Развитие логического мышления на уроках математики
опыты и эксперименты по математике (1 класс)
Предварительный просмотр:
Развитие логического мышления
на уроках математики в начальных классах
Учитель начальных классов филиала
МБОУ СОШ с.Андреевка
Янгубаева Е.М.
Введение.
Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление учащихся. Об этом говорится в методической литературе, в пояснительных записках к учебным программам. Однако, как это делать, учитель не всегда знает. Нередко это приводит к тому, что развитие логического мышления в значительной мере идет стихийно, поэтому большинство учащихся, даже старшеклассников, не овладевает начальными приемами логического мышления (анализ, сравнение, синтез, абстрагирование и др.)
Роль математики в развитии логического мышления исключительно велика. Значительное место вопросу развития у младших школьников логического мышления уделял в своих работах известнейший отечественный педагог В. Сухомлинский. Суть его размышлений сводится к изучению и анализу процесса решения детьми логических задач, при этом он опытным путем выявлял особенности мышления детей. О работе в этом направлении он так пишет в своей книге "Сердце отдаю детям": "В окружающем мире - тысячи задач. Их придумал народ, они живут в народном творчестве как рассказы-загадки".
Сухомлинский наблюдал за ходом мышления детей, и наблюдения подтвердили, « что прежде всего надо научить детей охватывать мысленным взором ряд предметов, явлений, событий, осмысливать связи между ними…»
Развитие логического мышления в условиях введения ФГОС НОО
Образовательный стандарт нового поколения ставит перед начальным образованием новые цели. Теперь в начальной школе ребёнка должны научить не только читать, считать и писать, чему и сейчас учат вполне успешно. Ему должны привить две группы новых умений. Речь идёт, во-первых, об универсальных учебных действиях, составляющих умения учиться: навыках решения творческих задач и навыка поиска, анализа и интерпретации информации. Во-вторых, речь идёт о формировании у детей мотивации к обучению, саморазвитию, самопознанию. Учителю, который до этого занимался с ребятами просто математикой как таковой, теперь придётся на знакомом ему материале решать ещё и новые нестандартные задачи. Значит, уже в начальной школе дети должны овладеть элементами логических действий (сравнения, классификации, обобщения, анализа и др.). Поэтому одной из важнейших задач, стоящих перед учителем начальных классов, является развитие самостоятельной логики мышления, которая позволила бы детям строить умозаключения, приводить доказательства, высказывания, логически связанные между собой, делать выводы, обосновывая свои суждения, и, в конечном итоге, самостоятельно приобретать знания. Математика именно тот предмет, где можно в большой степени это реализовывать.
На сегодняшний день общеобразовательная школа выступает в качестве того общественного учреждения, которое самым непосредственным образом отвечает за качество человеческой истории.
Каждое поколение людей предъявляет свои требования к школе. Раньше первостепенной задачей считалось вооружение учащихся глубокими знаниями, умениями и навыками. Сегодня задачи общеобразовательной школы иные. Обучение в школе не столько вооружает знаниями, умениями, навыками. На первый план выходит формирование универсальных учебных действий, обеспечивающих школьникам умение учиться, способность в массе информации отобрать нужное, саморазвиваться и самосовершенствоваться. Появились новые Федеральные образовательные стандарты общего образования второго поколения, в которых прописано, что главной целью образовательного процесса является формирование универсальных учебных действий, таких как: личностные, регулятивные, познавательные, коммуникативные. В соответствии стандартам второго поколения познавательные универсальные действия включают: общеучебные, логические, а также постановку и решение проблемы.
К логическим универсальным действиям относятся:
— анализ объектов с целью выделения признаков (существенных, несущественных);
— синтез — составление целого из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
— выбор оснований и критериев для сравнения, сериации, классификации объектов;
— подведение под понятие, выведение следствий;
— установление причинно-следственных связей;
— построение логической цепочки рассуждений;
— доказательство;
— выдвижение гипотез и их обоснование.
Из вышесказанного следует, что уже в начальной школе дети должны овладеть элементами логических действий (сравнения, классификации, обобщения и др.). Поэтому одной из важнейших задач, стоящих перед учителем начальных классов, является развитие всех качеств и видов мышления, которые позволили бы детям строить умозаключения, делать выводы, обосновывая свои суждения, и, в конечном итоге, самостоятельно приобретать знания и решать возникающие проблемы.
Развитие логического мышления младших школьников на уроках математики
Я работаю по программе «Школа России». Начиная с 1 класса, я ввожу специальные задания и задачи направленные на развитие познавательных возможностей и способностей детей. Использую дополнительные задания развивающего характера, задания логического характера, требующие применения знаний в новых условиях.
