Методические рекомендации для обучающихся по теме "Элементы комбинаторики и теории вероятностей"
методическая разработка (10 класс) на тему
Методические рекомендации содержат теоретический материал,примеры решения,задания для самостоятельной работы.
Скачать:
Вложение | Размер |
---|---|
Методические рекомендации для обучающихся | 48.45 КБ |
Предварительный просмотр:
Методические рекомендации для обучающихся по изучению темы «Элементы комбинаторики и теории вероятностей» учебной дисциплины «Математика»
На изучение темы отводится 12 часов: 8 аудиторных часов и на самостоятельное изучение 4 часа.
Методические рекомендации содержат теоретический материал по теме; примеры решений задач; задачи для решений с ответами
Теоретический материал
Комбинаторика – это самостоятельный раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или условиям, можно составить из заданных элементов.
Термин “КОМБИНАТОРИКА” происходит от латинского слова “combina”, что в переводе на русский означает – “сочетать”, “соединять” .
Комбинаторика – это раздел математики, в котором изучаются простейшие “соединения”: перестановки, размещения, сочетания.
Задачей комбинаторики можно считать задачу размещения объектов по специальным правилам и нахождение числа способов таких размещений.
Правило комбинаторики (умножения) – если элемент А можно выбрать п способами, элемент В выбрать m способами, то комбинацию , состоящую из А и В элементов можно выбрать n • m способами.
1. Перестановки-соединения, которые можно составить из n предметов, меняя всеми возможными способами их порядок; число их
Количество всех перестановок из n элементов обозначают
Произведение всех натуральных чисел от n до единицы, обозначают символом n! (Читается “эн - факториал”). Используя знак факториала, можно, например, записать:
1! = 1,
2! = 2•1 = 2,
3! = 3 •2 •1 = 6,
4! = 4 •3 •2 •1 = 24,
5! = 5 •4 •3 •2 •1 = 120.
Необходимо знать, что 0!=1
Примеры решения задач:
Задача №1. Сколькими способами 7 книг разных авторов можно расставить на полке в один ряд?
Перестановками называют комбинации, состоящие из одних и тех же п различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок обозначается Рп и оно равно п!, т.е. Рп = п!, где п! = 1 * 2 * 3 * … п.
Решение: Р7 = 7!, где 7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 =5040, значит существует 5040 способов осуществить расстановку книг.
Ответ: 5040 способов.
Задача № 2
В знаменитой басне Крылова “Квартет” “Проказница мартышка, Осел, Козел да косолапый Мишка” исследовали влияние взаимного расположения музыкантов на качество исполнения.
Зададим вопрос: Сколько существует способов, чтобы рассадить четырех музыкантов?
Решение: на слайде
2.Размещения – соединения, содержащие по m предметов из числа n данных, различающихся либо порядком предметов, либо самими предметами; число их.
В комбинаторике размещением называется расположение “предметов” на некоторых “местах” при условии, что каждое место занято в точности одним предметом и все предметы различны.
В отличие от сочетаний размещения учитывают порядок следования предметов. Так, например, наборы < 2,1,3 > и < 3,2,1 > являются различными, хотя состоят из одних и тех же элементов {1,2,3} (то есть, совпадают как сочетания).
Примеры решения задач:
Задача № 1. Сколько можно составить телефонных номеров из 6 цифр каждый, так чтобы все цифры были различны? Это пример задачи на размещение без повторений.
Размещаются здесь десять цифр по 6. Значит, ответ на выше поставленную задачу будет:
Ответ:151200 способов
Задача № 2. В группе ТД – 21 обучается 24 студентов. Сколькими способами можно составить график дежурства по техникуму, если группа дежурных состоит из трех студентов?
Решение: число способов равно числу размещений из 24 элементов по 3, т.е. равно А243. По формуле находим
Ответ: 12144 способа
3.Сочетания-соединения, содержащие по m предметов из n, различающиеся друг от друга, по крайней мере, одним предметом; число их .
В комбинаторике сочетанием из n по m называется набор m элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.
Примеры решения задач:
Задача №1. Сколько трехкнопочных комбинаций существует на кодовом замке (все три кнопки нажимаются одновременно), если на нем всего 10 цифр?
Решение: Так как кнопки нажимаются одновременно, то выбор этих кнопок – сочетание. Отсюда возможно
Ответ: 120 вариантов.
Задача № 2. Сколько экзаменационных комиссий, состоящих из 3 членов, можно образовать из 10 преподавателей?
Решение: По формуле находим:
Ответ: 120 комиссий.
Задачи для решения на закрепление
Задача № 1. Сколькими способами могут быть расставлены 5 участниц финального
забега на 5-ти беговых дорожках?
Решение: Р5 = 5!= 1 ∙2 ∙3 ∙4 ∙5 = 120 способов.
Задача №2. Сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая
цифра входит в изображение числа только один раз?
