Готовимся к ЕГЭ "Простые и сложные проценты"
материал для подготовки к егэ (гиа) по алгебре (11 класс) на тему

Мыкалова Наталья Евгеньевна

Подборка прототипов заданий №19 ЕГЭ по математике профильный уровень

Скачать:

ВложениеРазмер
Файл Задание № 1968.97 КБ

Предварительный просмотр:

«Простые и сложные проценты»

Подборка прототипов задания №19 ЕГЭ по математике 2015 года профильного уровня.

Актуальность темы.

Понимание процентов и умение производить процентные расчеты в настоящее время необходимы каждому человеку: прикладное значение этой темы очень велико и затрагивает финансовую, демографическую, экологическую, социологическую и другие стороны нашей жизни.

Материал актуален для всех, у кого в этом году есть 11 классы.

Когда Ященко, имеющий к составлению КИМов по математике непосредственное отношение, приезжал к нам на семинар в октябре, он сказал, что все прототипы задания 19 будут выложены в открытом банке, так как задание новое.

Задание, решаемое для моего не очень сильного класса, и натаскать на него можно, было бы на чём.

Немного теории…

“Проценты”.

Задание1

а) Что называется процентом? (Процентом называется одна сотая часть какого-либо числа)

б) Как обозначается 1%? (1%? = 0,01)

в) Как называется 1% от центнера? (кг.) Метра? (см.) Гектара? (ар или сотый)

г) Что называется 1% процентом данного числа а? (Процентом данного числа а называется число 0,01•а, т.е. 1% (а) = 0,01*а ) 

д) Как определить р% от данного числа а? (найти число 0,01•р•а, т.е. р% = 0,01*р*а )

е) Как перевести десятичную дробь в проценты? (умножить на 100). А как проценты в десятичную дробь? (разделить на сто, т.е. умножить на 0,01)

ж) Как найти часть от числа в процентах? (Чтобы найти часть в от числа х в процентах, нужно эту часть разделить на число и умножить на 100, т.е. а(%)=(в/х)*100)

д) Как находится число по его проценту ? (Если известно, что а% числа х равно в, то х можно найти по формуле х = (в/а)*100)

Задание 2

Представьте данные десятичные дроби в процентах:

 а)1; 0,5; 0,763; 1,7; 256.

б) Представьте проценты десятичными дробями: 2%; 12%; 12,5%; 0,1%; 200%. 

Задание 3

Найдите % от числа:

в) 0,1% от числа 1200? (1,2)

г) 15% от числа 2? (0,30)

Задание 4

Найдите число по его проценту:

д) Сколько центнеров весит мешок сахарного песка, если 13% составляет 6,5 кг.? (50 кг.= 0,5 ц.)

в) Сколько процентов от 10 составляет 9?

Ответы: а) 9%, б) 0,09%, в) 90%; г) 900%?

Простые и сложные проценты.

Эти термины чаще всего встречаются в банковских делах, в финансовых задачах. 

Банки привлекают средства (вклады) за определенные процентные ставки. В зависимости от процентной ставки вычисляется доход.

На практике применяются два подхода к оценке процентного дохода – простые и сложные проценты.

При применении простых процентов доход рассчитывается от первоначальной суммы вложенных средств не зависимо от срока вложения. В финансовых операциях простые проценты используются преимущественно при краткосрочных финансовых сделках.

Пусть некоторая величина подвержена поэтапному изменению. При этом каждый раз ее изменение составляет определенное число процентов от значения, которое эта величина имела на начальном этапе. Так вычисляются простые проценты. 

При применении сложных процентов накопленная сумма процентов добавляется во вклад по окончании очередного периода начислений. При этом каждый раз ее изменение составляет определенное число процентов от значения, которое эта величина имела на предыдущем этапе. В этом случае имеем дело со “сложными процентами” (т.е. используются начисления “процентов на проценты”)

Первоначальная сумма и полученные проценты в совокупности называются накопленной (наращенной) суммой.

Так, если банковская ставка равна 10%, а первоначальная сумма 100 руб., то накопленная сумма за пять лет при применении простых и сложных процентов будет иметь вид:

Таблица 1. Накопленная сумма с использованием простых и сложных процентов.

 

На начало

1-й год

2-й год

3-й год

4-й год

5-й год

Простые проценты

100

110

120

130

140

150

Сложные проценты

100

110

121

133

146

161

Формулы простых и сложных процентов.

