Применение производной к решению задач. По материалам ЕГЭ.
презентация к уроку по алгебре (11 класс) по теме

Чудаева Елена Владимировна

Ресурс направлен на подготовку к ЕГЭ, может быть использован для организации работы на уроке или для самостоятельной подготовки учащихся по теме "Применение производной к решению задач".

Скачать:

ВложениеРазмер
Office presentation icon v8.ppt2.59 МБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

B 8 Математика Чудаева Елена Владимировна, учитель математики МОУ «Инсарская СОШ №1» г. Инсар, Республика Мордовия, 2011 г. Задача – 2011 ЕГЭ Презентация по материалам рабочей тетради «Задача В8» авторов И.В. Ященко, П.И. Захарова

Слайд 2

Содержание ( виды заданий В8) Найдите значение производной функции в точке х 0 по рисунку с изображенным графиком функции y = f(x) и касательной к нему в точке с абсциссой х 0 . На рисунке изображен график функции y = f (x) , касательная к этому графику, проведенная в точке х 0 , проходит через начало координат. Найдите f ' (х 0 ). На рисунке изображен график функции y = f (x) , определенной на интервале ( a ; b ). Определите количество целых точек, в которых производная функции отрицательна ( положительна). На рисунке изображен график функции y = f (x) , определенной на интервале ( a ; b ). Найдите количество точек, в которых производная функции y = f (x) равна 0. На рисунке изображен график функции y = f (x) , определенной на интервале ( a ; b ). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = с. На рисунке изображен график производной функции f (x) , определенной на интервале ( a ; b ). Найдите точку экстремума функции f (x ) . На рисунке изображен график производной функции y = f (x) , определенной на интервале ( x 1 ; x 2 ). Найдите количество точек максимума (минимума) функции y = f (x) на отрезке [ a; b ] . На рисунке изображен график производной функции f ( x ), определенной на интервале ( x 1 ; x 2 ). Найдите промежутки возрастания (убывания) функции f ( x ). На рисунке изображен график производной функции f(x) , определенной на интервале ( x 1 ; x 2 ). Найдите абсциссу точки, в которой касательная к графику функции f ( x ) параллельна прямой y = kx + b или совпадает с ней. 1 4 2 3 7 8 9 5 6

Слайд 3

Задача 1.1. На рисунке изображен график функции y = f (x) , и касательная к нему в точке с абсциссой х 0 . Найдите значение производной функции y = f (x) в точке х 0 . Значение производной функции f(x) в точке х 0 равно tga — угловому коэффициенту касательной, проведенной к графику этой функции в данной точке. Чтобы найти угловой коэффициент, выберем две точки А и В, лежащие на касательной, абсциссы и ординаты которых — целые числа. Теперь определим модуль углового коэффициента. Для этого построим ∆ ABC. Важно помнить, что тангенс острого угла прямоугольного треугольника — это отношение противолежащего катета к прилежащему. Знак производной (углового коэффициента) можно определить по рисунку, например, так: если касательная «смотрит вверх» то производная положительна, если касательная «смотрит вниз» - отрицательна (если касательная горизонтальна, то производная равна нулю). Решение. А С Ответ: 3. Теоретические сведения.

Слайд 4

Задача 1.2. На рисунке изображен график функции y = f (x) , и касательная к нему в точке с абсциссой х 0 . Найдите значение производной функции y = f (x) в точке х 0 . Решение. Ответ: - 0,5 . Ответ: 0,75. А С В С В А a) б )

Слайд 5

Задача 1.3. На рисунке изображен график функции y = f (x) , и касательная к нему в точке с абсциссой х 0 . Найдите значение производной функции y = f (x) в точке х 0 . Решение. Ответ: - 0,75 . А В С А В С Ответ: - 3 . a) б )

Слайд 6

Задача 2.1. На рисунке изображен график функции y = f (x) , касательная к этому графику, проведенная в точке 4, проходит через начало координат. Найдите f ' (4). Решение. Если касательная проходит через начало координат, то можно изобразить ее на рисунке, проведя прямую через начало координат и точку касания. В качестве точек с целочисленными координатами, лежащих на касательной, можно взять начало координат и точку касания. Дальнейшее решение очевидно: Ответ: 1,5. 6 4

Слайд 7

Задача 2.2. На рисунке изображен график функции y = f (x) , касательная к этому графику, проведенная в точке х 0 , проходит через начало координат. Найдите f ' (х 0 ). х 0 = 2 х 0 = - 4 х 0 = - 4 х 0 = 4 1 3 4 2 Решите самостоятельно! Ответ: 2. Ответ: 0,5. Ответ: - 0,5. Ответ: 0,75.

