Рабочая программа по математике 11 класс (4 часа в неделю) А.Г. Мордкович, Л.С. Атанасян
календарно-тематическое планирование по алгебре (11 класс) по теме

Рабочая программа по математике 11 класс (4 часа в неделю) А.Г. Мордкович, Л.С. Атанасян 

Скачать:


Предварительный просмотр:

Рабочая программа по математике

К учебнику «Алгебра и начала анализа. 10-11 класс» авт. А.Г. Мордкович, Мнемозина, 2011;

 «Геометрия 10 – 11» авт. Л.С. Атанасян, Просвещение, 2010.

Класс: 11

Учитель: Газизова К.Р.

Количество часов: на учебный год-136, в неделю-4.

Плановых контрольных работ-10

Пояснительная записка

Рабочая программа разработана на основе федерального компонента государственного стандарта среднего (полного) общего образования по математике 2004 г., примерной программы среднего (полного) общего образования по математике на базовом уровне (Сборник нормативных документов. Математика / сост. Э.Д.Днепров, А.Г.Аркадьев. – М.: Дрофа, 2007г.), рекомендаций к разработке календарно-тематического планирования по УМК  Мордковича А.Г. Алгебра и начала анализа. 10-11 класс. Ч.1.Учебник. Ч.2.Задачник; Атанасяна Л.С., Бутусова В.Ф., Кадомцева С.Б. Геометрия 10 – 11. Учебник для общеобразовательных учреждений, «Математика», приложение к газете «Первое сентября», № 16, 2006 год.

Содержание курса.

Алгебра и начала анализа.

Повторение. Тригонометрические функции. Тригонометрические уравнения. Производная.

Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и её свойства. Понятие о степени с действительным показателем. Свойства степени с действительным показателем.

 Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени: переход к новому основанию. Десятичный и натуральный логарифмы, число e.

Преобразование простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.

Функции. Степенная функция с натуральным показателем, её свойства и график.

Вертикальные и горизонтальные асимптоты графиков.

Показательная функция (экспонента), её свойства и график.

Логарифмическая функция, её свойства и график.  

Понятие об определённом интеграле как площади криволинейной трапеции.  Первообразная. Формула Ньютона-Лейбница. Примеры применения интеграла в физике и геометрии. Вторая производная и её физический смысл.

Уравнения и неравенства. Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений. Основные приёмы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной. Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем. Применение  математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учёт реальных ограничений.      

Элементы комбинаторики, статистики и теории вероятностей. Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.  

 Геометрия.        

Координаты и векторы. Понятие вектора. Сложение и вычитание векторов. Умножение вектора на число. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трём некомпланарным векторам.  

Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.

Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Цели и задачи обучения в 11 классе.

Цели:

формирование представлений о математике, как универсальном языка науки, средстве моделирования явлений и процессов, об идеях и методах математики;

развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

Задачи:

систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе и его применение к решению математических и нематематических задач;

расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

знакомство с основными идеями и методами математического анализа.

В ходе освоения содержания математического образования учащиеся овладевают системой  личностных,  регулятивных,  познавательных,  коммуникативных  универсальных  учебных  действий, построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

выполнение и самостоятельное составление алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельная работа с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

проведение доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельная и коллективная деятельность, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

развитие  у  обучающихся  способности  к  самосознанию,  саморазвитию  и  самоопределению;  

формирование  личностных  ценностно-смысловых  ориентиров  и  установок,    способности  их  использования  в  учебной,  познавательной  и  социальной  практике;

самостоятельного  планирования  и  осуществления  учебной  деятельности  и  организации  учебного  сотрудничества  с  педагогами  и  сверстниками,  к  построению  индивидуальной  образовательной траектории;

формирование у обучающихся  системных  представлений  и  опыта  применения  методов,  технологий  и  форм  организации  проектной  и  учебно-исследовательской  деятельности для достижения практико-ориентированных результатов образования;

формирование  навыков  разработки,  реализации  и  общественной  презентации  обучающимися  результатов  исследования,  индивидуального  проекта,  направленного  на  решение научной, личностно и (или) социально значимой проблемы.

Результаты обучения

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние две компоненты представлены отдельно по каждому из разделов, содержания.

Очерченные стандартом рамки содержания и требований ориентированы на развитие учащихся и не должны препятствовать достижению более высоких уровней.

 

Учебно-тематическое планирование.

11 класс

Разделы курса

Кол-во часов

Количество контрольных работ

1

Повторение курса 10 класса

4

-

2

Степени и корни. Степенные функции

15

1

4

Метод координат в пространстве.