Моя методическая тема, по которой я работаю четвёртый год «Развитие логического мышления на уроках математики в начальных классах». Формирование логического мышления – важнейшая составная часть педагогического процесса. Математика дает реальные предпосылки для развития логического мышления. Моя задача – полнее использовать эти возможности при обучении детей математике. Однако конкретной программы логических приемов мышления, которые должны быть сформированы при изучении данного предмета, нет. В результате работа над развитием логического мышления идет без знания системы необходимых приемов, без знания их содержания и последовательности формирования.
Ученье – процесс двусторонний: работают дети, работает учитель; он ведет за собой учащихся, руководит их умственной деятельностью, организует и направляет.
Чему нужно научить ребенка при обучении математике? Размышлять, объяснять получаемые результаты, сравнивать, высказывать догадки, проверять, правильные ли они; наблюдать, обобщать и делать выводы.
Такие задания включаю в занятия в определенной системе. Учить подмечать закономерности, сходство и различие начинаю с простых упражнений, постепенно усложняя их. С этой целью подбираю серию упражнений с постепенным повышением уровня трудности.
Первый класс:
Система заданий предусматривает несколько групп систематически выстроенных задач и заданий, направленных преимущественно на выделение, прослеживание, распределение и изменение различных признаков и характеристик объектов: Примеры заданий:
- Задания на выделение признаков у одного или нескольких объектов. Их цель – обратить внимание ученика на значимость того или иного признака. При этом задание оформлено в виде конструктивного письма графической формы, понятной ребенку без текста, что позволяет использовать эти материалы даже при работе с детьми, не умеющими хорошо читать;
- Задания на прямое распределение признаков (цвет, форма, размер);
- Задания на распределение с использованием отрицания одного из признаков;
- Задания, связанные с изменением признака;
- Те же самые задания, но трансформированные в другую графическую форму, более формализованную (матрицы);
- Задания, связанные на поиск недостающей фигуры, также оформленные в виде неполной матрицы (таблицы). Умение справляться с такими заданиями традиционно считается показателем высокого уровня умственного развития;
- Особое место в системе заданий уделяется развитию словесно-логического мышления: пониманию специальных речевых структур с употреблением связок “и”, “или”, “тоже”, “также”, слов “все”, “некоторые”, “любые”.
Во втором классе продолжается работа по развитию умения производить простые логические действия. Задания на классификацию усложнились: они неразрывно связаны с развитием у детей способности строить цепочки логических рассуждений. Так, при нахождений закрытой фигуры в матрицах Ровена или недостающие фигуры в графических матрицах ученик учится последовательно объяснять, почему выбрана именно эта фигура.
Развитие словесно-логического мышления в этом возрасте возможно с помощью заданий на определение истинности или ложности высказывания, заданий на понимание высказываний с кванторами общности и существования. Предполагаемые задания:
- Словесные тесты (предлагается ряд слов, в каждом из которых пять дается в скобках, а одно перед ними. Ребята должны выделить два слова, наиболее существенные для слова перед скобками; используются упражнения, направленные на формирование умения делить объекты на классы по заданному основанию и др.;
- Работа с логическими цепочками;
- Работа с анаграммами;
- Работа с числовыми тестами;
- Решение логических задач;
- Ребусы, загадки;
- Задания на нахождение правильного ответа в ряду из ложных и правильных ответов (с объяснениями, почему этот ответ правильный)
- Обучение доказыванию (задачи на достраивание составных высказываний, логические тестовые задачи).
4.3. Развитие логического мышления в 3-4-х классах
В 3-4-х классах школьники должны научиться выстраивать иерархию понятий, вычислять более широкие и более узкие понятия, находить связи между родовыми и видовыми понятиями. К этому этапу развития логического мышления можно отнести и формирование умений давать определение понятий и на основе умения находить более общее родовое понятие и видовые отличительные признаки (игра – хоккей, растение – дерево – хвойное дерево).
В 4-ом классе необходимо уделить внимание развитию аналитической деятельности, которая, как показано выше, в 1-2-х классах заключается в анализе отдельного предмета, а к 3-4-му классу – в умении анализировать связи между предметами и явлениями (часть и целое, рядоположенность, противоположность, причина и следствие, наличие тех или иных функциональных отношений и др.).
К окончанию начальной школы у ребенка должны быть сформулированы такие операции логического мышления как обобщение, классификация, анализ и синтез. Учащийся должен научиться таким элементам анализа как выявление и других связей между понятиями: противоположность, наличие тех или иных функциональных отношений, часть и целое и т.д. Предлагаемые задания и упражнения:
- Упражнение на умение относить предметы к роду (рыбы, птицы, звери и т.д.).
- Упражнения на умение устанавливать последовательность подчинения понятий (ограничение и обобщение понятий) Например: определить самое узкое (самое широкое) понятие в ряду: кустарник, растение, ягода, малина; “мальчик”, “ученик”, “второклассник”.
