Олимпиадные задания 5-8 классы
олимпиадные задания (5, 6, 7 класс)

Ильина Евгения Петровна

Олимпиадные задания 5-8 классы

Скачать:

ВложениеРазмер
Файл olimpiadnye_zadaniya_5-8_kl.docx24.26 КБ

Предварительный просмотр:

5 класс

  1. Вычеркните в числе 4 000 538 пять цифр так, чтобы оставшееся число стало наибольшим.
  2. У щенят и утят вместе 44 ноги и 17 голов. Сколько щенят и сколько утят?
  3. В шести кружках, расположенных в форме  треугольника  расставьте числа 31, 32, 33, 34, 35, 36 так, чтобы сумма чисел на всех трех сторонах треугольника была одинаковой и равнялась 100.
  4. Сколько раз к наибольшему однозначному числу надо прибавить наибольшее двузначное число, чтобы получить наибольшее трехзначное.

  1. Разделите фигуру на четыре равные фигуры.
  1. Площадь нижней грани прямоугольного параллелепипеда равна 24 см2. Определите высоту этого параллелепипеда, если его объем равен 96 м3.
  2. Было 9 листов бумаги. Некоторые из них разрезали на три части. Всего стало 15 листов. Сколько листов бумаги разрезали?
  3. В бутылке, стакане, кувшине и банке находятся молоко, лимонад, квас и вода. Известно, что вода и молоко не в бутылке, сосуд с лимонадом стоит между кувшином и сосудом с квасом, в банке не лимонад и не вода. Стакан стоит около банки и сосуда с молоком. В какой сосуд налита каждая из жидкостей?
  4. Девять  девяток выписали подряд: 9 9 9 9 9 9 9 9 9. Поставьте между некоторыми из них знаки «+», «—», «», «:» и скобки  так,  чтобы получившееся выражение равнялось 2011.

Ответы:

  1. 58;   2.   5 щенят и 12 утят;  3.  ;    4.  10;    5.   ;   6.  40 км;  
  1.  3 листа;
  2. Молоко – в кувшине, лимонад – в бутылке, квас – в банке, вода – в стакане.
  3. ( (9 + 9 + 9) : 9 – 9 : 9) ∙ 999 = 2011

6 класс

  1. Третья часть арбуза весит 4 кг. Сколько весит пятая часть арбуза?
  2. Найдите сумму натуральных делителей числа 100.
  3. Восстановите недостающие цифры: 2,*7 + 1*,3** = 21,409.
  4. Олег, Игорь и Аня учатся в 6 классе. Среди них есть лучший математик, лучший шахматист и лучший художник. Известно, что:

     а) лучший художник не нарисовал своего портрета, но нарисовал портрет Игоря;

     б) Аня никогда не проигрывала мальчикам в шахматы.

     Кто в классе лучший математик, лучший шахматист и лучший   художник?

  1. Периметр квадрата (в см) численно равен площади квадрата (в см2). Найдите длину стороны квадрата.
  2. Замените буквы цифрами (разные буквы - разные цифры):

  1. Какое слово зашифровано: 222122111121? Каждая буква заменена своим номером в русском алфавите.
  2. Выразите число 16 с помощью четырех пятерок, соединяя их знаками действий.
  3. Сколько треугольников и прямоугольников «спрятано» на рисунке?

Ответы:

  1. 2,4 кг.
  2. 217.
  3. 2,07 + 19,339 = 21,409.
  4. Олег – лучший художник, Аня – лучший шахматист, Игорь – лучший математик.
  5. 4 см.
  6. 6321 + 6321 = 12642.
  7. ФУФАЙКА
  8. 55 : 5 + 5.
  9. 44 треугольника и 18 прямоугольников.

7 класс

  1. (2 балла) Расставьте знаки арифметических действий и скобки там, где считаете нужным, чтобы     получилось верное равенство:
              2 4 6= 3 3 3
  2. (2 балла) Найти сумму всех трёхзначных чисел, произведение цифр которых равно 3.

  1. (2 балла) На клетчатой бумаге изображена чашка с крышкой (см. рис. 1). На покраску крышки израсходовали 30 г  краски. Сколько ещё нужно грамм краски для покраски чашки? Не забудьте  обосновать ответ.
  1. (3 балла) На почтовом ящике написано: «Выемка писем производится пять раз в день с 7 до 19 часов». И, действительно, первый раз почтальон забирает почту в 7 утра, а последний – в 7 вечера. Через какие равные интервалы времени вынимаются письма из ящика?
  1. (3 балла) В забеге участвовал 41 спортсмен. Число спортсменов, прибежавших раньше Васи, в 4 раза меньше числа тех, кто прибежал позже него. Какое место занял Вася?
  1. (3 балла) В записи ***** × *** = ******1 замените звёздочки нулями и единицами так, чтобы получилось верное равенство.
  2. (4 балла) Из урожая фруктов сварили варенье. Варенье расставили на 2 полки так, что на каждой полке стоит одно и то же количество литров варенья.  При этом на первой полке стоит одна большая и 6 маленьких банок, на второй – 2 большие и 4 маленьких. Сколько литров варенья было сварено, если известно, что вместимость маленькой банки составляет 1 литр? Ответ нужно объяснить.
  3. (4 балла) Доктор Айболит раздал четырем заболевшим зверям 2006 чудодейственных  таблеток. Носорог получил на одну больше, чем крокодил, бегемот – на одну больше, чем носорог, а слон – на одну больше, чем бегемот. Сколько таблеток придется съесть слону?
  1. (4 балла) В озере водятся караси, окуни и щуки. Два рыбака поймали вместе 70 рыб, причем  улова первого рыбака – караси, а  улова второго – окуни. Сколько щук поймал каждый, если оба поймали поровну карасей и окуней?