I. Пусть некоторая величина A увеличивается n раз (n год) и каждый раз на р%.

Вводим обозначения: A0 – первоначальное значение величины A;

р – постоянное количество процентов;

a процентная ставка; a=р/100 = 0,01*р

An – накопленная сумма за n раз (к концу n-го года) - по формуле простых процентов;

Sn - накопленная сумма за n раз (к концу n-го года) - по формуле сложных процентов.

Тогда ее значение A1 для простых процентов после первого увеличения (к концу первого года) вычисляется по формуле: A1 = A0 + A0 * (0,01р) = A0 (1 + (0,01р) = A0 (1 + p)

В конце второго этапа A2= A1 + A0 * (0,01р) = A0 (1 + a) + A0 * a = A0 (1 + 2a).

В конце третьего этапа A3= A2 + A0 * (0,01р) = A0 (1 + 2a) + A0 * a = A0 (1 + 3a).

Тогда для простых процентов сумма по годам равна:

An = A0 (1 + 0.01р*n) или An = A0 (1 + ?* n) (1)

Для сложных процентов это выглядит иначе:

Пусть некоторая величина S0 увеличивается n раз (n год) и каждый раз на р%.

Тогда ее значение S1 для сложных процентов после первого увеличения (к концу первого года) вычисляется по формуле:

S1 = S0 + S0 (0,01р) = S0 * (1 + 0,01р) = S0 * (1 + ?).

В конце второго этапа S2= S1 + S1 (0,01р) = S1 * (1 + 0,01р) = S0 (1 + ????р)2 = S0 (1 + ?)2.

В конце третьего этапа S3= S2 + S2 (0,01р) = S2 * (1 +0,01р) = S0(1 +0,01р)2*(1 +0,01р)=S0(1 +0,01р)3 = S0 (1 + a)3.

Тогда для сложных процентов сумма по годам равна:

Sn = S0 (1 + 0,01р)n  или Sn = S0 (1 + a)n (2)

Пример 1.

В банке открыт срочный депозит на сумму 50 тыс. руб. по 12% на 3 года. Рассчитать накопленную сумму если проценты:

а) простые; б) сложные.

Решение 1.

По формуле простых процентов

Sn=(1+3*0.12)*50 000 = 68000 руб. (отв. 68000 руб.)

По формуле простых процентов

Sn=(1+0.12)3*50 000 = 70246 руб. (отв. 70246 руб.)

Формула сложных процентов связывает четыре величины: начальный вклад, накопленную сумму (будущую стоимость вклада), годовую процентную ставку и время в годах. Поэтому, зная три величины, всегда можно найти четвертую:

Sn = S0 * (1+0,01р)n

Для определения количество процентов р необходимо:

р = 100 * ((Sn / S0 )1/n – 1) (2.1)

Операция нахождения первоначального вклада S0, если известно что через n лет он должен составить сумму Sn, называется дисконтированием:

S0 = Sn * (1 + 0,01р) –n (2.2)

Сколько лет вклад S0 должен пролежать в банке под р % годовых, чтобы достигнуть величины Sn.

n = (lnSn  lnS0) / (ln(1 + 0,01р) (2.3)

В банковской практике проценты могут начисляться чаще чем 1 раз в год. При этом банковская ставка обычно устанавливается в пересчете на год. Формула сложных процентов будет иметь вид:

Sn = (1 + ?/t )n•t S0 (3)

где t – число реинвестиций процентов в году.

Пример 2.

В банке открыт срочный депозит на сумму 50 тыс. руб. по 12% на 3 года. Рассчитать начисленную сумму если проценты начисляются ежеквартально.

Решение 2.

n = 3

t = 4 (в году – 4 квартала)

По формуле сложных процентов

S3 = (1+0.12/4)3*4*50000 = 1.0312*50000 = 71288 руб. Отв. 71288 руб.

Как следует из примеров 1 и 2, накопленная сумма будет возрастать тем быстрее, чем чаще начисляются проценты.

Приведем обобщение формулы (2), когда прирост величины S на каждом этапе свой. Пусть Sо, первоначальное значение величины S, в конце первого этапа испытывает изменение на р1%, в конце второго на р2%, а в конце третьего этапа на р3% и т.д. В конце n-го этапа значение величины S определяется формулой

Sn = S0 (1 + 0,01р1 )(1 + 0,01р2 )...(1 + 0,01рn ) (4)

Пример 3.

