, рассматриваются так называемые мнимые числа; так вот, мнимые корни у такого уравнения есть. О мнимых числах и разрешимости таких квадратных уравнений мы поговорим в старших классах. Мы вспомнили всю “азбуку” квадратного уравнения?

/Нет. Мы не вспомнили теорему Виета./

Решение задач на применение теоремы Виета и теоремы, обратной теореме Виета.

а) В уравнениях найти подбором корни уравнения:

1 вариант

2 вариант

х2 – 6х + 8 = 0
(Д = 1; х
1  = 2, х2  = 4)

z2 + 5z + 6 = 0
(Д = 1; z
1  = – 3, z2  = –2)


б) Составить квадратное уравнение, корнями которого являются числа:

1 вариант

2 вариант

3; 4
2 – 7х + 12 = 0)

–2; 5
2 – 3х – 10 = 0)

в) Один из корней уравнения равен 3. Найти второй корень уравнения.

1 вариант

2 вариант

х2 – 21х + 54 = 0
3  и  ?
2  = 18)

х2 + 17х – 60 = 0
3  и  ?
2  = – 20)

Подведем итог этого этапа:

  • Что утверждает теорема Виета?
  • Сформулируйте теорему, обратную теореме Виета.
  • Чему равна сумма и произведение корней квадратного уравнения   ах2 + + вх + с = 0?

Это интересно. Биографическая миниатюра. Ф. Виет. (Сообщение учащегося).

Формулы решения квадратных уравнений в Европе были впервые написаны в 1202 году. Вывод формулы решения квадратного уравнения встречается у французского математика Ф. Виета. Франсуа Виет родился в провинции Франции в 1540 году. Виет имел возможность получить хорошее образование и относился к обучению очень серьезно. Став юристом, он продолжал заниматься математикой, астрономией и космологией. В 1591 году Виет ввел буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений; благодаря этому стало впервые возможным выражение свойств уравнений и их корней формулами. Среди открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений.

По праву достойна в стихах быть воспета.
О свойствах корней теорема Виета.
Что лучше, скажи, постоянства такого,
Умножишь ты корни – и дробь уж готова.
В числителе С, в знаменателе А.
А сумма корней тоже дроби равна.
Хоть с минусом дробь, что за беда?
В числителе В, в знаменателе А.

 А все могло быть по-другому. Эта замечательная теорема могла быть открыта совсем другим талантливым человеком. А знаете почему?

Испанские инквизиторы изобрели очень сложную тайнопись (шифр), которая все время изменялась и дополнялась. Благодаря этому шифру воинствующая и сильная в то время Испания могла свободно переписываться с противниками французского короля даже внутри Франции, и эта переписка оставалась неразгаданной. После бесплодных попыток найти ключ к шифру король обратился к Виету. Известно, что Виет, две недели подряд дни и ночи просидев за работой, все же нашел ключ к испанскому шифру. После этого неожиданно для испанцев Франция стала выигрывать одно сражение за другим. Испанцы долго недоумевали. Наконец им стало известно, что шифр для французов уже не секрет и что виновник его расшифровки – Виет. Будучи уверенными, в невозможности разгадать способ тайнописи людьми, они обвинили Францию перед Папой Римским и инквизицией в кознях дьявола, а Виета обвинили, что он был в союзе с дьяволом и приговорили его к сожжению на костре. К счастью для науки, он не был выдан инквизиции.

Решение квадратных уравнения, используя свойства коэффициентов. (Повторение предыдущей темы факультативных занятий)

  1. 345х2 – 137х  –  208 = 0
  2. 313х2 + 326х + 13 = 0

Задание учащиеся выполняют самостоятельно. Взаимоконтроль.

Решение:

  1. 345х2  – 137х – 208 = 0

а +   b +  с  =  345  –  137  –  208  = 0, значит, х = 1,  х =  – 208/345

  1. 313х2 +  326х + 13 = 0

а  –  b +  с  =  313  –  326  +  13 = 0, значит,  х = – 1,  х =  – 13/313

Изучение нового материала. Ознакомление ещё с одним способом решения квадратных уравнений, который можно назвать так: способ «переброски».

Рассмотрим квадратное уравнение

                                      ах2   +   bх  +  с =  0,  а  ≠  0.

Умножая обе его части на  а, получаем уравнение

                                      а2 х2 +  а bх +  ас  = 0.