Решения 7 класс (максимальное количество баллов – 27):

1. может быть несколько. Например, такие: а);                                 б) ; в) 2+4–6=3 – 3:3

2. Найти сумму всех трёхзначных чисел, произведение цифр которых равно 3.

Ответ: 555

Решение: Произведение трех цифр может быть равно 3 только, если это цифры 1,1 и 3. Рассмотрим все возможные трехзначные числа, которые можно из них составить – это 113, 131, 311. Их сумма равна 555.

3. На клетчатой бумаге изображена чашка с крышкой (см. рис. 1). На покраску крышки израсходовали 30 г. краски. Сколько ещё нужно грамм краски для покраски чашки?

Ответ: 45 г

Решение: Площадь закрашенной части составляет ровно 2 клеточки. Тогда на покраску 1 клетки расходуется 15 г краски. Площадь «чашки» составляет 3 клеточки. Тогда на ее покраску потребуется еще 45 г краски.

4. На почтовом ящике написано: «Выемка писем производится пять раз в день с 7 до 19 часов». И, действительно, первый раз почтальон забирает почту в 7 утра, а последний – в 7 вечера. Через какие равные интервалы времени вынимаются письма из ящика?

Ответ: через 3 часа

Решение: Промежуток времени с 7 до 19 ч составляет ровно 12 часов. В течение этого времени почтальон еще трижды вынимает почту из ящика через равные интервалы. Но тогда 12 ч делится на 4 равных промежутка по 3 часа.

5. Ответ. Девятым. Решение. Число спортсменов, прибежавших раньше Васи, примем за одну часть, тогда число спортсменов, прибежавших позже Васи, составляет 4 части. 40 спортсменов разделим на 5 равных частей, получим, что одна часть составит 8 спортсменов. Значит, Вася прибежал девятым.

6. Например, так: 10001 × 111 = 1110111.

7. ОТВЕТ: 16 литров. РЕШЕНИЕ. Сравним количество варенья на первой и второй полке. Из этого сравнения видно, что одна большая банка содержит столько же варенья, сколько и две маленьких, то есть, 2 литра. Теперь считаем. На 1-й полке 2+6=8 литров, на второй столько же.  Всего 16 литров.

8.  (2006 – (1+2+3)):4=500 таблеток получил крокодил. Значит, слону придётся съесть 503 таблетки. Ответ503 таблетки.

9. Ответ: Первый – 2, второй – 0.

Первый поймал число рыб кратное 9, а второй кратное 17. Но можно подобрать только два числа, дающих в сумме 70, так, чтобы одно делилось на 9, а второе – на 17. Эти числа: 36 и 34. Значит, первый поймал 36 рыб, а второй – 34. Тогда из условия следует, что оба поймали по 20 карасей и 14 окуней. Значит, первый поймал еще 2 щуки, а второй – 0.

8 класс

  1. (2 балла) Расставьте скобки и знаки арифметических действий так, чтобы получилось правильное равенство:

         

  1. (2 балла) Найти сумму всех трёхзначных чисел, произведение цифр которых равно 6.
  2. (2 балла) Как с помощью прямоугольной плитки размером 7см на 9см начертить

    отрезок  длиной 1 см?

  1. (3 балла)  Найдите все решения ребуса:  

       РАЗ
+       АЗ
   
        З
       444
Одинаковым буквам соответствуют одинаковые цифры.