Торговая база закупила партию товара у изготовителя и поставила ее в магазин по оптовой цене, которая на 30% больше цены изготовителя. Магазин установил розничную цену на товар 20% выше оптовой. При распродаже магазин снизил эту цену на 10%. На сколько рублей больше заплатил покупатель по сравнению с ценой изготовителя, если на распродаже он приобрел товар за 140 руб. 40 коп.

Решение 3.

Пусть первоначальная цена составляет S руб., тогда по формуле (4) имеем:

S0 (1 + 0,01*30)(1 + 0,01*20)***(1 – 0,01*10) = 140,4

S0*1,3*1,2*0,9 = S0*1,404 = 140,4

S0 = 140,4: 1,404 = 100 (руб.)

Находим разность последней и первоначальной цены

140,4 – 100 = 40,4 Отв. 40,4 руб.

Примеры задач с решениями

Вариант 1

Задача 1. Владелец автозаправки повысил цену на бензин на 10%. Заметив, что количество клиентов резко сократилось, он понизил цену на 10 %. Как после этого изменилась начальная цена на бензин? (повысилась или понизилась и на сколько % -ов?)

Решение: Пусть S0 – начальная цена, S2 – конечная цена, х - искомое число процентов изменения, где х = (1 - S2/S0 )*100% (*)

Тогда по формуле Sn = S0 (1 + 0,01р1 )(1 + 0,01р2 )***(1 + 0,01рn ) (4), получим

S2 = S0 (1 + 0,01*10 )(1 - 0,01*10) = S0*1,1*0,9 = 0,99*S0.

S2 = 0,99*S0; 0,99 = 99%, значение S2 составляет 99% первоначальной стоимости, значит ниже на 100% - 99% = 1%.

Или по формуле (*) получаем: х = (1 – 0,99 )*100% = 1%.

Ответ: понизилась на 1%.

Задача 2. В течении года предприятие дважды увеличивало выпуск продукции на одно и то же число процентов. Найдите это число, если известно, что в начале года предприятие ежемесячно выпускало 600 изделий, а в конце года стал выпускать ежемесячно 726 изделий.

Решение: Пусть S0 – начальная цена, S2 – конечная цена, р – постоянное количество процентов.

По формуле (2.1) получаем: р = 100 * ((726 / 600 )1/2 – 1) = 10%.

Ответ: 10%

Задача 3. Цена на компьютерную технику были повышены на 44%. После этого в результате двух последовательных одинаковых процентных снижений цена на компьютеры оказалась на 19% меньше первоначальной. На сколько процентов каждый раз понижали цену?

Решение: По формуле (4), составляем уравнение

S3 = S0 (1 + 0,01*44)(1 - 0,01р )(1 - 0,01р) = S0 *1,44*(1 - 0,01р )2 = S0 * (1-0,01*19). Решая уравнение, получаем 2 корня: 175 и 25, где 175 не подходит условию задачи. Поэтому р = 25%.

Ответ: 25%

Задача 4. Для определения оптимального режима повышения цен фирма решила с 1 января повышать цену на один и тот же товар в двух магазинах двумя способами. В одном магазине – в начале каждого месяца (начиная с февраля) на 2%, в другом – через каждые два месяца, в начале третьего (начиная с марта) на одно и то же число процентов, причем такое, чтобы через полгода (1 июля) цены снова стали одинаковыми. На сколько процентов надо повышать цену товара через каждые два месяца, во втором магазине?

Решение: Пусть S0 – начальная цена, р – постоянное количество процентов.

Тогда через 6 месяцев (после шести повышений на 2%) в первом магазине цена на товар станет равна S0 (1 + 0,01*2)6, а во втором магазине (после трех повышений на р%) цена товара будет равна S0 (1 + 0,01р)3. Получаем уравнение S0 (1 + 0,01*2)6 = S0 (1 + 0,01р)3. Решая его, получаем

(1 + 0,01*2)2 = (1 + 0,01р); 1,022= (1 + 0,01р); р = 4,04

Ответ: 4,04%

Вариант 2.

Задача 1. Автомобиль ехал по магистрали с определенной скоростью. Выезжая на проселочную дорогу, он снизил скорость на 20%, а затем на участке крутого подъема он уменьшил скорость на 30%. На сколько процентов эта новая скорость ниже первоначальной?