13

1

5

Показательная, логарифмическая функции

24

3

6

Цилиндр, конус, шар.

12

1

7

Интеграл

7

1

8

Элементы комбинаторики, статистики и теории вероятностей.

12

1

9

Объемы тел.

17

1

10

Уравнения и неравенства. Системы уравнений и неравенств

17

1

11

Повторение курса 10 и 11 классов.

15

Итого

136

10

Требования к уровню подготовки выпускников.

В результате изучения математики на базовом уровне в старшей школе  ученик должен

Знать/понимать

значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач  и внутренних задач математики;

значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;

универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

вероятностных характер различных процессов и закономерностей окружающего мира.

Числовые и буквенные выражения

Уметь:

выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости  вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

находить корни многочленов с одной переменной, раскладывать многочлены на множители;

проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.

Функции и графики

Уметь

определять значение функции по значению аргумента при различных способах задания функции;

строить графики изученных функций, выполнять преобразования графиков;

описывать по графику и по формуле поведение и свойства  функций;

решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.

Начала математического анализа

Уметь

находить сумму бесконечно убывающей геометрический прогрессии;

вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;  

исследовать функции и строить их графики с помощью производной,;

решать задачи с применением  уравнения касательной к графику функции;

решать задачи на нахождение наибольшего  и наименьшего значения функции на отрезке;

вычислять площадь криволинейной трапеции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.

Элементы комбинаторики, статистики и теории вероятностей

Уметь

· решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;

· вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.

Уравнения и неравенства

Уметь

решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

доказывать несложные неравенства;

решать текстовые задачи с помощью  составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;

изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

находить приближенные решения уравнений и их систем, используя графический метод;

решать уравнения, неравенства и системы с применением  графических представлений, свойств функций, производной;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для построения и исследования простейших математических моделей.

Геометрия

Знать

Многогранники. Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная.  призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире. Сечения куба, призмы, пирамиды. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию. Шар и сфера, их сечения, касательная плоскость к сфере.

Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов.

Уметь

распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

анализировать в простейших случаях взаимное расположение объектов в пространстве;

изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

строить простейшие сечения куба, призмы, пирамиды;

решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

использовать при решении стереометрических задач планиметрические факты и методы;

проводить доказательные рассуждения в ходе решения задач;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

владеть компетенциями: учебно – познавательной, ценностно – ориентационной, рефлексивной, коммуникативной, информационной, социально – трудовой.

 Учебно-методическое обеспечение.

А.Г. Мордкович. Алгебра и начала математического анализа. 10 - 11 класс. В 2 ч. Ч.1. Учебник для учащихся общеобразовательных учреждений  - 6 – е издание - М. «Мнемозина», 2011.

А.Г. Мордкович и др. Алгебра и начала математического анализа. 10 - 11 класс. В 2 ч. Ч.2. Задачник для учащихся общеобразовательных учреждений. -  М. «Мнемозина», 2011.

«Геометрия 10 – 11» авт. Л.С. Атанасян, Просвещение, 2010.

А. И. Ершова, В. В. Голобородько «Самостоятельные и контрольные работы» - М. Илекса 2007

Л. А. Александрова «Алгебра и начала анализа. Самостоятельные работы» - М. Мнемозина 2006

Поурочные разработки по геометрии. 10 класс/ Сост.В.А. Яровенко. – М.:ВАКО, 2006

Изучение геометрии в 10 – 11 классах: Методические рекомендации к учебнику. Книга для учителя./ С.М. Саакян, В.Ф. Бутузов. – М.: Просвещение, 2006.

Хохлова Л.С., Шарыгалова Т.В. Построение сечений многогранников: учебно-методическое пособие. – Б.:2003

Многогранники. Элективный курс. 10-11 классы: учеб.пособие для общеобразоват.учреждений./И.М.Смирнова, В.А.Смирнов. – М.: Мнемозина, 2007

Задачи по геометрии: Пособие для учащихся 7-11 кл. общеобразоват. учреждений/Б.Г.Зив, В.М.Мейлер, А.Г.Баханский. – М.:Просвещение, 2000

Зив Б.Г. Геометрия: дидакт.материалы для 11 класса. – М.: Просвещение, 2007

Ершова А.П., Голобородько В.В. Самостоятельные и контрольные работы по геометрии для 11 класса. – М.:Илекса, 2007

ЦОР Открытая математика. Стереометрия. ООО «ФИЗИКОН», 2006

Тематическое планирование изучения курса МАТЕМАТИКИ 11 класса

№ урока

Содержание изучаемого материала

Знания и умения

Основное содержание

Дата проведения

По плану

фактически

Повторение(4 часа)

1

Тригонометрические функции, их свойства и графики

тригонометрические функции числового аргумента, тригонометрические соотношения одного аргумента, тригонометрические функции: , , , , график и свойства функций

Учащиеся умеют свободно читать графики, отражать свойства функции на графике.

