Занятие математического кружка
занимательные факты (алгебра) по теме

Катаева Валентина Викторовна

Лист Мёбиуса

Скачать:

ВложениеРазмер
Файл dokument_microsoft_word.docx243.27 КБ

Предварительный просмотр:

Лист Мёбиуса

УГОЛОК ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ

Представим себе поверхность и сидящего на ней муравья. Удастся ли муравью доползти до обратной стороны поверхности – образно говоря, до её изнанки, - не перелезая через край? Конечно же нет!

Первый пример односторонней поверхности, в любое место которой может доползти муравей, не перелезая через край, привел Мёбиус в 1858г.

Август Фердинанд Мёбиус (1790-1868) – ученик «короля» математиков Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров XIX века.

В возрасте 68 лет Мёбиусу удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых – лист Мёбиуса (или лента). Мёбиус придумал ленту, когда наблюдал за горничной, неправильно одевшей на шею свой платок.

Изготовим лист Мёбиуса: возьмите бумажную полоску –длинный узкий прямоугольник АВСD (удобные размеры: длина 30 см, ширина 3 см). Перекрутив один конец полоски на 180º, склейте из нее кольцо (точки А и С, В и D). Модель готова. А по этому листу Мебиуса шагает пешеход (еще картинка).

Лист Мебиуса (схема) преподнесет вам сюрприз, если вы попытаетесь его разрезать. Разрежьте лист по центральной линии. Что у вас получилось?

Вместо того, чтобы развалиться на два куска, лента разворачивается в длинную связанную замкнутую полоску. Полученную после первого разреза ленту снова разрежьте по центральной линии. Перед последним сжатием ножниц попробуйте угадать, что будет?

А теперь попробуем изготовить такую модель: в полосе АВСD прорезать щель и продеть сквозь неё один конец. Повернув, на пол оборота, склейте, как показано на рисунке. А теперь продолжите разрез вдоль всей ленты. Что у вас получилось?

Чтобы получить ленту Мебиуса, мы переворачивали полоску бумаги на 180º, на пол оборота. Теперь полоску скрутите на 360º, полный оборот. Склейте, затем разрежьте её по центральной линии. Какой получиться результат, трудно предугадать.

Таинственный и знаменитый лист мебиуса, появившийся в 1858 году, волновал художников и скульпторов. Много рисунков с изображениями листа Мебиуса оставил известный голландский художник Морис Эшер. Целую серию вариантов листа Мебиуса можно встретить в скульптуре. Попробуйте через поисковую систему найти примеры по ключевым словам "лист Мебиуса" (кликните условие поиска: картинки).

Во многих странах мира: России, Белоруссии, Германии, Латвии многих других есть памятники этому необычному объекту. В Казахстане существует задумка постороить Библиотеку в форме ленты Мёбиуса.

Опыты с листом Мебиуса.



Если вы проследите путь
муравьев на литографии
"Лента Мебиуса II" (М.Эшер),
то увидите, что муравьи ползут
не по противоположным
поверхностям ленты,
а по одной и той же.


"Лист Мебиуса" (М.Эшер)

Опыты с листом Мебиуса

Рисунок Савченко Е.М.


Для увеличения рисунков
кликните по изображению.
Нажмите и удерживайте
для перемещения.
 


Конечно же, главная ценность листа Мёбиуса состоит в том, что он дал толчок новым обширным математическим исследованиям. Именно поэтому его часто считают символом современной математики и изображают на различных эмблемах и значках, как, например, на значке механико-математического факультета Московского университета.



Ссылки

Википедия

А вот здесь ролик про Бутылку Клейна Видео. Это лента Мебиуса в пространстве. Можно попасть внутрь бутылки не переходя через край.

Сюрпризы листа Мёбиуса. Квант.

Опыты с листом Мебиуса.


По теме: методические разработки, презентации и конспекты

Занятие математического кружка "Фокусы-магия или математический расчёт?", 6 класс

На занятии математического кружка "Фокусы - магия или математический расчёт?" шестиклассники в игровой форме разгадывают секрет математических задач и не только....

Презентация к занятию математического кружка в 5 классе. Тема занятия "Волшебный мир иллюзий".

Презентация создана с учетом возрастных особенностей и содержит познавательный материал, развивающий интерес к математике учащихся 5 классов....

Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие 1. Арифметика

Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...

Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие 2. Арифметика

Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...

Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие 3. Задачи на четность

Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...

Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие 4-6. Задачи на четность

Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...

Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие 7. Логические задачи

Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...