Решение: Пусть V0 – начальная скорость, V – новая скорость, которая получается после двух разных изменений, р – искомое количество процента.

Тогда по формуле (4), составляем уравнение V0(1 - 0,01*20)(1 - 0,01*30) = V0(1 - 0,01р). Решая его получаем V0*0,8*0,7 = V0(1 - 0,01р); р = 44

Ответ: 44%

Задача 2. Предположим, что в комнатной температуре за день вода испаряется на 3%. Сколько литров воды останется через 2 дня от 100 литров? А сколько воды испарится?

Решение: n=2; р=3%; S0= 100л. Тогда по формуле (2), получаем

S2 = S0 (1 - 0,01р )2 = 100*(1-0,01*3)2 = 100*0,972 = 94,09; S0 – S2= 100 - 94,09 = 5,91

Ответ: 94,09л.; 5,91л.

Задача 3. Вклад, положенный в банк 2 года назад, достиг 11449 рублей. Каков был первоначальный вклад при 7% годовых? Какова прибыль?

Решение: n=2; р=7%; S2= 11449; S0= ?

В формулу (2.2) S0 = Sn * (1 + 0,01р) –n подставляем данные значения, получаем:

S0 = 11449* (1 + 0,01*7) –2 = 11449/ (1,07)2=11449/ 1,1449 = 10000.

11449 – 10000 = 1449

Ответ: 10000 руб.; 1449 руб.

Задача 4. Сберкасса начисляет ежегодно 3% от суммы вклада. Через сколько лет сумма удвоится?

Решение: р=3%; S0 – начальная сумма; n=?

Составим уравнение: 2*S0 = S0 (1 + 0,01р )n; 2*S0 = S0 (1 + 0,03)n; 2 = 1,03n n=log1,032; n ?23.

Самостоятельная работа

1-уровень. После реконструкции завод увеличил выпуск продукции на 10%, а после замены оборудования еще на 30%. На сколько процентов увеличился первоначальный выпуск продукции?

(Ответ: на 43%)

2-уровень. Число 50 трижды увеличили на одно и то же число процентов, а потом уменьшили на это же число процентов. В результате получили число 69,12. На сколько процентов увеличивали, а потом уменьшали данное число?

(Ответ: на 20%)

3-уровень. Банк начисляет ежегодно 7% от суммы вклада. Найдите наименьшее число лет, за которое вклад вырастает более чем на 20%.

(Ответ: 3 года)

№1. Сберегательный банк начисляет по вкладам ежегодно 5,5% годовых. Вкладчик внес в банк 150 тысяч рублей. Какой станет сумма вклада через 2 года?

(Ответ: 166953,75 руб.)

№3. Банк предлагает два варианта депозита

1) под 120% с начислением процентов в конце года;

2) под 100% с начислением процентов в конце каждого квартала.

Определить более выгодный вариант размещения депозитов на один год.

Решение.

Более выгодным считается тот вариант, при котором наращенная за год сумма будет больше. Для оценки вариантов начальную сумму примем равную 100 руб.

По первому варианту накопленная сумма будет равна (1+1,2)*100 руб. = 220 руб.

По второму варианту проценты начисляются ежеквартально. По окончании первого квартала накопленная сумма равна (1+1,0/4)*100 руб. = 125 руб.

По окончании 2-го квартала (1+1,0/4)2*100 руб. = 156 руб.

За год накопленная сумма равна (1+1,0/4)4*100 руб. = 244 руб.

Как следует из расчетов второй вариант значительно выгоднее (244 > 220). Правда, только при условии применения сложных процентов.

Подборка прототипов задания №19 ЕГЭ по математике 2015 года профильного уровня.

19. 31 декабря 2012 года Екатерина взяла в банке 850000 рублей в кредит под 15% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 15%), затем Екатерина переводит в банк определенную сумму ежегодного платежа. Какой должна быть сумма ежегодного платежа, чтобы Екатерина выплатила долг тремя равными ежегодными платежами?

19. Молодой семье на покупку квартиры банк выдает кредит под 20 % годовых.

Схема выплаты кредита следующая: ровно через год после выдачи кредита банк

начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%),

затем эта семья в течение следующего года переводит в банк определенную

(фиксированную) сумму ежегодного платежа. Семья Ивановых планирует погашать

кредит равными платежами в течение 4 лет. Какую сумму может предоставить им

банк, если ежегодно Ивановы имеют возможность выплачивать по кредиту 810 000

рублей?