2

Преобразование тригонометрических выражений Тригонометрические уравнения

тригонометрические формулы одного, двух и половинного аргумента, формулы приведения, формулы перевода произведения функций в сумму и наоборот, метод разложения на множители, однородные тригонометрические уравнения первой и второй степени, алгоритм решения уравнения

Умеют использовать формулы, содержащие тригонометрические выражения для выполнения соответствующих расчетов; преобразовывать формулы, выражая одни тригонометрические функции через другие.  Учащиеся умеют решать простейшие тригонометрические уравнения. Владеют основными способами решения тригонометрических уравнений..

3

4

Производная, ее применение для исследования функции на монотонность

построение графика, возрастающая функция, убывающая функция, монотонность

Умеют находить производные элементарных функций, применяя таблицу производных и правила дифференцирования. Знают и умеют осуществлять алгоритм исследования функции на монотонность

Степени и корни. Степенные функции(15 часов)




5

6

Понятие корня n-й степени из действительного числа

Знать: понятие корня n-ой степени из неотрицательного числа, корня нечетной степени из отрицательного числа.

 Уметь: вычислять корни n-ой степени из действительного числа, решать уравнения, корни которых являются корнями n-ой степени из действительного числа.

Определения: корня n-ой степени из неотрицательного числа, корня нечетной степени n из отрицательного числа, понятие радикала, решение уравнений с радикалами.

7

8

Функции у=n, их свойства и графики

Знать: что представляет собой график функции у=n, при n – четном и n – нечетном, свойства функции у=n

Уметь: строить графики и решать уравнения и неравенства с радикалами.

Функции у=n, их свойства и графики. Построение графиков функций с радикалами, графическое решение уравнений и неравенств с радикалами.


9

10

Свойства корня n-й степени

Знать: теоремы выражающее свойства корня n-й степени

Уметь: доказывать теоремы и применять их при упрощении выражений

5 теорем, выражающих свойства корня n-й степени; упрощение выражений, нахождение значений числовых выражений, содержащих корни n-й степени

11

12

13

Преобразование выражений содержащих радикалы

Знать: что такое внесение/вынесение множителя под/за знак радикала, понятие иррационального выражения

Уметь: выносить множитель за знак радикала, вносить множитель под знак радикала, упрощать иррациональные выражения, используя свойства извлечения корня n-й степени из действительного числа

Понятие иррационального выражения, операции внесения и вынесение множителя под/за знак радикала, упрощение иррациональных выражений, разложение на множители, сокращение дробей

14

Контрольная работа   № 1 «Степени и корни. Степенные функции»

15

16





Обобщение понятия о показателе степени

Знать: определение степени с любым рациональным показателем, понятие иррационального уравнения, основные методы решения иррациональных уравнений

Уметь: представлять заданное выражение в виде степени с рациональным показателем, степень с дробным показателем в виде корня, упрощать выражения содержащие степени с дробным показателем

Понятие степени с рациональным показателем, определения, относящиеся к операции возведения в степень, понятие иррационального уравнения и основные методы решения иррациональных уравнений; упрощение выражений со степенями, нахождение значений числовых выражений со степенями и буквенных выражений со степенями при заданных значениях переменной

17

18

19

Степенные функции, их свойства и графики

Знать: определение степенной функции, свойства функции y=xr, где r – любое действительное число, свойства степенной функции, теорему о производной степенной функции, формулу для интегрирования степенной функции

Уметь: строить график степенной функции для любого рационального показателя r, исследовать степенную функцию на четность, ограниченность, монотонность и экстремумы, составлять уравнения касательной, находить наибольшее и наименьшее значения функции на промежутке, с помощью производной, вычислять первообразные , интегралы и площади плоских фигур

Эскизы графика степенной функции y=xr для любого рационального показателя r:

при четном натуральном значении r график похож на параболу, а при нечетном, большем чем 1,— на кубическую параболу;

при нечетном отрицательном целом значении r график похож на гиперболу, а при четном состоит как бы из 2-х ветвей гиперболы, симметричных относительно оси y;

при положительном дробном значении r трафик похож на одну ветвь параболы, которая ориентирована вверх при r>1 и вправо – при 0

при отрицательном дробном значении r график похож на одну ветвь гиперболы;

график любой степенной функции проходит через точку (1; 1).

