Математические фокусы
занимательные факты по теме
этот материал поможет учителям математики оживить и разнообразить свои уроки или может стать основой для проектной (исследовательской ) деятельности обучающихся.
Скачать:
Вложение | Размер |
---|---|
matematicheskie_fokusy.docx | 106.97 КБ |
Предварительный просмотр:
МАТЕМАТИЧЕСКИЕ ФОКУСЫ
Фокусы развивают творческие начала личности, артистические способности, стимулируют потребность в творческом самовыражении. Математические фокусы способствуют концентрации внимания и активизации учащихся на уроках математики. Магия фокуса способна разбудить сонных, растормошить ленивых, заставить думать тугодумов. Ведь не разгадав секрета фокуса, невозможно понять и оценить всей его прелести. А секрет фокуса чаще всего имеет математическую природу.
Миллионы людей во всех частях света увлекаются математическими фокусами, которые являются очень своеобразной формой демонстрации математических закономерностей. И это не удивительно. “Гимнастика ума” полезна в любом возрасте, она тренируют память, обостряют сообразительность, вырабатывают настойчивость, способность логически мыслить, анализировать и сопоставлять.
Еще в Древней Элладе без игр не мыслилось гармоническое развитие личности. И игры древних не были только спортивными. Наши предки знали шахматы и шашки, не чужды им были ребусы и загадки. Таких игр во все времена не чуждались ученые, мыслители, педагоги. Они и создавали их. С древних времен известны головоломки Пифагора и Архимеда, русского флотоводца С.О. Макарова и американца С. Лойда.
На огромную познавательную и воспитательную ценность интеллектуальных игр неоднократно указывали К.Д. Ушинский, А.С. Макаренко, А.В. Луначарский. Среди тех, кто увлекался ими, были К.Э. Циолковский, К.С. Станиславский, И.Г. Эренбург и многие другие выдающиеся люди.
Отдельно хочется отметить американского математика, фокусника, журналиста, писателя и популяризатора науки Мартина Гарднера (Gardner).
Он родился 21 октября 1914 г. Окончил математический факультет Чикагского университета. Основатель (середина 50-х гг.), автор и ведущий (до 1983) рубрики "Математические игры" журнала «Scientific American» ("В мире науки"). От этого талантливого учёного и популяризатора науки читатели узнают о флексагонах, математических фокусах, поиске фальшивых монет, проблеме 3х+1, парадоксе узника и, конечно же, об изобретённой Джоном Конуэем игре "Жизнь", компьютерную модель которой хотя бы один раз создавали все, кто учился программированию. Гарднер трактует занимательность как синоним увлекательного, интересного в познании, но чуждого праздной развлекательности. Среди произведений Гарднера есть философские эссе, очерки по истории математики, математические фокусы и «комиксы», научно-популярные этюды, научно-фантастические рассказы, задачи на сообразительность.
Особую популярность снискали статьи и книги Гарднера по занимательной математике. В нашей стране было издано семь книг Мартина Гарднера, которые увлекают читателя и подталкивают к самостоятельным исследованиям «Гарднеровский» стиль характеризуют доходчивость, яркость и убедительность изложения, блеск и парадоксальность мысли, новизна и глубина научных идей.
Ниже приведены примеры 12 математических фокусов.
Фокус “Феноменальная память”.
Для проведения этого фокуса необходимо заготовить много карточек, на каждой из которых поставить ее номер (двузначное число) и записать семизначное число по особому алгоритму. “Фокусник” раздает карточки участникам и объявляет, что он запомнил числа, записанные на каждой карточке. Любой участник называет номер каточки, а фокусник, немного подумав, говорит, какое на этой карточке записано число. Разгадка данного фокуса проста: чтобы назвать число “фокусник” проделывает следующие действия – прибавляет к номеру карточки число 5, переворачивает цифры полученного двузначного числа, затем каждая следующая цифра получается сложением двух последних, если получается двузначное число, то берется цифра единиц. Например: номер карточки – 46. Прибавим 5, получим 51, переставим цифры – получим 15, будем складывать цифры, следующая – 6, затем 5+6=11, т. е. возьмем 1, потом 6+1=7, дальше цифры 8, 5. Число на карточке: 1561785.
Фокус “Угадать задуманное число”.
Фокусник предлагает кому-нибудь из учащихся написать на листе бумаги любое трехзначное число. Далее приписать к нему это же число еще раз. Получится шестизначное число. Передать лист соседу, пусть он разделит это число на 7. Передать листочек дальше, пусть следующий ученик разделит полученное число на 11. Снова передать результат дальше, следующий ученик пусть разделит полученное число на 13. Затем передать листочек “фокуснику”. Он может назвать задуманное число.