Слайд 8

Задача 3.1. На рисунке изображен график функции y = f (x) , определенной на интервале (-8; 3). Определите количество целых точек, в которых производная функции отрицательна. Решим эту задачу, воспользовавшись следующим утверждением. Производная непрерывно дифференцируемой функции на промежутке убывания (возрастания) не положительна (не отрицательна). Значит необходимо выделить промежутки убывания функции и сосчитать количество целых чисел, принадлежащих этим промежуткам. Причем производная равна нулю на концах этих промежутков, значит, нужно брать только внутренние точки промежутков. Решение. , если убывает. Целые решения: х=-7; х=-6; х=-2; х=-1. Их количество равно 4. Ответ: 4. Теоретические сведения.

Слайд 9

Задача 3.2. На рисунке изображен график функции y = f (x) , определенной на интервале (—8; 5). Определите количество целых точек, в которых производная функции положительна. Решение. , если возрастает. Целые решения при : х=-7; х=-6; х=-5; х=-4; х=2; х=3. Их количество равно 6. Ответ: 6.

Слайд 10

Задача 3.3 . На рисунке изображен график функции y = f (x) , определенной на интервале ( a ; b ). Определите количество целых точек, в которых производная функции положительна. a) б ) Решите самостоятельно! Решение. , если возрастает. Целые решения при : х=-2; х=-1; х=5; х=6. Их количество равно 4. Целые решения при : х=2; х=3; х=4; х=10; х=11. Их количество равно 5. Ответ: 4. Ответ: 5.

Слайд 11

Задача 3.4 . На рисунке изображен график функции y = f (x) , определенной на интервале ( a ; b ). Определите количество целых точек, в которых производная функции отрицательна. Решите самостоятельно! a) б ) Решение. , если убывает. Целые решения при : х=2; х=7; х=8. Их количество равно 3. Целые решения при : х=-1; х=0; х=1; х=2; х=9; х=10. Их количество равно 6. Ответ: 3. Ответ: 6.

Слайд 12

Производная функции в точке х 0 равна 0 тогда и только тогда, когда касательная к графику функции, проведенная в точке с абсциссой х 0 , горизонтальна. Отсюда следует простой способ решения задачи — приложить линейку или край листа бумаги к рисунку сверху горизонтально и, двигая «вниз», сосчитать количество точек с горизонтальной касательной. Задача 4.1. На рисунке изображен график функции y = f (x) , определенной на интервале (-6; 8). Найдите количество точек, в которых производная функции y = f (x) равна 0. Теоретические сведения. Решение. если касательная, проведенная в эту точку имеет вид у = const. Считаем количество точек пересечения графика функции с касательной. Ответ: 7.

Слайд 13

Задача 4.2. На рисунке изображен график функции y = f (x) , определенной на интервале ( a ; b ). Найдите количество точек, в которых производная функции y = f (x) равна 0. Решите устно! Ответ: 7. Ответ: 7. Ответ: 8. Ответ: 6. 1 3 4 2

Слайд 14

Задача 5.1. На рисунке изображен график функции y = f (x) , определенной на интервале (-8; 3). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = 8. Решение. Прямая у = 8 — горизонтальная, значит, если касательная к графику функции ей параллельна, то она тоже горизонтальна. Следовательно, при решении этой задачи можно воспользоваться решением задачи 2, то есть приложить линейку или край листа бумаги горизонтально и, двигая его «вниз», сосчитать количество точек с горизонтальной касательной. Ответ: 5.

Слайд 15

Задача 5.2. На рисунке изображен график функции y = f (x) , определенной на интервале ( a ; b ). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = с. 1 3 4 2 Решите устно! Ответ: 4. Ответ: 9. Ответ: 8. Ответ: 9.