Векторы в пространстве. Метод координат в пространстве(13 часов)

20

21

Понятие вектора в пространстве

Знать: определения вектора, нулевого вектора, коллинеарных, сонаправленных и противоположно направленных, равных векторов

Уметь: распознавать на чертеже коллинеарные, сонаправленные, противоположно направленные векторы, доказывать равенство векторов на основании определения; решать задачи типа 320-326

Ввести определение вектора в пространстве, обозначения вектора, его длины, понятие нулевого вектора;  коллинеарных, сонаправленных и противоположно направленных векторов, равных векторов

Сложение и вычитание векторов. Умножение вектора на число.

Знать: Правила треугольника и параллелограмма сложения векторов в пространстве, переместительный и сочетательный законы сложения, два способа построения разности двух векторов, правило сложения нескольких векторов в пространстве, правило умножения вектора на число и основные свойства этого действия

Уметь: применять изученные правила и законы при решении задач типа 327-354

Ввести правила треугольника и параллелограмма сложения двух векторов, рассмотреть переместительный и сочетательный законы сложения векторов в пространстве, ввести понятие разности векторов, рассмотреть правило многоугольника нахождения суммы нескольких векторов; сформулировать правило умножения вектора на число и рассмотреть основные свойства умножения вектора на число

22

23

Компланарные векторы.

Знать: определение компланарных векторов, признак компланарности трех векторов и правило параллелепипеда сложения трех некомпланарных векторов, теорему о разложении вектора по трем некомпланарным векторам

Уметь: доказывать признак компланарности трех векторов, теорему о разложении вектора по трем некомпланарным векторам; уметь применять изученный теоретический материал при решении задач типа 356-366

Сформулировать определение компланарных векторов, рассмотреть признак компланарности трех векторов, правило параллелепипеда сложения трех некомпланарных векторов; ввести понятие разложения вектора по трем некомпланарным векторам, изучить теорему о разложении любого вектора по трем данным некомпланарным векторам

24

25

26

Координаты точки и координаты вектора.

Знать: понятие прямоугольной системы координат в пространстве, формулу разложения произвольного вектора по трем координатным векторам; понятие координат вектора в данной системе координат; понятие радиус-вектора произвольной точки пространства, доказательство утверждения, что координаты точки равны соответствующим координатам её радиус вектора, а координаты любого вектора равны разностям соответствующих координат его конца и начала; формулы координат середины отрезка, длины вектора через его координаты и расстояния между двумя точками

Уметь: строить точку по заданным её координатам и находить координаты точки, изображенной в заданной системе координат; выполнять действия над векторами с заданными координатами; доказывать утверждение, что координаты точки равны соответствующим координатам её радиус вектора, а координаты любого вектора равны разностям соответствующих координат его конца и начала; применять изученный теоретический материал при решении задач типа 401-440

Объяснить, как задается прямоугольная система координат в пространстве, обратить внимание на обозначения и названия осей координат в пространстве, сопоставить эти обозначения с соответствующими обозначениями координат на плоскости; ввести понятия координатных векторов, обосновать и доказать правила действий над векторами; сформулировать определения радиус-вектора, радиус-вектора точки;  рассмотреть решение трех простейших задач, где выводятся формулы координат середины отрезка, длины вектора через его координаты и расстояния между двумя точками; показать примеры решения стереометрических задач координатным методом

27

28

29

Скалярное произведение векторов

Знать: понятие угла между векторами и скалярного произведения векторов, формулу скалярного произведения в координатах и свойства скалярного произведения;

Уметь: вычислять скалярное произведение векторов и находить угол между векторами по их координатам; решать задачи на вычисление углов между двумя прямыми, между прямой и плоскостью

Ввести понятие угла между векторами, сформировать представление об угле между векторами и о перпендикулярности двух векторов, ввести понятие скалярного произведения двух векторов как произведение их длин на косинус угла между ними (обратить внимание учащихся, что скалярное произведение есть число), рассмотреть пример применения скалярного произведения в физике; ввести понятие направляющего вектора прямой.