Решение: Число всех перестановок из трех элементов равно Р3=3!, где 3!=1 * 2 * 3=6
Значит, существует шесть трехзначных чисел, составленных из цифр 1,2,3.
Задача № 3. Сколькими способами четверо юношей могут пригласить четырех из шести
девушек на танец?
Решение: два юноши не могут одновременно пригласить одну и ту же девушку. И
варианты, при которых одни и те же девушки танцуют с разными юношами,
считаются разными, поэтому:
Задача № 4. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5,
6, 7, 8, 9 при условии, что в записи числа каждая цифра используется только
один раз?
Решение: В условии задачи предложено подсчитать число всевозможных комбинаций из
трех цифр, взятых из предположенных девяти цифр, причём порядок
расположения цифр в комбинации имеет значение (например, числа 132)
и 231 различные). Иначе говоря, нужно найти число размещений из девяти
элементов по три.
По формуле числа размещений находим:
Ответ: 504 трехзначных чисел.
Задача№5 Сколькими способами из 7 человек можно выбрать комиссию, состоящую из 3
человек?
Решение: Чтобы рассмотреть все возможные комиссии, нужно рассмотреть все
возможные 3 – элементные подмножества множества, состоящего из 7
человек. Искомое число способов равно
Задача № 6. В соревновании участвуют 12 команд. Сколько существует вариантов
распределения призовых (1, 2, 3) мест?
Решение: А123 = 12 ∙11 ∙10 = 1320 вариантов распределения призовых мест.
Ответ: 1320 вариантов.
Задача № 7. На соревнованиях по лёгкой атлетике нашу школу представляла команда из
10 спортсменов. Сколькими способами тренер может определить, кто из них
побежит в эстафете 4×100 м на первом, втором, третьем и четвёртом этапах?
Решение: Выбор из 10 по 4 с учётом порядка: способов.
Ответ: 5040 способов.
Задача № 8. Сколькими способами можно выложить в ряд красный, черный, синий и
зеленый шарики?
Решение: На первое место можно поставить любой из четырех шариков (4 способа), на
второе – любой из трех оставшихся (3 способа), на третье место – любой из
оставшихся двух (2 способа), на четвертое место – оставшийся последний шар.
Всего 4 · 3 · 2 · 1 = 24 способа.
Р4 = 4! = 1 · 2 · 3 · 4 = 24. Ответ: 24 способа.
Задача № 9. Учащимся дали список из 10 книг, которые рекомендуется прочитать во
время каникул. Сколькими способами ученик может выбрать из них 6 книг?
Решение: Выбор 6 из 10 без учёта порядка: способов.
Ответ: 210 способов.
Задача № 10. В 9 классе учатся 7 учащихся, в 10 - 9 учащихся, а в 11 - 8 учащихся. Для
работы на пришкольном участке надо выделить двух учащихся из 9 класса,
трех – из 10, и одного – из 11 . Сколько существует способов выбора
учащихся для работы на пришкольном участке?
Решение: Выбор из трёх совокупностей без учёта порядка, каждый вариант выбора из
первой совокупности (С72) может сочетаться с каждым вариантом выбора из
второй (С93) ) и с каждым вариантом выбора третьей (С81) по правилу
умножения получаем:
Ответ: 14 112 способов.
Разработчик: Короткова Н.Н. преподаватель математики
Одобрено на заседании ПЦК 25.10.2014г. протокол №3
По теме: методические разработки, презентации и конспекты
Подготовка к ГИА Комбинаторика, статистика, теория вероятностей
Подготовка к ГИА. Решение задач по комбинаторике, статистике и теории вероятностей...
Тесты по теме "Элементы комбинаторики и теории вероятностей"
В материале предлагается 10 вариантов тестов по теме "Элементы комбинаторики и теории вероятностей". Тесты можно использовать с использованием любого учебника, рекомендованного или допущенного Ф...
Методическая разработка "Элементы комбинаторики и теории вероятностей"
Методическая разработка раздела программы по математике...
Комбинаторика. Элементы теории вероятностей и статистики.
ТЕМА №10. Комбинаторика. Элементы теории вероятностей и статистики.Вариант №1.1.Вычислите: 1) ...
Работа по теме "Элементы комбинаторики и теории вероятностей"
Особенности преподавания темы "Элементы комбинаторики и теории вероятностей" в 9 классе...
Программа элективного курса по алгебре «Элементы комбинаторики и теории вероятностей».
Элективный курс «Элементы комбинаторики и теории вероятностей» предназначен для учащихся 9 классов и носит предметно-ориентированный характер. При решении многих практических задач приходится вы...
Методическая разработка. Элементы комбинаторики и теории вероятностей. Для студентов 1 курса колледжа.
Данная разработка содержит основные теоретические сведения по комбинаторике и теории вероятностей, необходимые для усвоения этих тем студентам СПО. А также здесь есть набор упражнений - задач и две ко...