- Составление определений;
- Формирование умения выделять общий признак в словах, понятиях;
- Упражнения на развитие логической операции отрицания;
- Упражнение на правильное употребление кванторов общности и существования “и”, “или”, “некоторые”, “всякий”, “каждый”;
- Упражнение с графическими изображениями понятий (круги Эйлера);
- Логические задачи;
- Загадки, ребусы.
Занятия по логике можно проводить в форме самостоятельной индивидуальной работы. Над нерешенными задачами предложить подумать дома, соблюдать при этом принцип добровольности, но мотивируя детей на достижение результата. Усвоение многих тем может быть более успешным, если использовать форму “командной” игры.
В результате обучения к концу 4-го класса мы имеем возможность с помощью специальных проверочных тестов убедиться, что все дети могут выполнить следующие задания: на классификацию заданных объектов и распознавание различных закономерностей; на сравнение и сериацию объектов по различным признакам; на распознавание и составление верных и неверных равенств (истинных и ложных высказываний); а также способны различать истинные ложные высказывания с кванторами общности и существования и строить цепочки логических рассуждений. Эти задачи к концу обучения в начальной школе находятся в зоне актуального развития детей. Все остальные задачи и задания даются с учетом индивидуальной траектории развития каждого ребенка.
ЗАКЛЮЧЕНИЕ
Если мы хотим целенаправленно развивать интеллектуальные умения, основывающееся на таких приемах мыслительной деятельности как анализ, синтез, аналогия, обобщение, классификация, гибкость и вариативность мышления, то очевидно следующее: необходима специально выстроенная методика, направленная на формирование и развитие логических приемов умственных действий. Такие умения относятся не только к области математики, но и к мышлению в целом и к языку в частности.
Факультативный курс по обучению началам логики поможет ученикам начальной школы овладеть этими умениями. При этом процесс обучения должен быть построен а) на основе использования возможностей наглядно-образного мышления, характерного для этого возраста, б) двигаться по спирали – в каждом новом знании должны быть элементы ранее известного детям; в) возбуждать интерес и удивление у детей, а также желание справиться с задачей.
«Развитие логического мышления на уроках математики у детей младшего школьного возраста по ФГОС НОО»
Логика – наука о законах и формах правильного мышления. Она изучает формы рассуждений, отвлекаясь от конкретного содержания, устанавливает, что из чего следует, ищет ответ на вопрос: как мы рассуждаем? Мыслительная деятельность людей совершается при помощи мыслительных операций: сравнения, анализа, синтеза, абстракции, обобщения и конкретизации. С поступлением ребенка в школу в его жизни происходят существенные изменения, коренным образом меняется социальная ситуация развития, формируется учебная деятельность, которая является для него ведущей. Образовательный стандарт ставит перед начальным образованием новые цели. Теперь в начальной школе ребёнка должны научить не только читать, считать и писать, ему должны привить две группы новых умений. Речь идёт, во-первых, об универсальных учебных действиях, составляющих умения учиться: навыках решения творческих задач и навыка поиска, анализа и интерпретации информации. Во-вторых, речь идёт о формировании у детей мотивации к обучению, саморазвитию, самопознанию. Учителю, который до этого занимался с ребятами просто математикой как таковой, теперь придётся на знакомом ему материале решать ещё и новые нестандартные задачи. Значит, уже в начальной школе дети должны овладеть элементами логических действий (сравнения, классификации, обобщения, анализа и др.). Поэтому одной из важнейших задач, стоящих перед учителем начальных классов, является развитие самостоятельной логики мышления, которая позволила бы детям строить умозаключения, приводить доказательства, высказывания, логически связанные между собой, делать выводы, обосновывая свои суждения, и, в конечном итоге, самостоятельно приобретать знания.
В соответствии стандартам второго поколения познавательные универсальные действия включают: общеучебные, логические, а также постановку и решение проблемы. К логическим универсальным действиям относятся:
— анализ объектов с целью выделения признаков (существенных, несущественных);
— синтез — составление целого из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
— выбор оснований и критериев для сравнения, классификации объектов;
— подведение под понятие, выведение следствий;
— установление причинно-следственных связей;
— построение логической цепи рассуждений;
— доказательство;
— выдвижение гипотез и их обоснование.
Одной из важнейших задач, стоящих перед учителем начальных классов, является развитие всех качеств и видов мышления, которые позволили бы детям строить умозаключения, делать выводы, обосновывая свои суждения, и, в конечном итоге, самостоятельно приобретать знания и решать возникающие проблемы.