30

31

Движения

Знать: понятие движения пространства, основные виды движений

Уметь: доказать, что центральная, осевая, зеркальная симметрии и параллельный перенос являются движениями; решать задачи типа 478-489

Ввести понятие отображения пространства на себя, доказать, что центральная, осевая, зеркальная симметрии (доказательство с помощью координат) и параллельный перенос (доказательство с помощью векторов) являются движениями

32

Контрольная работа №2 «Векторы»

Показательная и логарифмическая функции(24 часа)

33

34

35

 

Знать: определение показательной функции, ее свойства; теоремы на которых базируется теория решения показательных уравнений и неравенств

Уметь: строить графики показательных функций, применять свойства функции при сравнении степеней, исследовании функции на монотонность, решении уравнений и неравенств

Определение показательной функции, ее свойства и теоремы на которых базируется теория решения показательных уравнений и неравенств

36

37

Показательные уравнения

Знать: определение показательного уравнения, методы решения показательных уравнений

Уметь: решать показательные уравнения, применяя изученные методы

Понятие показательного уравнения, 3 метода решения показательных уравнений (функционально-графический метод, метод уравнивания показателей, метод введения новой переменной)

38

Показательные неравенства

Знать: определение показательного неравенства, теорему, на которой базируется решение показательных неравенств

Уметь: применять теорему при решении показательных неравенств

Понятие показательного неравенства, теорема, на которой базируется решение показательных неравенств, решение показательных неравенств

39

Контрольная работа

 № 3 «Показательная функция»

40

Понятие логарифма

Знать: определение логарифма, понятия десятичного и натурального логарифмов, обозначения логарифмов, определение операции логарифмирования

Уметь: вычислять логарифмы от заданных чисел и выражений

Понятие логарифма, основные формулы и основное логарифмическое тождество, вычисление логарифмов от заданных чисел и выражений

41

42

Функция y=logax, ее свойства и график

Знать: определение логарифмической функции, свойства функции в зависимости от основания логарифма

Уметь: строить и читать графики логарифмической функции, находить наибольшее и наименьшее значения функции на заданном промежутке

Понятие логарифмической функции, ее свойства и графики в зависимости от основания логарифма, построение и чтение графиков логарифмической функции, нахождение наибольшего и наименьшего значения функции на заданном промежутке

43

44

Свойства логарифмов

Знать: основные теоремы, выражающие свойства логарифмов, определения операций логарифмирования и потенцирования, понятия дробной части и мантиссы десятичного логарифма

   Уметь: доказывать основные теоремы, выражающие свойства логарифмов, применять свойства логарифмов при вычислении логарифмов, упрощении логарифмических выражений, решении логарифмических  уравнений      

Теоремы: логарифм произведения двух положительных чисел, частного, степени, равенства двух логарифмов, понятие дробной части и мантиссы десятичного логарифма; применение теорем при вычислении логарифмов, упрощении логарифмических выражений, решении логарифмических уравнений

45

46

47

Логарифмические уравнения

Знать: определение логарифмического уравнения, теорему, применяемую при решении логарифмических уравнений, основные методы решения логарифмических уравнений

Уметь: применять рассмотренные методы при решении логарифмических уравнений

Определение логарифмического уравнения, основные методы решения логарифмических уравнений: функционально-графический, метод потенцирования, метод введения новой переменной, метод логарифмирования

48

Контрольная работа

№ 4 «Логарифмическая функция»

49

50

51

Логарифмические неравенства

Знать: определение логарифмического неравенства, теорему перехода от логарифмического неравенства к равносильной ему системе неравенств

Уметь: применять рассмотренную теорему при решении логарифмических неравенств

Определение логарифмического неравенства, теорема перехода от логарифмического неравенства к равносильной ему системе неравенств; применение теоремы при решении логарифмических неравенств и систем логарифмических неравенств





52

53

Переход к новому основанию логарифма

Знать: Формулу перехода от логарифма по одному основанию к логарифму по другому основанию и частные случаи этой формулы

Уметь: использовать эту формулу при решении логарифмических уравнений и неравенств.

Формула перехода от логарифма по одному основанию к логарифму по другому основанию и частные случаи этой формулы

54

55

Дифференцирование показательной и логарифмической функций

Знать: что такое число е, понятие зкспоненты, свойства функции у=ех, формулы дифференцирования и интегрирования функции у=ех, определение натурального логарифма, функции у = lnх, ее свойства и график, формулы дифференцирования и интегрирования функций у=lnх,

у=ах, у=logах

Уметь: находить производные и интегралы функций, содержащих ех, lnх

Понятия числа е, экспоненты, натурального логарифма, функции у=lnх,  графики , свойства, формулы дифференцирования и интегрирования функций у=ех, у=lnх.. Нахождение производных, интегралов функций, содержащих ех, lnх, решение уравнения, неравенства и задачи на вычисление площадей фигур и касательную с применением этих формул