Разгадка фокуса:
Когда мы к трехзначному числу приписали такое же число, то мы тем самым умножили его на 1001, а затем, разделив последовательно на 7, 11, 13, мы разделили его на 1001, то есть получили задуманное трехзначное число.
Фокус “Волшебная таблица”.
На доске или экране таблица, в которой известным образом в пяти столбцах записаны числа от 1 до 31. Фокусник предлагает присутствующим задумать любое число из этой таблицы и указать, в каких столбиках таблицы находится это число. После этого он называет задуманное вами число.
Разгадка фокуса:
Например вы задумали число 27. Это число находится в 1-ом, 2-ом, 4-ом и 5-ом столбиках. Достаточно сложить числа, расположенные в последней строке таблицы в соответствующих столбиках, и получим задуманное число. (1+2+8+16=27).
Фокус “Угадать зачеркнутую цифру”.
Пусть кто-либо задумает какое-нибудь многозначное число, например, число 847. Предложите ему найти сумму цифр этого числа (8+4+7=19) и отнять ее от задуманного числа. Получится: 847-19=828. в том числе, которое получится, пусть он зачеркнет цифру – безразлично какую, и сообщит вам все остальные. Вы немедленно назовете ему зачеркнутую цифру, хотя не знаете задуманного числа и не видели, что с ним проделывалось.
Выполняется это очень просто: подыскивается такая цифра, которая вместе с суммою вам сообщенных цифр составила бы ближайшее число, делящееся на 9 без остатка. Если, например, в числе 828 была зачеркнута первая цифра (8) и вам сообщили цифры 2 и 8, то, сложив 2+8, вы соображаете, что до ближайшего числа, делящегося на 9, т. е. до 18 – не хватает 8. Это и есть зачеркнутая цифра.
Почему так получается?
Потому что если от какого-либо числа отнять сумму его цифр, то останется число, делящееся на 9 без остатка, иначе говоря такое, сумма цифр которого делится на 9. В самом деле, пусть в задуманном числе а – цифра сотен, в – цифра десятков, с – цифра единиц. Значит всего в этом числе единиц 100а+10в+с. Отнимая от этого числа сумму цифр (а+в+с), получим: 100а+10в+с-(а+в+с)=99а+9в=9(11а+в), т. е. число, делящееся на 9. При выполнении фокуса может случиться, что сумма сообщенных вам цифр сама делится на 9, например 4 и 5.Это показывает, что зачеркнутая цифра либо 0, либо 9.Тогда вы должны ответить: 0 или 9.
Фокус “У кого какая карточка?”.
Для проведения фокуса необходим ассистент. На столе лежат три карточки с оценками: “3”, “4”, “5”. Три человека подходят к столу и каждый берет одну из карточек и показывает ее ассистенту “фокусника”. “Фокусник”, не глядя, должен угадать кто что взял. Ассистент говорит ему: “Угадывай” и “фокусник” называет у кого какая карточка.
Разгадка фокуса:
Рассмотрим возможные варианты. Карточки могут располагаться следующим образом: 3, 4, 5 4, 3, 5 5, 3, 4
3, 5, 4 4, 5, 3 5, 4, 3
Так как ассистент видит, какую карточку взял каждый человек, то он будет помогать “фокуснику”. Для этого нужно запомнить 6 сигналов. Пронумеруем шесть случаев:
Первый – 3, 4, 5
Второй – 3, 5, 4
Третий – 4, 3, 5
Четвертый – 4, 5, 3
Пятый – 5, 3, 4
Шестой – 5, 4, 3
Если случай первый, то ассистент говорит: “Готово!”
Если случай второй – то: “Так, готово!”
Если случай третий – то: “Угадывай!”
Если четвертый – то: “Так, угадывай!”
Если пятый – то: “Отгадывай!”
Если шестой – то: “Так, отгадывай!”.
Таким образом, если вариант начинается с цифры 3, то “Готово!”, если с цифры 4, то “Угадывай!”, если с цифры 5, то “Отгадывай!”, а карточки учащиеся берут по очереди.
Фокус “Любимая цифра”.
Любой из присутствующих задумывает свою любимую цифру. Фокусник предлагает ему выполнить умножение числа 15873 на любимую цифру, умноженную на 7. Например, если любимая цифра 5, то пусть умножит на 35. Получится произведение, записанное только любимой цифрой. Возможен и второй вариант: умножить число 12345679 на любимую цифру, умноженную на 9, в нашем случае это число 45. Объяснение этого фокуса достаточно простое: если умножить 15873 на 7, то получится 111111, а если умножить 12345679 на 9, то получится 111111111.
Фокус “Угадать задуманное число, ничего не спрашивая”.
