Подготовка к ЕГЭ. Зачет по теме "Задачи на смеси и сплавы".
материал для подготовки к егэ (гиа) по алгебре (11 класс) на тему

Головина Любовь Васильевна

Представлены 4 варианта для проведение зачета по теме "Задачи на смеси и сплавы".

Скачать:

ВложениеРазмер
Файл zachet_na_smesi_i_splavy._v14.docx30.55 КБ

Предварительный просмотр:

ЗАЧЕТ. ЗАДАЧИ НА СМЕСИ И СПЛАВЫ. В14.

ВАРИАНТ 1

ВАРИАНТ 2

1. В сосуд, содержащий 7 литров 28-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?

2. Смешали некоторое количество 20-процентного раствора некоторого вещества с таким же количеством 16-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

3.Смешали 3 литра 35-процентного водного раствора некоторого вещества с 6 литрами 5-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

4. Смешав 40-процентный и 90-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 40-процентного раствора использовали для получения смеси?

5. Имеются два сосуда. Первый содержит 50 кг, а второй — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 14% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 23% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

6. Первый сплав содержит 5% меди, второй  — 14% меди. Масса второго сплава больше массы первого на 8 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

7. Имеется два сплава. Первый сплав содержит 5% никеля, второй  — 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

1.В сосуд, содержащий 6 литров 11-процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составляет концентрация получившегося раствора?

2.Смешали некоторое количество 14-процентного раствора некоторого вещества с таким же количеством 18-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

3. Смешали 8 литров 10-процентного водного раствора некоторого вещества с 12 литрами 40-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

4. Смешав 48-процентный и 94-процентный растворы кислоты и добавив 10 кг чистой воды, получили 80-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 85-процентный раствор кислоты. Сколько килограммов 48-процентного раствора использовали для получения смеси?

5. Имеются два сосуда. Первый содержит 100 кг, а второй — 40 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 85% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 88% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

6. Первый сплав содержит 5% меди, второй  — 13% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

7. Имеется два сплава. Первый сплав содержит 10% никеля, второй  — 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?

ВАРИАНТ 3

ВАРИАНТ 4

1. В сосуд, содержащий 5 литров 26-процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составляет концентрация получившегося раствора?

2. Смешали некоторое количество 19-процентного раствора некоторого вещества с таким же количеством 13-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

3. Смешали 9 литров 20-процентного водного раствора некоторого вещества с 11 литрами 40-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

4. Смешав 5-процентный и 45-процентный растворы кислоты и добавив 10 кг чистой воды, получили 19-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 39-процентный раствор кислоты. Сколько килограммов 5-процентного раствора использовали для получения смеси?

5. Имеются два сосуда. Первый содержит 60 кг, а второй — 30 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 19% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 21% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

6. Первый сплав содержит 5% меди, второй  — 11% меди. Масса второго сплава больше массы первого на 2 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

7. Имеется два сплава. Первый сплав содержит 5% никеля, второй  — 20% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?

1. В сосуд, содержащий 5 литров 30-процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составляет концентрация получившегося раствора?

2. Смешали некоторое количество 20-процентного раствора некоторого вещества с таким же количеством 14-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

3. Смешали 4 литра 20-процентного водного раствора некоторого вещества с 6 литрами 40-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

4. Смешав 8-процентный и 96-процентный растворы кислоты и добавив 10 кг чистой воды, получили 32-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 36-процентный раствор кислоты. Сколько килограммов 8-процентного раствора использовали для получения смеси?

5. Имеются два сосуда. Первый содержит 10 кг, а второй — 5 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 56% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 64% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

6. Первый сплав содержит 5% меди, второй  — 13% меди. Масса второго сплава больше массы первого на 6 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

7. Имеется два сплава. Первый сплав содержит 10% никеля, второй  — 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

КЛЮЧ К ЗАЧЁТУ.

ЗАДАЧИ НА СПЛАВЫ И СМЕСИ.

Вариант

№задания

Вариант №1

Вариант №2

Вариант №3

Вариант №4

1

14

6

13

15

2

18

16

16

17

3

15

28

31

32

4

10

10

5

80

5

1

81

9

4

6

24

6

3

8

7

75

105

50

35


По теме: методические разработки, презентации и конспекты

Конспект урока по теме: "Решение задач на смеси и сплавы"

Данную разработку можно использовать при подготовке к итоговой аттестации в 9 и 11 классах, а также на уроках алгебры по теме "Решение задач с помощью дробно-рациональных уравнений"...

Задачи на смеси и сплавы

В данном архиве открываем файл презентации "Решение текстовых задач", в которой разобраны три задачи, затем выполняем самостоятельную работу....

Проектная работа Методика подготовки учащихся к решению задач по темам «Задачи на движение» и «Задачи на смеси и сплавы», включенных в ЕГЭ по математике.

Доминирующей идеей федерального компонента государственного образовательного стандарта по математике является интенсивное развитие логического мышления, пространственного воображения, алг...

Презентация для подготовки к ЕГЭ. "Задачи на смеси и сплавы"

В  презентации представлены основные методы и способы решения текстовых задач, которые входят в ЕГЭ...

Урок математики в 11 классе по подготовке ЕГЭ по теме "Решение текстовых задач на смеси и сплавы"

Для многих учащихся представляет большую трудность научиться решать текстовые задачи. Современные школьные учебники 8-11 классов так составлены, что большую их часть занимают выражения, функции, уравн...

Подготовка к ОГЭ. Задачи на смеси и сплавы.

Подготовка к ОГЭ. Задачи на смеси и сплавы....