56

Контрольная работа

№ 5 «Показательная и логарифмическая функция»

Цилиндр, конус, шар(12 часов)

57

58

59

Цилиндр

Знать: понятия цилиндрической поверхности, определение цилиндра, его элементы (боковая поверхность, основания, образующие, ось, высота, радиус); формулы для вычисления площадей боковой и полной поверхностей цилиндра

Уметь: применять изученные формулы для решения задач по данной теме , решать задачи типа 521-546, 601-608

Ввести понятия цилиндрической поверхности, цилиндра и его элементов (боковая поверхность, основания, образующие, ось, высота, радиус), вывести на основе определения цилиндра формулу боковой поверхности, а также формулу полной поверхности цилиндра

60

61

62

Конус

Знать: понятия конической поверхности, определение конуса, его элементы (боковая поверхность, основание, вершина, образующие, ось, высота), усеченного конуса; формулы для вычисления площадей боковой и полной поверхностей конуса и усеченного конуса

Уметь: решать задачи типа 547-569

Ввести понятия конической поверхности, конуса и его элементов (боковая поверхность, основание, вершина, образующие, ось, высота), вывести формулу для вычисления боковой и полной поверхностей конуса; сформировать у учащихся представление о том, что усеченный конус – это часть полного конуса, заключенная между его основанием и секущей плоскостью, параллельной основанию

63

64

65

Сфера

Знать: определения сферы, шара, понятие уравнения поверхности в пространстве, уравнение сферы

Уметь: решать задачи типа 590-600, 619-628

Ввести понятия сферы, шара и их элементов (центр, радиус, диаметр), вывести уравнение сферы в заданной прямоугольной системе координат, рассмотреть взаимные случаи расположения сферы и плоскости, теоремы о касательной плоскости к сфере, познакомить учащихся с формулой площади сферы, научить решать задачи по данной теме

66

67

Решение задач

Уметь: решать задачи типа 630 - 646

Закрепить в процессе решения задач полученные знания и навыки

68

Контрольная работа

№ 6 «Цилиндр, конус, шар»

Уметь: решать типовые задачи, использовать полученные знания для исследования практических ситуаций

Первообразная и интеграл(7 часов)

69

70

71

Первообразная и неопределенный интеграл

Знать: понятие первообразной, формулы для отыскания первообразных, правила отыскания первообразных; определение неопределенного интеграла, таблицу основных неопределенных интегралов, правила интегрирования

Уметь: доказывать, что функция является первообразной, находить множество первообразных для заданной функции, находить первообразную, график которой проходит через заданную точку, находить неопределенный интеграл, используя правила интегрирования и таблицу основных неопределенных интегралов

Понятие первообразной, неопределенного интеграла, правила для отыскания первообразных, правила интегрирования, формулы для отыскания первообразных и неопределенных интегралов; нахождение множества первообразных для заданной функции, решение задач по нахождению первообразной, график которой проходит через заданную точку, решение задачи по нахождению неопределенных интегралов

72

73

74

Определенный интеграл

Знать: понятие определенного интеграла, геометрический и физический смысл определенного интеграла, формулу  Ньютона-Лейбница.

Уметь: вычислять определенный интеграл, вычислять площади плоских фигур с помощью определенного интеграла.

3 задачи, приводящие к понятию определенного интеграла: о вычислении площади криволинейной трапеции, о вычислении массы стержня, о перемещении точки, понятие определенного интеграла, формулу Ньютона-Лейбница. Вычисление определенных интегралов, площади плоских фигур с помощью определенного интеграла.

75

Контрольная работа

№7 «Первообразная и интеграл»

Элементы математической статистики, комбинаторики и теории вероятностей(12 часов)

76

77

Статистическая обработка данных

классическая вероятностная схема, вероятность событий, геометрическая вероятность, равновозможные исходы, предельный переход

Знают классическую вероятностную схему для равновозможных испытаний;
знают правило геометрических вероятностей. Используют компьютерные технологии для создания базы данных.

78

79

Простейшие вероятностные задачи

схема Бернулли, теорема Бернулли, биноминальное распределение, многоугольник распределения

Учащиеся решают вероятностные задачи, используя вероятностную схему Бернулли, теорему Бернулли, понятие многогранник распределения. Используют для решения познавательных задач справочную литературу.

80

81

Сочетания и размещения

обработка информации, таблицы распределения данных, графики распределения данных, паспорт данных, числовые характеристики, таблица распределения, частота варианты, гистограмма распределения, мода, медиана, среднее ряда данных.