Фокусник предлагает учащимся следующие действия:
Первый ученик задумывает какое-нибудь двузначное число, второй – приписывает к нему справа и слева такое же число, третий – делит полученное шестизначное число на 7, четвертый – на 3, пятый – на 13, шестой – на 37 и передает свой ответ задумавшему, который видит, что к нему вернулось его число. Секрет фокуса: если к любому двузначному числу приписать справа и слева такое же число, то двузначное число при этом увеличится в 10101 раз. Число 10101 равно произведению чисел 3, 7, 13 и 37, поэтому после деления мы и получаем задуманное число.
Конкурс болельщиков – “Веселый счет”. От каждой команды приглашается представитель. На доске две таблицы, на которых в беспорядке отмечены числа от 1 до 25. По сигналу ведущего учащиеся должны найти на таблице все числа по порядку, кто это сделает быстрее, тот и выиграл.
Фокус “Число в конверте”
Фокусник пишет на бумажке число 1089, вкладывает бумажку в конверт и заклеивает его. Предлагает кому-нибудь, дав ему этот конверт, написать на нем трехзначное число такое, чтобы крайние цифры в нем были различны и отличались бы друг от друга больше, чем на 1. Пусть затем он поменяет местами крайние цифры и вычтет из большего трехзначного числа меньшее. В результате пусть он снова переставит крайние цифры и получившееся трехзначное число прибавит к разности двух первых. Когда он получит сумму, фокусник предлагает ему вскрыть конверт. Там он найдет бумажку с числом 1089, которое у него и получилось.
Фокус “Угадывание дня, месяца и года рождения”
Фокусник предлагает учащимся выполнить следующие действия: “Умножьте номер месяца, в котором вы родились, на 100, затем прибавьте день рождения, результат умножьте на 2, к полученному числу прибавьте 2, результат умножьте на 5, к полученному числу прибавьте 1, к результату припишите 0, к полученному числу прибавьте еще 1 и, наконец, прибавьте число ваших лет. После этого сообщите, какое число у вас получилось”. Теперь “фокуснику” осталось от названного числа отнять 111, а потом остаток разбить на три грани справа налево по две цифры. Средние две цифры обозначают день рождения, первые две или одна – номер месяца, а последние две цифры – число лет, зная число лет, фокусник определяет год рождения.
Фокус “Угадать задуманный день недели”.
Пронумеруем все дни недели: понедельник – первый, вторник – второй и т. д. Пусть кто-нибудь задумает любой день недели. Фокусник предлагает ему следующие действия: умножить номер задуманного дня на 2, к произведению прибавить 5, полученную сумму умножить на 5, к полученному числу приписать в конце 0, результат сообщить фокуснику. Из этого числа он вычитает 250 и число сотен будет номером задуманного дня. Разгадка фокуса: допустим, задуман четверг, то есть 4 день. Выполним действия: ((4×2+5)*5)*10=650, 650 – 250=400.
Фокус “Угадать возраст”.
Фокусник предлагает кому-нибудь из учащихся умножить число своих лет на 10, затем любое однозначное число умножить на 9, из первого произведения вычесть второе и сообщить полученную разность. В этом числе “фокусник” должен цифру единиц сложить с цифрой десятков – получится число лет.
Математический фокус - Угадай число
Содержание фокуса.
- Попросите любого зрителя задумать число,
- после этого число он должен умножить на 2,
- прибавить к результату 8,
- разделить результат на 2 и
- задуманное число отнять.
В результате вы смело называете число 4.
Секрет фокуса.
Например, зритель задумал число 7. 7x2= 14 14+ 8= 22 22: 2= 11 11- 7= 4
Угаданный день рождения
Содержание этого математического фокуса.
Объявите зрителям, что вы сможете угадать день рождения любого незнакомого человека, сидящего в зале.
- Вызовите любого желающего и предложите ему умножить на 2 число дня своего рождения
- Затем пусть зритель сложит получившееся произведение и число 5,
- теперь пусть умножит на 50 полученную сумму.
- К этому результату необходимо прибавить номер месяца рождения (июль — 7, январь — 1)
- вслух назвать полученное число.
Через секунду вы называете день и месяц рождения зрителя.
Секрет этого математического фокуса.
Все очень просто. В уме от того числа, которое назвал зритель, отнимите 250.
У вас должно выйти трехзначное или четырехзначное число. Первая и вторая цифры — день рождения, две последние — месяц.
Фокус с Отгадыванием числа
Для этого математического фокуса Вам понадобятся:
- заранее приготовленные листы бумаги (по числу зрителей),
- карандаши или ручки (по числу зрителей),
- калькуляторы.
Содержание фокуса.
Представьтесь зрителям как великий математик, дрессировщик цифр, читающий чужие мысли. Попросите зрителей задумать какое-нибудь число. Вопрос вы можете задать абсолютно любой, например: сколько дней в неделю вы хотели бы кататься на велосипеде, есть манную кашу, не ходить в школу, бегать по лужам. Весь смысл не в вопросе, а в задуманном зрителями числе.