Слайд 16

Задача 6.1. На рисунке изображен график производной функции f (x) , определенной на интервале (—7; 5). Найдите точку экстремума функции f (x ) на отрезке [-6; 4]. На этом отрезке производная функции один раз обращается в 0 (в точке -3) и при переходе через эту точку меняет знак, откуда ясно, что точка -3 и есть искомая точка экстремума функции на отрезке. Решение. -6 4 Отметим на рисунке границы отрезка, о котором идет речь в условии задачи. Ответ: -3. -3 + -

Слайд 17

Задача 6.2. На рисунке изображен график производной функции f (x) , определенной на интервале ( a ; b ). Найдите точку экстремума функции f (x ) . Решите устно! 1 3 4 2 Ответ: -3 . -3 Ответ: 7 . 7 Ответ: -1 . - 1 Ответ: 4 . 4

Слайд 18

В точке минимума производная функции равна нулю либо не существует. Видно, что таких точек на отрезке [-2; 7] три: —1,5; 4,5; 6,5. При этом в точке 4,5 производная слева отрицательна, а справа положительна, значит, это точка минимума. В точках -1,5 и 6,5 производная меняет знак с «+» на «—» это точки максимума. Решение. Ответ: 1 . 4,5 - + Задача 7.1. На рисунке изображен график производной функции y = f (x) , определенной на интервале (-3; 8). Найдите количество точек минимума функции y = f (x) на отрезке [-2; 7] .

Слайд 19

Задача 7.2. На рисунке изображен график производной функции y = f (x) , определенной на интервале ( x 1 ; x 2 ). Найдите количество точек максимума функции y = f (x) на отрезке [ a; b ] . Решение. Ответ: 1 . Ответ: 3 . a b a b x 0 - точка максимума, если производная при переходе через x 0 меняет свой знак с плюса на минус . - + Условие выполняется в точке x = 3 . Решение. Условие выполняется в точках: -1; 8; 13 . - + - + - + 1 Найдем точки в которых Это: -3; 3; 5. Решение аналогично. 2

Слайд 20

Задача 7.3. На рисунке изображен график производной функции y = f (x) , определенной на интервале ( x 1 ; x 2 ). Найдите количество точек экстремума функции y = f (x) на отрезке [ -3 ; 10 ] . Ответ: 4 . Ответ: 4 . 1 2

Слайд 21

Задача 8.1. На рисунке изображен график производной функции y = f (x) , определенной на интервале (-11; 3). Найдите промежутки возрастания функции f(x ). В ответе укажите длину наибольшего из них. В этой задаче необходимо сначала найти промежутки возрастания функции, т.е. промежутки на которых f ´ ( x ) > 0. Решение. В нашем случае их три: (-11; -10), (-7; -1) и (2; 3), наибольшую длину из них, очевидно, имеет промежуток (-7; -1), его длина равна: -1-(-7) = 6. Ответ: 6 . -10 - 7 -1 2 6

Слайд 22

Задача 8.2. На рисунке изображен график производной функции f ( x ), определенной на интервале ( x 1 ; x 2 ). Найдите промежутки убывания функции f ( x ). В ответе укажите длину наибольшего из них. 1 Решение. Решение. Ответ: 6 . Ответ: 3 . Найдем промежутки убывания функции, т.е. промежутки на которых f´ ( x ) < 0. Наибольшую длину из них имеет промежуток (- 10 ; - 4 ) -10 -4 Решение аналогично: ищем промежутки на которых f´ ( x ) < 0. Наибольший из них имеет длину равную 3. 6 3 2

Слайд 23

Задача 8.3. На рисунке изображен график производной функции f ( x ), определенной на интервале ( x 1 ; x 2 ). Найдите промежутки возрастания функции f ( x ). В ответе укажите длину наименьшего из них. 3 Решение. Решение. Ответ: 1 . Ответ: 2 . Найдем промежутки возрастания функции, т.е. промежутки на которых f´ ( x ) > 0. Наименьшую длину из них имеет промежуток (-2; -1). Решение аналогично: ищем промежутки на которых f´ ( x ) > 0. Наименьший из них имеет длину равную 2. 4

Слайд 24

Задача 9.1. На рисунке изображен график производной функции f(x) , определенной на интервале (-11; 3). Найдите количество точек, в которых касательная к графику функции f ( x ) параллельна прямой y = 2 x -5 или совпадает с ней. Если касательная к графику функции f(x) параллельна прямой y = 2 x -5 или совпадает с ней, то ее угловой коэффициент равен 2 , а значит нам нужно найти количество точек, в которых производная функции f(x) равна 2 . Для этого на графике производной проведем горизонтальную черту, соответствующую значению y = 2 , и посчитаем количество точек графика производной, лежащих на этой линии. В нашем случае таких точек 5 . Решение. y = 2 Ответ: 5 .