Развитие логического мышления на уроках математики, начиная с 1 класса, проходит постепенно. Вначале формируется выделение свойств предметов. На данном этапе предлагаются задания, направленные на развитие наблюдательности, которые тесно связаны с такими приемами логического мышления, как анализ, сравнение, синтезы обобщения. Например, учащиеся обычно выделяют в предмете всего два – три свойства, в то время как в каждом предмете их может быть множество. Предлагается назвать свойства кубика: маленький, красный, деревянный. Затем можно показать еще группу предметов: яблоко, вату, стекло, гирьку. Сравнив эти предметы с кубиком, дети смогут назвать еще несколько свойств кубика: твердый, непрозрачный несъедобный, легкий. Следовательно, для выделения свойств предмета используется прием сравнения.Особый интерес представляют головоломки. Цифры, соединившись в числа и участвуя по нашей воле в математических действиях, образуют иной раз весьма причудливые и по своему красивые числовые комбинации.Например: «Числовой треугольник» . «Нарисуй такие кружки и заполни их различными нужными цифрами от 1 до 9 так, чтобы сумма чисел по каждой стороне «треугольника» была равна 20,17 и др».
Также на уроках математики, для развития логического мышления, используются различные задания: логические цепочки, магические квадраты, задачи в стихах, головоломки, математические загадки, кроссворды, геометрические задания со счётными палочками, логические задачи со временем, весом, комбинаторные задачи. Данная система работы по развитию логического мышления учащихся направлена на формирование умственной деятельности детей. Дети учатся выявлять математические закономерности и отношения, выполнять посильное обобщение, делать выводы. В результате систематической работы по развитию логического мышления учебная деятельность учащихся активизируется, качество их знаний заметно повысится.
В первом классе при знакомстве учащихся со знаками «равно», «больше» «меньше», «не равно» на первых порах предлагаю сравнивать конкретные предметы. Дети измеряют палочки, полоски бумаги путем прикладывания друг к другу. Усваивают, что если первый предмет равен второму, то второй равен первому.
В третьем классе мы продолжаем, углубляем направления, заложенные в первом и втором классах, но имеются и свои особенности.
1.Смещение акцента на усиление роли содержательного- логических заданий для развития мышления учащихся. Задания становятся более разнообразными как по содержанию , так и форме их представления
2. Увеличение объема самостоятельной умственной деятельности, развитие навыков контроля и самоконтроля, развитие познавательной активности детей.
Содержательно –логические задания развивающего характера стараюсь включать в каждый урок математики в течение всего учебного года, ограниченно увязывая с программным математическим материалом. Ребята очень любят математические игры и фокусы, кроссворды, лабиринты, нестандартные задачи и т.д.
Используя на уроках такие виды заданий, я заметила, что учащиеся с интересом выполняют предложенные задания, лучше усваивают учебный материал, таким образом, процесс обучения математике не сводится только к вычислительным действиям, а становится основой развития личности ребенка.
Ответы А
| Ответы А
| Ответы А
|
Задачи на логику. 1 класс А
- Бабушка связала Нине две пары носков. Сколько носков связала бабушка Нине?
- По двору ходят куры. У всех кур Петя насчитал 6 ног. Сколько кур?
- У Толи 2 пары варежек. Сколько варежек на левую руку?
- Какое число самое маленькое?
- В семье четверо детей: сестёр столько же, сколько братьев и сестёр. Сколько сестёр?
- Из бочки взяли 2 раза по 2 полных ведра воды. Сколько вёдер воды взяли?
- В корзине сидят котята. У всех котят 3 пары ушек. Сколько котят в корзине?
- На горке катались 6 ребят. Двое ушли обедать, но после обеда вернулись на горку. Сколько ребят стало на горке?
- У паука 4 пары ног. Сколько всего ног у паука?
- У Юры 3 кубика, а у Серёжи 2 кубика. На столе стоит коробка, в которой умещается 4 кубика. Смогут ли мальчики уложить в эту коробку все свои кубики?
- У жука 3 пары ног. Сколько всего ног у жука?
- На кусте утром было 8 бутонов. К середине дня все бутоны распустились и стали красивыми розами. Сколько бутонов осталось на этом кусте нераскрытыми?
- В пакете лежат красные и жёлтые яблоки. Из пакета взяли 4 красных и 5 жёлтых яблок, и пакет опустел. Сколько яблок было в пакете?
- Дима выиграл у Алёши 2 партии в шахматы, а Алёша выиграл 3 партии. Сколько партий сыграли мальчики?
- Каждый из троих взрослых ведёт за руку двоих детей. Сколько детей идут со всеми взрослыми?
- Сколько целых батонов можно хлеба можно составить из шести половинок?
- По дороге один за другим идут 5 детей. За каждым мальчиком, кроме последнего, идёт девочка. Сколько девочек идут по дороге?
- Я придумала два числа. Когда я их сложила, то получила 6. Когда же из одного вычла другое, то снова получила 6. Что же это за числа?