Знают понятия: общий ряд данных, выборка, варианта, кратность варианты, таблица распределения, частота варианты, график распределения частот, треугольник Паскаля. Находят частоту события, используя собственные наблюдения и готовые статистические данные, понимают статистические утверждения, встречающиеся в повседневной жизни.

82

83

Формула бинома Ньютона

статистическая устойчивость, гауссова кривая, алгоритм использования гауссовой кривой в приближенных вычислениях, закон больших чисел

Знают, график какой функции называется гауссовой кривой; алгоритм использования кривой нормального распределения и функции площади под гауссовой кривой в приближенных вычислениях, о законе больших чисел. Решают вероятностные задачи, используя знания о гауссовой кривой, алгоритме использования кривой нормального распределения и функции площади под гауссовой кривой в приближенных вычислениях, о законе больших чисел.

84

85

Случайные события и их вероятности

Дать определение относительной частоты случайного события. Сформулировать классическое определение вероятности случайного события

Уметь вычислять вероятность случайного события при классическом подходе

86

Решение практических задач

87

Контрольная работа №8

«Элементы теории вероятностей и математической статистики»

Уметь: решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул,  

 вычислять, в простейших случаях, вероятности событий, использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.

Учащиеся свободно демонстрируют умение решать задачи на применение элементов математической статистики и элементов теории вероятностей

Объёмы тел(17 часов)

88

89

Понятие объема. Объем прямоугольного параллелепипеда

Знать: единицы измерения объемов, свойства объемов; формулу объема куба и прямоугольного параллелепипеда

Уметь:  решать задачи типа № 647 - 657

Ввести понятие объема тела, рассмотреть свойства объемов, теорему об объеме прямоугольного параллелепипеда и следствие об объеме прямой призмы, основанием которой является прямоугольный треугольник

90

91

92

Объем прямой призмы и цилиндра

Знать:  формулы объемов прямой призмы и цилиндра


Уметь:  решать задачи типа № 659 - 672

Изучить теоремы об объемах прямой призмы и цилиндра, выработать навыки решения задач с использованием формул объемов этих тел.

93

94

95

96

Объем наклонной призмы, пирамиды, конуса

Знать:  формулы объемов наклонной призмы, пирамиды и конуса.


Уметь:  решать задачи типа № 674 - 682

Разъяснить учащимся возможность и целесообразность применения определенного интеграла для вычисления объемов тел, вывести формулу объема наклонной призмы с помощью интеграла, показать применение полученных формул при решении задач.

97

98

99

100

Объем шара и площадь сферы

Знать:  формулы  объема шара и площади сферы, шарового сегмента, шарового слоя и шарового сектора.

Уметь:  решать задачи типа № 710 - 724

Вывести формулы объема шара и площади сферы, показать их применение при решении задач, познакомить учащихся с формулами для вычисления объемов частей шара – шарового сегмента, шарового слоя и шарового сектора.

101

102

103

Решение задач

Знать:  формулы  объема шара и площади сферы, шарового сегмента, шарового слоя и шарового сектора.

Уметь:  решать задачи типа № 748 - 760

Повторить основные формулы объемов тел, закрепить их применение при решении задач, подготовиться к контрольной работе

104

Контрольная работа

 № 9 «Объёмы тел»

Уравнения и неравенства. Системы уравнений и неравенств(17 часов)

105

106

Равносильность уравнений

Знать: определения равносильных уравнений,  уравнения- следствия,  постороннего корня, теоремы о равносильности уравнений, причины потери корней при решении уравнений

Уметь: преобразовывать данное уравнение в  уравнение- следствие, доказывать равносильность уравнений

Определения равносильных уравнений, уравнения- следствия, постороннего корня, теоремы о равносильности уравнений; преобразование данных уравнений в уравнение- следствие, определение посторонних корней

107

108

109

Общие методы решения уравнений

Знать: 4 общих метода решения уравнений

Уметь: использовать рассмотренные методы при решении уравнений

Общие методы решения уравнений: замена уравнения h(f(x))=h(g(x)) уравнением

f(x)=g(x), метод разложения на множители, метод введения новых переменных, функционально- графический метод

110

111

112

Решение неравенств с одной переменной

Знать: определения равносильных неравенств, неравенства- следствия, теоремы о равносильности неравенств, определения системы неравенств, совокупности неравенств

Уметь: доказывать равносильность неравенств, решать неравенства, применяя теоремы о равносильности неравенств, решать системы и совокупности неравенств, иррациональные неравенства и неравенства с модулями

Понятия: равносильных неравенств, неравенства- следствия, системы неравенств, совокупности неравенств. Теоремы о равносильности неравенств. Применение теорем о равносильности неравенств при решении неравенств с одной переменной, решение систем и совокупности неравенств, иррациональные неравенства, неравенства с модулями

113

114

115

116

Уравнения и неравенства с двумя переменными.

