ПРОСТЫЕ ЧИСЛА (стартовая исследовательская работа по математике)
творческая работа учащихся по алгебре (5 класс) по теме
Предлагаю вашему вниманию статью из стартовой научно-исследовательской работы для учеников 5 класса на тему : "Простые числа". ТЕОРИЯ ЧИСЕЛ - это давольно таки огромное поле для исследований, взяв определенную тему ее можно развивать несколько лет, углубляя затронутые вопросы на каждой ступени обучения.
К понятию простых чисел приводят уже самые простые задачи, которые возникают в связи с таким элементарным арифметическим действием, как умножение натуральных, т.е. целых положительных чисел.
Как известно произведение двух натуральных чисел всегда является числом натуральным. Следовательно, существуют натуральные числа, представляющие собой произведения двух натуральных чисел, больших единицы. Но существуют также натуральные числа, большие единицы, которые не являются произведениями двух натуральных чисел, больших единицы, например числа 2, 3, 5 или 13. Именно такие числа мы называем простыми.
Основная цель работы: исследовать простые и составные числа.
Данная тема представляет определённый интерес, т.к. известно, что простые числа играют важную роль в теории чисел и алгебре.
Задачи исследования:
- познакомиться с понятием простого числа;
- познакомиться с доказательством Евклида о бесконечности простых чисел.
- познакомиться со способом нахождения простых чисел;
- выяснить, может ли сумма двух простых чисел быть простым числом;
- выяснить, может ли сумма двух, трёх последовательных чисел быть простым числом;
- выяснить, может ли любое натуральное число быть представлено в виде произведения простых чисел;
- Показать практическое применение простых чисел.
Основные методы решения поставленных задач: метод наблюдения за числами; метод подбора и проб; чтение дополнительной литературы; метод обобщения.
Скачать:
Предварительный просмотр:
И.А. Лаздин, С.В. Суркин
ПРОСТЫЕ ЧИСЛА
Научный руководитель: С.В. Суркин
Муниципальное бюджетное учреждение средняя общеобразовательная школа с углубленным изучением отдельных предметов № 16 имени Н.Ф. Семизорова
sergey-vsur@yandex.ru
К понятию простых чисел приводят уже самые простые задачи, которые возникают в связи с таким элементарным арифметическим действием, как умножение натуральных, т.е. целых положительных чисел.
Основная цель работы: исследовать простые числа.
Данная тема представляет определённый интерес, т.к. известно, что простые числа играют важную роль в теории чисел и алгебре.
Простыми числами называются натуральные числа, которые имеют только два делителя: единицу и само число, т.е. делится только на единицу и само на себя.
Например, 2, 3, 5, 39, 41, 73, 97 – простые числа. Среди простых чисел только одно чётное – 2, все остальные нечётные.
Множество простых чисел бесконечно велико. Начинаясь числами 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,…… , ряд их простирается без конца. Доказательство бесконечности принадлежит древнегреческому математику Евклиду и входит в его знаменитые «Начала» [1, с.9-14].
168 мест первой тысячи натуральных чисел занимают простые числа. Из них 16 чисел – палиндромические – каждое равно обращённому 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929.
Некоторые простые числа находят симметричное себе простое число:
4 пары двузначных 13 – 31, 17 – 71, 37 – 73, 79 – 97; 14 пар трёхзначных чисел 107 – 701, 113 – 311, 149 – 941, 157 – 751, 167 – 761, 179 – 971, 199 – 991, 337– 733, 347 – 743, 359 – 953, 389 – 983, 709 – 907, 739 – 937, 769 – 967 [2, с. 49-51].
Теперь постараемся ответить на ряд интересующих нас вопросов, и показать применение простых чисел к решению некоторых задач.
- Может ли сумма двух простых чисел быть простым числом?
Ответ на этот вопрос прост. Да, может, но при условии, что одно из этих чисел будет равно 2, иначе мы получим сумму двух нечётных чисел, которая в результате будет чётным числом, следовательно, делится на 2 и не является простым.
- Может ли сумма двух последовательных натуральных чисел быть простым числом?
2+3=5, 3+4=7, 5+6=11, 6+7=13, 8+9=17; 5, 7, 11, 13, 17 – простые числа;
Попробуем показать это в общем виде:
Пусть n и n+1 два последовательных натуральных числа, значит одно из них чётное и делится на 2. Тогда их сумма будет равна n+n+1 = 2n+1.
Если n>2 и n – чётное, то после сокращения n на 2 получится число, большее одного. Тогда данная сумма будет равна произведению двух чисел, больших 1 и меньших её самой (одно из них – это (n+1), другое то, что получилось после сокращения n на 2). Значит, эта сумма не может быть простым числом, так как имеет делители, отличные от 1 и самой себя.
Аналогично рассматривается случай, когда n>2 и n – нечётное. (В этом случае, (n+1) – чётное и большее 2.)
Остались два возможных случая: n=1 и n=2. Если n=1, то сумма будет равна 2n+1 = 2∙1+1 = 3 – простое число. Если n=2, то 2n+1= 2∙2+1=5 – тоже простое число.