- В коробке 8 пирожных. Сколько пирожных надо взять из коробки, чтобы в ней осталось 5 пирожных?
- Катя задумала число, прибавила к нему 5 и получила 15. Какое число задумала Катя?
- В семье двое детей. Саша – брат Жени, но Женя Саше не брат. Может ли так быть? Кто Женя?
- На яблоне было 10 яблок, Садовник разрешил детям сорвать с яблони по 1 яблоку. На яблоне осталось 6 яблок. Сколько было детей?
- Поезд состоит из 10 вагонов. Петя сел в пятый вагон от начала поезда, а Федя – в пятый вагон от конца. В одном ли вагоне они едут?
- Плитка шоколада состоит из 6 квадратных долек. Сколько разломов нужно сделать, чтобы разломить эту плитку на отдельные дольки?
- Пётр сын Сергея, а Сергей – сын Фёдора. Кем приходится Пётр Фёдору?
- В саду яблонь на 3 больше, чем груш. Яблонь 7. Сколько груш?
- Из книги выпало несколько листов. На первой выпавшей странице стоит номер 5, а на последней номер 10. Сколько листов выпало из книги?
- У Зины на 4 открытки меньше, чем у Гали. У Зины 6 открыток. Сколько открыток у Гали?
- Меня зовут Иваном Сергеевичем, а моего деда (отца моего отца) – Петром Николаевичем. Запишите имя и отчество моего отца.
- Красный шнур на 1м длиннее зелёного и на 2м длиннее синего. Длина зелёного шнура 5м. Найди длину зелёного шнура.
- На вешалке висят головные уборы; шляп на 1 больше, чем беретов. Шляп 8. Сколько шапок и сколько беретов?
- Уменьшаемое больше вычитаемого на 2. Чему равна разность?
- Угадайте, сколько лет моему дедушке, если через 15 лет мы будем отмечать его семидесятилетие.
- Разность двух чисел равна вычитаемому. Придумайте такие числа и запишите пример.
- Разность двух чисел равна 0. Придумайте и запишите пример.
- Бабушка положила в тарелку 12 груш. После того как внуки взяли с тарелки по 1 груше, осталось 8 груш. Сколько у бабушки внуков?
- На уроке математики Ольга Петровна попросила Гошу назвать все числа, меньше 7, а Витю – все числа, которые больше 3 и меньше 9. Какие одинаковые числа назвали мальчики?
Б
1.Мама купила детям 3 пары варежек. Сколько всего левых варежек и сколько правых варежек?
2. В парке было 7 скамеек. 3скамейки заменили новыми. Сколько скамеек стало в парке?
3.В квартире 2 комнаты. Из одной комнаты сделали две. Сколько комнат стало в квартире?
4. Юра попросил в библиотеке журналы «Нафаня» со второго по шестой номер. Сколько журналов выдал ему библиотекарь?
5. В квартире 4 комнаты. Две комнаты соединили вместе и сделали из них одну большую комнату. Сколько комнат стало в квартире?
6. У всех цыплят, которые сидели в корзине, Юля насчитала 10 ног. Сколько цыплят было в корзине?
7. Таня сказала, что у неё кукол больше 4 и меньше 7. Сколько кукол могло быть у Тани?
8. Коля старше Серёжи, а Серёжа старше Миши. Запиши имя мальчика, который моложе всех.
9. На подоконнике лежали 8 зелёных помидоров. Через 3 дня они покраснели. Сколько зелёных помидоров осталось?
10. Кролики сидят в клетке так, что видны их уши. Вова насчитал 5 пар ушей. Сколько кроликов в клетке?
11. Кузнец подковал двух лошадей. Сколько подков ему потребовалось?
12. Алёшу угостили конфетами. Он решил дать своей сестрёнке 4 конфеты, а себе взять 3. Сколько конфет дали Алёше?
13. У Маши и Вани по 9 леденцов. Маша съела 4 леденца, и Ваня сделал тоже самое. Сколько леденцов осталось у Вани?
14. Нина задумала число. Это число она сначала прибавила к 7, а потом отняла его от 7. Ответ оказался одним и тем же – 7. Какое число задумала Нина?
15. Роме подарили столько значков сколько у него уже было. Рома пересчитал все значки, их оказалось 8. Сколько значков было у Ромы сначала?
16. Чтобы рассадить 7 детей в комнате, не хватает 2 стульев. Сколько стульев в комнате?
17. У паука 4 пары ног, а у жука 3 пары ног. На сколько ног больше у паука, чем у жука?
18. В коробке 6 ячеек. В каждой ячейке умещается только одна ёлочная игрушка. Можно ли в эту коробку положить 4 шарика и 3 шишки?