 Системы уравнений

Знать: понятия системы уравнений, решения системы, равносильных систем, основные методы решения систем

Уметь: применять изученные методы при решении  систем, решать текстовые задачи с помощью систем уравнений

Понятие системы уравнений, решения системы уравнений, равносильных систем. Основные методы решения систем: подстановки, алгебраического сложения, введения новых переменных, графического, метод умножения, метод деления.

117

118

119

Уравнения и неравенства с параметрами

Знать: что такое уравнение и неравенство с параметрами и как рассуждают при решении уравнений и неравенств с параметрами

Уметь: решать простейшие уравнения и неравенства с параметрами

Понятие уравнения и неравенства с параметрами. Решение уравнений и неравенств с параметрами

120

121

Контрольная работа   № 10 «Уравнения и неравенства. Системы уравнений и неравенств»

Знать: понятия уравнения, неравенства, системы уравнений,

Уметь: применять изученные методы при решении уравнений, неравенств, систем, решать текстовые задачи

Повторение(15 часов)

122

Повторение. Преобразование выражений, содержащих степени с рациональным показателем.

Уметь: выполнять преобразование выражений, содержащих степени с рациональным показателем.

123

Повторение. Решение неравенств методом интервалов

Уметь: решать неравенства методом интервалов

124

Повторение. Арифметическая, геометрическая прогрессия.

Уметь: решать задачи на арифметическую, геометрическую прогрессию.

125

Повторение. Решение тригонометрических уравнений.

Уметь: решать тригонометрические уравнения.

126

Повторение. Наибольшее и наименьшее значение функции. Множество значений функции.

Уметь: находить наибольшее и наименьшее значение функции, множество значений функции.

127

Повторение. Решение иррациональных уравнений.

Уметь:  решать иррациональные уравнения.

128

Повторение. Решение показательных уравнений и неравенств.

Уметь: решать показательные уравнения  и неравенства.

129

Повторение. Решение логарифмических уравнений и неравенств.

Уметь: решать логарифмические уравнения и неравенства.

130

Повторение. Решение задач на проценты,  движение, совместную работу.

Уметь: решать задачи на проценты,  движение, совместную работу.

131

Повторение. Решение задач по геометрии.

132

Повторение. Решение задач по геометрии.

133

134

Итоговое тестирование

135

Решение задач ЕГЭ

136

Решение задач ЕГЭ


По теме: методические разработки, презентации и конспекты

Рабочая программа для 10 класса 6 часов в неделю

Календарно-тематическое планирование для 10 класса по физике 6 часов в неделю...

Рабочая программа для 5 класса (5 часов в неделю) английский язык.

Рабочая программа для 5 класса ( углубленное изучение английского языка - 5 часов в неделю) к УМК "Английский в фокусе 5"....

Рабочая программа -физика- 10 класс- 5 часов в неделю

Рабочая программа написана для профильного класса (5ч) по учебнику  Мякишев Г.Я. , Буховцев Б.Б.  Сотский Н.Н  ,Физика -10кл с приложением на электронном носителе,  М: Просвещение ...

Рабочая программа Биология 8 класс 2 часа в неделю

Рабочая программа по биологии для 8 класса общеобразовательной школы по учебнику Биология 8 класс Д.В. Колесов, Р.Д. Маш, И.Н. Беляев  Количество часов – 68 часов (2 ч в неделю)Программа составле...

Рабочая программа для 10 класса ,2 часа в неделю (по Мякишеву)

Данное планирование создано для 10 классов,изучаемых физику 2 часа в неделю по учебнику Мякишева...

Рабочая программа для 10 класса ( 2 часа в неделю), Рабочая программа для 10 класса ( 5 часов в неделю)

Пояснительная запискаРабочая программа по физике на 2022/23 учебный год для обучающихся 10 классов МБОУ «СШ№ 25» разработана в соответствии с требованиями:•  Федерального закона ...

Рабочая программа для 11 класса ( 2 часа в неделю) , Рабочая программа для 11 класса ( 5 часов в неделю)

Пояснительная записка      Рабочая программа по физике на 2022/23 учебный год для обучающихся 11 классов МБОУ «СШ№ 25» разработана в соответствии с требованиями:&bull...