19. В 8-литровой колбе находится смесь азота и кислорода, содержащая 32% кислорода. Из колбы выпустили некоторое количество смеси и добавили столько же азота; затем снова выпустили такое же, как и в первый раз, количество новой смеси и добавили столько же азота. В итоге процентное содержание кислорода в смеси составило 12,5%. Сколько литров смеси выпускали каждый раз?

19. В банк был положен вклад под банковский процент 10%. Через год хозяин вклада снял со счета 2000 рублей, а еще через год снова внес 2000 рублей. Однако, вследствие этих действий через три года со времени первоначального вложения вклада он получил сумму меньше запланированной (если бы не было промежуточных операций со вкладом). На сколько рублей меньше запланированной суммы получил в итоге вкладчик?

19. В первый рабочий день месяца с заводского конвейера сошло некоторое число тракторов. Каждый следующий рабочий день их выпуск возрастал на 3 трактора ежедневно, и месячный план 55 тракторов был выполнен досрочно, причем за целое число дней. После этого ежедневно выпускалось 11 тракторов. Определите, сколько тракторов было выпущено в первый рабочий день, и на сколько процентов был перевыполнен месячный план, если известно, что в месяце было 26 рабочих дней, а плановая работа длилась не менее 3 и не более 10 дней.

19. 8 марта Леня Голубков взял в банке 53 680 рублей в кредит на 4 года под 20% годовых, чтобы купить своей жене Рите новую шубу. Схема выплаты кредита следующая: утром 8 марта следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20%), а вечером того же дня Леня переводит в банк определенную сумму ежегодного платежа (все четыре года эта сумма одинакова). Какую сумму сверх взятых 53 680 рублей должен будет выплатить банку Леня Голубков за эти четыре года?

19. Семён Кузнецов планировал вложить все свои сбережения на сберегательный счёт в банк «Навроде» под 500%, рассчитывая через год забрать А рублей. Однако крах банка «Навроде» изменил его планы, предотвратив необдуманный поступок. В результате часть денег г-н Кузнецов положил в банк «Первый Муниципальный», а остальные – в банку из-под макарон. Через год «Первый Муниципальный» повысил процент выплат в два с половиной раза, и г-н Кузнецов решил оставить вклад ещё на год. В итоге размер суммы, полученной в «Первом Муниципальном», составил А рублей. Определите, какой процент за первый год начислил банк «Первый Муниципальный», если в банку из-под макарон Семён «вложил» А рублей.

19. Банк планирует вложить на 1 год 30% имеющихся у него средств клиентов в акции золотодобывающего комбината, а остальные 70% – в строительство торгового комплекса. В зависимости от обстоятельств первый проект может принести банку прибыль в размере от 32% до 37% годовых, а второй проект – от 22% до 27% годовых. В конце года банк обязан вернуть деньги клиентам и выплатить им проценты по заранее установленной ставке, уровень которой должен находиться в пределах от 10% до 20% годовых. Определите, какую наименьшую и наибольшую чистую прибыль в процентах годовых от суммарных вложений в покупку акций и строительство торгового комплекса может при этом получить банк.

http://alexlarin.net/ege/matem/22/2.gif

http://alexlarin.net/ege/matem/22/1.gif


По теме: методические разработки, презентации и конспекты

Простые и сложные проценты

урок составлен по учебнику Дорофеева Г.В. Алгебра.9класс...

Готовимся к ЕГЭ: задачи на проценты.

Методическая разработка по обучению учащихся решать задачи на проценты (задачи В13 ЕГЭ): сплавы, растворы и т.д....

Урок алгебры в 9 классе по теме "Сложные проценты"

Урок разработан с применением  модульно-рейтиноговой технологии...

Готовимся к ЕГЭ. Задачи на проценты и сплавы(прототипы В-14).

Задания для самостоятельного решения....

Сложные проценты

Формулы и примеры...

Программа элективного курса "Проценты, сложные проценты. Смеси и сплавы"

Рабочая программа данного предметно-ориентированного  элективного курса расчитана на решение практических задач по теме "Проценты, сложные проценты", что способствует:1.подготовке к успешной...

Готовимся к ОГЭ. Задачи на проценты, смеси, сплавы.

Подборка задач на проценты, смеси, сплавы. ОГЭ № 21....