19. Сестра старше брата на 1 год. На сколько лет сестра будет старше брата через 5 лет?
20. Может ли сумма двух чисел быть равной слагаемому?
21. Может ли разность двух чисел быть равной уменьшаемому?
22. Запиши число меньшее 20, в котором число десятков на 4 меньше числа единиц.
23. На каждую страницу альбома я наклеил 4 переводных картинки. Сколько страниц заняли 8 картинок?
24. Сумма двух чисел равна 8, а их разность 4. Угадайте, какие это числа?
25. Меня зовут Нина Александровна, а моего дедушку(отца моего отца) – Иван Николаевич. Как зовут моего отца?
26. На левой чашке весов стоят пакет с мукой и гиря в 1 кг. На правой чашке весов гиря в 3 кг. Весы в равновесии. Найдите массу пакеты с мукой.
27. в обувном отделе универмага висит указатель: «Обувь 37 – 42 размеров». Можно ли в этом отделе купить обувь 39 размера?
28.Какие двузначные числа можно записать, используя цифры 5 и 6?
29.Сахар-песок продают расфасованным в пакеты по 1 кг, 2кг, 3кг. Мама выбила в кассе чек на покупку 7 кг сахара. Продавщица дала ей 3 пакета с сахаром. Сколько сахара было в каждом из пакетов? Рассмотри возможные случаи.
30. Сравни числа *2 и 95 Сделай запись с помощью одного из знаков < или >.
31. Юля и Марина нашли в лесу поровну грибов. У Юли 4 гриба оказались червивыми, и по дороге домой она их выбросила. А Марина нашла ещё 5 грибов. На сколько грибов у Марины стало больше, чем у Юли?
32. В ящике стола лежат деньги. На эти деньги можно купить 2 одинаковых по цене стула или одно кресло. Что дороже кресло или стул?
33.На верхней полке книг столько же, сколько на нижней. На верхнюю полку поставили 3 книги, а с нижней 3 книги сняли. На какой полке стало больше книг и на сколько?
34. В коробке 12 красных и зелёных шаров. Из коробки взяли 3 красных и 4 зелёных шара. После этого в коробке зелёных шаров не осталось. Сколько красных шаров осталось в коробке?
35. В корзине на 5 яблок больше, чем в пакете. Из корзины взяли 7 яблок. Где осталось яблок больше: в корзине или в пакете, и на сколько?
36. К трём замкам волшебник сделал 3 ключа: медный, серебряный и золотой. К каждому замку подходит только один ключ. Медный ключ не подходит к ни к первому, ни ко второму замку. Серебряный ключ не подходит ко второму замку. К какому замку подходит каждый из ключей?
37. У Пети на 4 конфеты меньше, чем у Серёжи. Мама дала Пете ещё 5 конфет. У кого конфет больше и на сколько?
38. Зелёная лента на 3 м длиннее красной. От зелёной ленты отрезали 5 м, а от красной 2м. Сравните длины оставшихся кусков лент.
39. У Юры денег ровно столько, чтобы купить 4 вафли или 2 конфеты. Сможет ли он на свои деньги купить 1 конфету и 4 вафли?
40. Запишите 6 чисел по такому правилу: первое 1, второе 2, а каждое следующее равно сумме двух предыдущих.
41. Оля может купить на свои деньги 4 карандаша и 3 тетради. Хватит ли у неё денег, чтобы купить 3 карандаша или 3 тетради?
42. Каждой из трёх внучек дедушка разрешил сорвать с четырёх кустов по одной розе. Сколько роз сорвали все внучки?
43. Запишите 5 чисел по такому правилу: первое 18, второе 10, а каждое следующее равно разности двух предыдущих.
44. Половину числа яблок, лежащих на тарелке, взяли для компота. Сколько яблок осталось на тарелке, если компот сварили из 6 яблок?
45. Купили пакет кефира. Половину всего кефира, который был в пакете, выпили Маша и Даша. В пакете осталось 2 стакана кефира. Сколько стаканов кефира было в пакете?
46. Дыня тяжелее арбуза и легче тыквы. Что самое тяжелое?
47. На столе лежат овощи: репок на 1 меньше, чем огурцов, а огурцов на 1 меньше, чем помидоров. На сколько репок меньше, чем помидоров?
48. Красная лента короче синей ленты и длиннее зелёной. Какая лента самая короткая?
49. Дима на 1 год старше Серёжи, а Серёжа на 1 год старше Ромы. На сколько лет Дима старше Ромы?
50. За каждую минуту в ванну из крана наливается 10 л воды. За то же время через неплотно прикрытое пробкой отверстие в дне ванны 2 л воды выливается. Увеличивается или уменьшается количество воды в ванне и на сколько литров каждую минуту?