Слайд 25

Задача 9.2. На рисунке изображен график производной функции f(x) , определенной на интервале ( x 1 ; x 2 ). Найдите количество точек, в которых касательная к графику функции f ( x ) параллельна прямой y = - 2 x + 7 или совпадает с ней. 1 Решение. Ответ: 3 . Касательная к графику функции f(x) параллельна прямой y = -2 x +7 или совпадает с ней, то ее угловой коэффициент равен -2. Найдем количество точек, в которых f ´ (x) = -2. Решение. Поступим аналогично, найдем количество точек, в которых f ´ (x) = -2. Ответ: 4 . y = - 2 y = - 2 2

Слайд 26

Задача 9.3. На рисунке изображен график производной функции f(x) , определенной на интервале ( x 1 ; x 2 ). 3 Решение. Ответ: 3 . Найдем количество точек, в которых f ´ (x) = 2. Найдите количество точек, в которых касательная к графику функции f ( x ) параллельна прямой y = 2 x + 10 или совпадает с ней. y = -3 Найдите количество точек, в которых касательная к графику функции f ( x ) параллельна прямой y = -3 x +8 или совпадает с ней. Решение. Ответ: 3 . Найдем количество точек, в которых f ´ (x) = -3. y = 2 4

Слайд 27

Задача 9.4. На рисунке изображен график производной функции f(x) , определенной на интервале ( x 1 ; x 2 ). Найдите абсциссу точки, в которой касательная к графику функции f ( x ) параллельна прямой y = 7 - 4 x или совпадает с ней. Для того чтобы найти искомую абсциссу, выясним, в какой точке f ´ (x) = - 4. Для этого проведем горизонтальную прямую y = - 4 и найдем абсциссу точки пересечения этой прямой с графиком производной. Она и будет искомой абсциссой точки касания. Решение. Ответ: 2 . y = -4 y = -4 -1 2 Решение. Поступим аналогично, найдем точку, в которой f ´ (x) = - 4 , проведем горизонтальную прямую y = - 4 и найдем абсциссу точки пересечения этой прямой с графиком производной. Ответ: -1 . 5 6

Слайд 28

Литература Для создания шаблона презентации использовалась картинка http://www.box-m.info/uploads/posts/2009-05/1242475156_2.jpg Ященко И.В., Захаров П.И. ЕГЭ 2010. Математика. Задача В8. Рабочая тетрадь / Под.ред. А.Л. Семенова и И.В. Ященко. – М.: МЦНМО, 2010. http://www.bgshop.ru/image.axd?id=9499848&type=big&goods=EducationalEdition&theme=standart


По теме: методические разработки, презентации и конспекты

Применение производной к решению задач.

11 классУрок 84Тема: «Применение производной к решению задач».Тип урока: обобщение и повторение знаний и уменийЦель урока:добиться усвоения учащимися систематических, осознанных сведений о понятии про...

Урок алгебры в 11 классе "Применение производной при решении задач ЕГЭ".

Этот материал включает в себя конспект и презентацию урока повторения....

Урок по алгебре в 10 классе "Применение производной в решениии задач с экономическим содержанием"

На уроке совершенствуются навыки исследования функций с применением производной.Условие рассматриваемых задач содержит информацию по конкретным экономическим ситуациям....

Применение производной при решении задач с параметрами

элективный курс по теме производная с параметрами...

Применение производной при решении задач с параметрами

элективный курс по теме производная с параметрами...

Применение производной для решения задач.

Этот урок рассчитан на учеников старшего звена средней школы, для учеников 11-х классов. Материал призван обобщить, систематизировать и углубить знания о производной, тренировать решение задач с приме...


 

Комментарии

Очень полезный материал, спасибо Вам.Удачи!

Спасибо Вам,Елена Владимировна от меня и моих учеников!

Большое спасибо, осень помогло!
Алехина Татьяна Федоровна

Оуень понравилась презентация. Спасибо!
Чудаева Елена Владимировна

Спасибо за внимание к моим работам!