Пусть  ах =  у, откуда  х =  ; тогда приходим к уравнению

                                      у2 + by + ас = 0,

равносильного данному. Его корни у1 и у2   найдем с помощью теоремы Виета. Окончательно получаем х1 =   и  х1 =  . При этом способе коэффициент  а  умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют  способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

  • Пример 1 (объясняет учитель)

 Решим уравнение  2   – 11х  + 15 =  0.

Решение. «Перебросим» коэффициент  2  к свободному члену, в результате получим уравнение

                                    у2 – 11y + 30 = 0.

Согласно теореме Виета

 Ответ: 2,5; 3.

  • Пример 2 (один ученик решает на доске, остальные в тетрадях)

2 – 9х + 9 = 0

                        Решение:

у2 – 9у + 18 = 0

у1 = 6        х1 = 6/2        х1 = 3

у2 = 3  ↔  х2 = 3/2 ↔   х2 = 1,5

Ответ: 3; 1,5.

«Математическая эстафета». Работа по командам. На последней парте каждого ряда находится листок с 6 заданиями (по 2 задания на каждую парту). Ученики, получившие листок, выполняют первые 2 задания (разрешается совместная работа) и передают листок впереди сидящим ребятам.

Решите уравнения, используя метод «переброски»:

  1. 10х2 – 11х +  3 = 0         3.  3х2 + 11х + 6  =  0         5.  2 + 5х  –  6 = 0

  1. 2 +  х – 10 = 0             4.  5х2 – 11х + 6 = 0            6.   2 + 12х + 5  = 0

Работа считается оконченной, когда учитель получает три листка (по количеству рядов) с выполненными 6 заданиями.

Побеждают учащиеся того ряда, в котором раньше решат шесть примеров.

Проверка итогов работы осуществляется с помощью мультимедийного компьютера.

Оценка – 6 баллов (по 1 баллу за каждый верно выполненный пример).

Итог занятия.

1. Самооценка труда учащихся:

  • В каких знаниях уверен;
  • Выполнил ли программу занятия полностью;
  • Какие виды работ вызвали затруднения и требуют повторения;
  • Помогло ли занятие продвинуться в знаниях, умениях, навыках по предмету.

2. Оценка труда товарищей:

  • Насколько результативным было занятие сегодня;
  • Кто, по вашему мнению, внёс наибольший вклад в его результаты;
  • Кому, над чем следовало бы ещё поработать.

3. Оценка результатов занятия учителем:

  • Оценка работы группы (активность, адекватность ответов, неординарность работы отдельных детей, уровень самоорганизации, прилежание).

4. Выводы по занятию.

Домашнее задание.

Решить уравнения. Каждое решить 3 различными способами.

  • 2 + 5х  –  2  =  0
  • х2  –  8х +  7  =  0
  • 2 – 11 х  +  2  =  0


По теме: методические разработки, презентации и конспекты

Урок алгебры "Способы решения квадратных уравнений" 8 класс

Урок – обобщения и систематизации знаний, на котором школьники сами находят способы решения квадратного уравнения, изучаемых на уроках алгебры в разное учебное время; обсуждают их решение, учатся крит...

Урок алгебры в 8 классе. Рациональные способы решения квадратных уравнений

В ходе урока учащиеся знакомятся с нестандартными (не входящими в программу) способами решения квадратных уравнений. Путем проб учащиеся приходят к выводу, что эти способы являются во многих случаях р...

способы решения квадратных уравнений

Из практики учителя математики МБОУ СОШ №20 Рудых Т.С., 2012г.Методы решения квадратных уравнений.1.      Преимущества метода.Существует много способов решения ква...

способы решения квадратных уравнений

Из практики учителя математики МБОУ СОШ №20 Рудых Т.С., 2012г.Методы решения квадратных уравнений.1.      Преимущества метода.Существует много способов решения квадратны...

Методические рекомендации к изучению темы: « Решение квадратных уравнений» с применением теоремы Виета для решения приведенного квадратного уравнения и полного квадратного уравнени

Решать квадратные уравнения учащимся приходится часто в старших классах,  Решение иррациональных,  показательных , логарифмических ,тригонометрических уравнений  часто сводится к решени...

Решение задач по теме «Графические способы решения квадратных уравнений»

Цель урока: закрепить графический способ решения квадратных уравнений при решении задач практического содержания, формировать умения строить математические модели, совершенствование  навыков пост...

Буклет "Способы решения квадратных уравнений и уравнений, приводимых к ним"

Буклет в виде памятки по решению распространненных видов квадратных уранений (полных и неполных), а ткаже уравнений, приводимых к квадратным....