51. Петя взял 3кубика и поставил их один на один так, что получилась «башня». Красный кубик оказался ниже синего, а синий ниже зелёного. Какой кубик Петя поставил выше всех?
52. Из трёх кубиков построили башню. Жёлтый кубик поставили выше синего и ниже красного. Какой кубик оказался выше всех?
53. Торт разрезали на 4 одинаковые части, а потом каждую часть разрезали на 2 одинаковые части. На сколько человек хватит торта, если каждому положить на блюдце один кусок?
54. В коробке лежат пряники и вафли: пряников на 2 меньше, чем вафель. Сколько вафель, если пряников 6?
55. Митя на 2 года старше Гены. Мите 10 лет. Сколько лет Гене?
56. Сумма двух чисел 9. Сумма больше первого слагаемого на 5.Чему равно второе слагаемое?
57. На катке катались на коньках 6 девочек и 2 мальчика. Вскоре троих детей позвали обедать, и они ушли домой. Осталась ли на катке хоть одна девочка?
58. Купили банку виноградного сока. Четверым детям налили из банки по полному стакану сока. После этого в банке осталось ровно столько, сколько выпили дети. Сколько стаканов сока было в банке?
60. Дыня на 3 кг легче арбуза. От дыни отрезали кусок массой 1 кг, а от арбуза – кусок массой
3 кг. Чего осталось больше: дыни или арбуза, и на сколько килограммов?
Логические задачи.
1 класс.
- В магазине было 3 холодильника. Продали меньше, чем осталось. Сколько холодильников продали?
- Брат и сестра пришли в школу одновременно. Брат шёл быстрее. Кто из них вышел раньше?
- Аркадий – сын Романа, Роман – сын Василия. Кем приходится Аркадий Василию, а Василий Аркадию?
- Росли три вербы, на каждой вербе – по 2 ветки. На каждой ветке – по 2 груши. Сколько всего груш?
- Летела стая уток. Охотник выстрелил и одну убил. Сколько уток осталось?
- На верёвку завязали 5 узлов. На сколько частей эти узлы разделили верёвку?
- Рыбак поймал окуня, ерша и щуку. Щуку он поймал раньше, чем окуня, а ерша позже, чем щуку. Какая рыба поймана раньше всех? Можно ли сказать, какая рыба поймана позже всех?
- Что тяжелее 1 кг ваты или 1 кг железа.
- В банке столько же воды, сколько в кастрюле, а в кастрюле столько же воды, сколько в миске. Где больше воды: в банке или миске?
- Оля выше Кати. Кто из девочек ниже?
- По направлению к городу ехало 3 машины, а навстречу им ехало 5 автобусов. Сколько машин ехало в город?
- Марина и Оля сёстры. Марина сказала, что у неё 2 брата, а Оля сказала, что у неё тоже два брата. Сколько детей в семье?
- Масса петуха, стоящего на двух ногах 4кг. Какова будет масса петуха, если он встанет на одну ногу?
- Масса дрессированной собаки, когда она стоит на задних лапах 3 кг. Какова будет её масса, если она встанет на ноги?
- Мама, папа и я сидели на скамейке. В каком порядке мы сидели на скамейке, если известно, что:
а) я сидела справа от папы, а мама слева от меня;
б) папа сидел слева от меня и справа от мамы;
в) мама сидела справа от меня, а папа справа от мамы
- Иван Петрович – отец Нины Ивановны, а Толя – сын Нины Ивановны. Кем Толя приходится Ивану Петровичу?
- Коля ростом выше Васи, но ниже Серёжи. Кто выше Вася или Серёжа?
- Миша выше Пети, а Катя ниже Миши. Кто выше – Катя или Петя?
- Сколько лет моему дедушке, если через 15 лет мы будем отмечать его семидесятилетие?
- Саше, Маше, Тане и Ване купили по воздушному шарику. Машин шарик не самый маленький, но меньше, чем у Саши и Вани. Сашин шарик не меньше, чем Ванин. У кого какой шарик?
- Ира и Лена одинакового роста. Лена ростом выше Оли, а Таня выше Иры. Кто выше: Таня или Оля?
- Катя и Лена собрали по одному стакану ягод. Катя пересыпала свои ягоды в маленькую банку, а Лена в большую корзину. Где ягод больше: в большой корзине или в маленькой баночке?
- В квартирах № 1,2,3 жили три котенка: белый, черный, рыжий. В квартирах № 1 и 2 жил не черный котенок. Белый котенок жил не в квартире № 1. В какой квартире жил каждый котенок?
- Три товарища Алеша, Коля и Саша, сели на скамейку в один ряд. Сколькими способами они могут это сделать?
- Меня зовут Толей. У моей сестры только один брат. Как зовут брата моей сестры?
- Термометр показывает три градуса мороза. Сколько градусов покажут два таких термометра?