Ответ. На основании этого можно сказать, что сумма двух последовательных натуральных чисел может оказаться простым числом.
- Может ли сумма трёх последовательных натуральных чисел быть простым числом?
Проведём рассуждения в общем виде:
Пусть n, n+1и n+2 – три последовательных натуральных числа, тогда их сумма равна n+(n+1)+(n+2) = 3n+3 = 3(n+1), т.е. всегда делится на 3, следовательно, составное число.
Ответ. Нет, не может, т.к. полученная сумма является составным числом.
- Может ли сумма четырех последовательных натуральных чисел быть простым числом?
Пусть n, n+1и n+2 и n+3 – четыре последовательных натуральных числа, тогда их сумма равна n+(n+1)+(n+2)+( n+3) = 4n+6 = 2(2n+3), т.е. всегда делится на 2, следовательно, составное число.
Ответ. Нет, не может, т.к. полученная сумма является составным числом.
- Может ли любое натуральное число быть представлено в виде произведения простых чисел?
Разложим число n, где n – составное число и 16≤ n <31 на простые множители:
16=2∙2∙2∙2=24, 18=2∙3∙3=2∙32, 20=2∙2∙5=22∙5, 22=2∙11, 24=23∙3, 25=52, 26=2∙13, 27=3³, 28=2²∙7, 30 = 2∙3∙5.
Вывод: Из данного разложения замечаем, что любое указанное n может быть представлено в виде произведения, не более трёх простых множителей.
Возникает вопрос: любое ли натуральное число представимо в виде произведения простых множителей?
Ответ на поставленный вопрос даёт основная теорема арифметики:
Всякое натуральное число n>1 либо просто, либо может быть представлено, и притом единственным образом, в виде произведения простых множителей.
- Может ли площадь квадрата, длина стороны которого выражена натуральным числом, быть простым числом?
Пусть а – длина стороны квадрата, тогда его площадь равна а2. Отсюда следует, что площадь квадрата составное число, т.к. имеет своим делителем ещё и а. Например, если сторона квадрата равна 13, то его площадь равна 169, и 169 имеет делителями 1, 13, 169.
Ответ. Нет, не может.
Задача, связанная с простыми числами:
Клиент банка забыл четырёхзначный шифр своего сейфа и помнил лишь, что этот шифр – простое число, а произведение его цифр равно 243. За какое наименьшее число попыток он наверняка сможет открыть свой сейф.
Решение. Пусть abcd – искомое число. Разложим число 243 на простые множители: 243 = 3∙3∙3∙3∙3. Тогда возможны несколько случаев:
- 243 = 3∙3∙3∙9, но тогда число, составленное из этих цифр будет делиться на 3 (по признаку делимости, сумма цифр равна 18, а 18 делится на 3), значит оно составное;
- 243 = 1∙3∙9∙9.
Из четырех цифр 1,3,9,9 можно составить следующие комбинации: 1399, 1993, 1939, 3991, 3199, 3919, 9139, 9193, 9319, 9391, 9913, 9931. По условию задачи числа должны оказаться простыми. Пользуясь таблице простых чисел, оставляем только простые числа: 1993, 1399, 3919, 9931, 9319, 9391. Остаётся 6 простых чисел, это и есть число попыток, за которое клиент банка сможет открыть сейф.
Ответ. За 6 попыток.
Литература
- Гальперин Г. Просто о простых числах // Квант, 1987.-№4.С.9-14.
- Зельцер И.С., Кордемский Б.А. Занятные стайки простых чисел // математика в школе, 1988.-№6. С.49-51.
По теме: методические разработки, презентации и конспекты
Темы исследовательских работ по математике
В этом разделе предложены темы для исследователских работ с учениками...
исследовательская работа по математике 6 класс
Исследовательская работа по математике с учащимися 6 класса по теме "Золотое сечение - красота и гармония в математических расчётах"....
исследовательская работа по математике "Расчет средств на ремонт и покраску классного кабинета"
Обучение проходит более успешно, если обучение проходит в кабинете, соответствующем гигиеническим требованиям. Вопрос расходования средств на ремонт кабинетов встает перед...
Исследовательская работа по математике на тему: «Пополнение семейного бюджета»
Во время мирового кризиса и экономического положения нашей страны очень актуальным является экономичное ведение подсобного хозяйства в сельской местности. Я хочу показать выгоду ис...
Исследовательская работа по математике на тему: «Преимущества газового отопления дома»
Что выгодно :топить дом дровами или газовое отопление?...
Исследовательская работа учителя математики "Исследовательская и проектная деятельность учащихся: сходства и различия"
Исследовательская работа учителя математики Цель исследования: изучение процесса исследовательской и проектной деятельности учащихся.Задачи: найти сходства и различия в исследовательской и ...
Исследовательская работа по математике "Автоподобности в математике и биологии"
Проектно - исследовательская работа по математике "Автоподобности в математике и биологии" для 9 класса. Данная тема сегодня очень актуальна, поскольку в современной математике развивается н...