  1. (3 балла) Работник заключил контракт на месяц на следующих условиях. За каждый отработанный день он получает 100 рублей. Если же он прогуливает, то не только ничего не получает, но подвергается штрафу в размере 25 рублей за каждый день прогула.  Через 30 дней выяснилось, что работник ничего не заработал. Сколько дней он действительно работал?
  2. (3 балла) Доктор Айболит раздал четырем заболевшим зверям 2006 чудодейственных  таблеток. Носорог получил на одну больше, чем крокодил, бегемот – на одну больше, чем носорог, а слон – на одну больше, чем бегемот. Сколько таблеток придется съесть слону?
  1. (4 балла) Три друга сделали по одному заявлению про целое число х. Петя: «Число х больше 4, но меньше 8». Вася: «Число х больше 6, но меньше 9». Толя: «Число х больше 5, но меньше 8». Найдите число х, если известно, что двое из друзей сказали правду, а третий солгал. Нужно не только проверить, что найденное число годится, но и объяснить, почему другие  варианты ответа невозможны.
  2. (4балла) В озере водятся караси, окуни и щуки. Два рыбака поймали вместе 70 рыб, причем  улова первого рыбака – караси, а  улова второго – окуни. Сколько щук поймал каждый, если оба поймали поровну карасей и окуней?
  3. (4 балла) Трое мужчин пришли к парикмахеру. Побрив первого, тот сказал: «Посмотри сколько денег в ящике стола, положи столько же и возьми 2 доллара сдачи». Тоже он сказал второму и третьему. Когда они ушли, оказалось, что в ящике денег нет. Сколько было денег в ящике первоначально, если всем удалось совершить задуманное?

Решения 8 класс (максимальное количество баллов – 27):

1. 

2. Найдём все трёхзначные числа, произведение цифр которых равно 6. 6=611=321. Итак, таких чисел будет девять: 611, 161, 116, 321, 312, 231, 213, 132, 123. Их сумма равна 2220. Ответ: 2220.

3. Как с помощью прямоугольной плитки размером 7см на 9см начертить отрезок длиной 1 см?

Решение: Четыре раза отложим от точки А на прямой отрезок, равный 7 см, получим отрезок АВ длины 28 см. Теперь на этом же отрезке от его начала А трижды отложим отрезок, равный 9 см. Получим отрезок АС длины 27 см. Тогда отрезок ВС искомый.

4. Так как сумма трех цифр «З» дает на конце четверку, то «З» может быть только 8. Цифра «Р» может принимать только два значения: 3 и 4. Для каждого случая однозначно находим «А».
Ответ: 368+68+8=444, 418+18+8=444.

5. Так сумма штрафа за прогул рабочего дня в четыре раза меньше заработка в день, то мы получим в итоге ноль, если на каждый день, в течение которого работник трудился, будет приходиться четыре прогула. Пусть он работал х дней, тогда прогуливал 4х. Тогда 5х=30, т.е. х=6.
Ответ:  6 дней.

6. (2006 – (1+2+3)):4=500 таблеток получил крокодил. Значит, слону придётся съесть 503 таблетки. Ответ503 таблетки.

7. ОТВЕТ: 6.

РЕШЕНИЕ. Ясно, что число х должно быть больше 4, но меньше 9, иначе все солгали. Поэтому для числа х есть всего четыре возможности: 5, 6, 7, 8. Если х=5, то правду сказал только Петя. Если х=8, то правду сказал только Вася. Если х=7, то правду сказали все трое. И только при х=6 правду скажут двое: Петя и Толя.

8. Ответ: Первый – 2, второй – 0.

Первый поймал число рыб кратное 9, а второй кратное 17. Но можно подобрать только два числа, дающих в сумме 70, так, чтобы одно делилось на 9, а второе – на 17. Эти числа: 36 и 34. Значит, первый поймал 36 рыб, а второй – 34. Тогда из условия следует, что оба поймали по 20 карасей и 14 окуней. Значит, первый поймал еще 2 щуки, а второй – 0.

9. Ответ: 175 центов.

После того, как третий положил свои деньги, в столе оказалось 2 доллара. Это означает, что перед тем, как он это сделал, в столе был 1 доллар. Значит, после того, как второй положил деньги, в столе было 3 доллара, а перед тем, как он это сделал, в столе было 1,5 доллара. Рассуждая аналогично для первого, получаем, что перед приходом первого в столе был (1,5+2):2=1,75 долларов.


По теме: методические разработки, презентации и конспекты

Олимпиадные задания для 5 класса

Предлагаю олимпиадные задания в 5 класса для школьного этапа Всероссийской олимпиады школьников...

Олимпиадные задания для 9 класса

Предлагаю вам олимпиадные задания по немецкому языку в 9 классе для школьного этапа Всероссийской олимпиады школьников, которые я опробировал в своей школе в октябре 2011 года....

олимпиадные задания для 6 класса

задания по чтению, аудированию и лексико-грамматический тест (могут быть использованы как олимпиадные задания или просто как задания для самостоятельной работы; в зависимости от уровня учеников 6-7 кл...

Олимпиадные задания для 9 класса с ответами

Олимпиадные задания для 9 класса  поможет учителям  и ученикам  при подготовке к олимпиадам....

олимпиадные задания 10-11 класс по технологии.

олимпиадные задания 10-11 класс по технологии...

Олимпиадные задания 5-7 класс "Знай и люби свой край"

Олимпиадные задания для учащихся 5-7 классов по теме "Знай и люби свой край"...