- Петя и Миша имеют фамилии Белов и Чернов. Какую фамилию имеет каждый из ребят, если Петя на 2 года старше Белова?
- Четыре человека обменялись рукопожатиями. Сколько было рукопожатий?
- У мальчика в коробке было 7 мух. На две мухи он поймал двух рыбок. Сколько рыбок он поймает на остальных мух?
- Год назад Ире было 5 лет. Сколько ей будет через три года?
- Ребята прыгали в длину. Дима прыгнул дальше Пети, а Сергей ближе Пети. Андрей прыгнул ближе Сергея, но дальше Юры. Коля прыгнул дальше Димы, а Борис так же, как и Петя. Кто прыгнул дальше: Дима или Серёжа? Петя или Андрей? Кто прыгнул ближе: Юра или Борис? Борис или Дима?
- Куда войдёт больше воды: в трёхлитровый чайник или трёхлитровый самовар?
- Ваня прошёл 20 шагов, а Саша – 19 шагов. Кто из них прошёл большее расстояние?
- На грядке сидели 6 воробьёв. К ним прилетели ещё 3 воробья. Кот подкрался и схватил одного воробья. Сколько воробьёв осталось на грядке?
Ответы 1 класс к логич. зад.
- Продали 1 холодильник, осталось – 2
- Раньше вышел брат
- Василий – дед, а Аркадий – внук
- На вербе груши не растут
- Так как все утки улетели, то не осталось ни одной
- На 6 частей
- Раньше всех поймали щуку. При ответе на второй вопрос возможны два варианта: 1. Щука, ёрш, окунь. 2. Щука, окунь, ёрш.
- Одинаково, т.к. 1 кг ваты = 1 кг железа
- Одинаково
- Оля выше, Катя ниже
- 3 машины.
- 4 детей
- Такая же
- Такая же
- Папа, мама, я
Мама, папа, я.
Я, мама, папа.
- Внуком
- Серёжа выше Васи.
- Нельзя ответить на вопрос задачи
- 55 лет.
- Самый маленький шарик у Тани, средний шарик у Маши, большие шарики – у Саши и у Вани.
- Таня выше Оли
- Ягод было одинаковое количество, девочки набрали по одному стакану.
- Черный котенок жил в квартире № 3, белый – в квартире № 2, а рыжий – в квартире № 1.
- 6 способов. А-Алеша, К-Коля, С-Саша. АКС, АСК, КАС, КСА, САК,СКА.
- Толя
- Три градуса.
- Петя Чернов, Миша Белов.
- 6 рукопожатий.
- Задача не имеет решения, так как не всегда можно на 1 муху поймать рыбу.
- 5 + 1 + 3 = 9 лет.
- ____________________________________________________________
Ю А С Б П Д К
а) Дима прыгнул дальше, чем Серёжа.
б) Петя прыгнул дальше, чем Андрей.
в) Ближе прыгнул Юра, чем Борис
г) Борис прыгнул ближе, Дима дальше
- Воды войдёт поровну, так как чайник и самовар, одинаковые по объёму.
- На вопрос ответить невозможно, так как у мальчиков может быть разная длина шага.
- На грядке не останется ни одного воробья, потому что все улетят.
По теме: методические разработки, презентации и конспекты
Развитие логического мышления на уроках математики
В любой творческой деятельности, в учёбе, в труде, в игре, да и просто в жизни – везде внимание, смышлёность, умение логически мыслить – необходимы человеку, ибо помогают решать проблемы, находить вых...
Развитие логического мышления на уроках математики у младших школьников
Статья с приложением, включающим в себя упражнения, задания, задачи по развитию логического мышления на уроках математики для младших школьников....
Виды заданий для развития логического мышления на уроках математики в начальной школе
Этот материал можно использовать на уроках математики для развития логического мышления во 2-4-ых классах....
Развитие логического мышления на уроках математики.
Известно, что младший школьный возраст - активный период для развития мыслительных операций: сравнение, анализ, синтез, классификация, абстрагирование и обобщение. В своей педагогической деятельности ...
Развитие логического мышления на уроках математики в начальной школе
Материалы для выступления на методическом объединении, педагогическом совете...
Развитие логического мышления на уроках математики. Из опыта работы учителя начальных классов МБОУ СОШ №23 И.А.Бурдюг
Никто не будет спорить с тем, что каждый учитель должен развивать логическое мышление учащихся. Об этом говорится в методической литературе, в объяснительных записках к учебным программам. Однак...
Опыт работы по теме: «Развитие логического мышления на уроках математики в условиях системно-деятельностного подхода»
Обобщение опыта посвящено одной из актуальных проблем современной педагогики и методики преподавания математики - проблеме развития логического мышления младших школьников. В условиях современного общ...