Раздайте зрителям бумажки и ручки и дайте задание письменно ответить на ваш вопрос. Пусть каждый напишет, сколько дней в неделю он хотел бы есть морковку.
Теперь пусть каждый умножит это число на 2, затем к полученному числу морковок прибавит 5, после чего умножит эту сумму на 50. Теперь пусть каждый сделает следующее: если в этом году уже был день рождения, прибавить 1 750, если нет — 1 749. Теперь из этого числа каждый должен вычесть свой год рождения и к этому числу прибавить 7.
Разгаданный результат математических вычеслений
Вам понадобятся: заранее приготовленные листы бумаги , карандаши или ручки , калькуляторы.
Содержание фокуса.
Предложите зрителям задумать трехзначное число и записать его на бумаге. При загадывании числа должно быть выполнено одно условие: цифра сотен не должна быть равна цифре единиц и не должна быть на единицу меньше или больше ее. Если вы еще путаетесь в сотнях и единицах, то на первом месте в трехзначных числах стоят сотни, на втором десятки, на третьем единицы (например, подойдет число 531).
- Теперь зрители должны перевернуть задуманное число, т.е. написать цифры в обратном порядке (135).
- Затем зрители должны взять эти два числа и из большего вычесть меньшее (531 - 135).
- Получившуюся разницу снова нужно перевернуть (396; 693) и сложить эти два числа (396 + 693).
- Потом один из зрителей должен прибавить к полученной сумме 100, второй — 200, третий — 300 и т. д.
- Теперь вы можете отгадать, что получилось у каждого зрителя, но при том условии, что они к своему последнему числу прибавят цифру 1 089. У первого зрителя, прибавлявшего 100, получится 1 189, у второго — 1 289, у третьего — 1 389.
- Теперь попросите любого из зрителей назвать получившуюся цифру.
- Должно получиться двухзначное или трехзначное число. Первая цифра — количество морковок, остальные — возраст человека. Секрет фокуса. Сколько бы ни прибавляли и ни отнимали, это все хитрости алгебры. Только ваши зрители не догадываются об этом, весь секрет фокуса в тех числах, которые вы заставляете их прибавлять, отнимать, делить.
- Вот как это выглядит. Например, вы загадали 2 дня в неделю для поедания морковки.
- Теперь умножьте 2 на 2, получится 4.
- Потом к 4 прибавьте 5, получится 9, затем 9 умножьте на 50, получится 450.
Допустим, ваш день рождения 18 июля 1997 г. Например, сейчас сентябрь-месяц и ваш день рождения уже прошел.
- Значит, прибавьте к 450 число 1 750, получится 2 200.
- Теперь из числа 2 200 вычтите год рождения 1997, получится 203, к этому числу прибавьте 7.
- Результат — 210 (2 дня и 10 лет).
Во втором случае из числа 2 199 вычтите 1 997, получится число 202, прибавьте 7, получится 209. Значит, загадано 2 дня морковки и 9 лет загадавшему.
Совет: Перед выполнением этого математического фокуса раздайте зрителям калькуляторы, чтобы они не ошиблись в вычислениях, а для себя на первое время запишите на карточке порядок действий с цифрами: на что умножить, что прибавить, из чего вычесть.
Секрет фокуса.
Для того чтобы узнать, что получилось, вам не нужно знать задуманное число. Главное — прибавлять к числу 1 089 то число (100, 200, 300, 400...), которое они прибавляли в самом конце. Для того чтобы не перепутать, у кого что получилось, в самом конце фокуса можно раздать карточки с цифрами 100, 200, 300 и попросить держать их при отгадывании конечного результата.
Задуманное число
Вам понадобятся: заранее приготовленные листы бумаги (по числу зрителей), карандаши или ручки , калькуляторы.
Содержание математического фокуса.
- Предложите своим зрителям задумать двузначное число.
- Теперь пусть они умножат число его десятков на 2,
- прибавят к этому произведению число 5,
- умножат эту сумму на 5,
- к полученному произведению прибавят 10 и число единиц того числа, которое задумали.
Пусть любой зритель скажет, что у него получилось. Вычтите из полученного результата число 35 (лучше сделать это в уме или на калькуляторе, не посвящая в свои действия зрителей), и вы сможете назвать задуманное зрителями число.
Секрет фокуса.
Все основано на математических закономерностях, о которых вашим зрителям знать не обязательно.
Как это выглядит в реальном фокусе? Например, зритель задумал число 38: 3 десятка и 8 единиц.
- Умножаем 3 на 2, получается 6.
- Прибавляем к 6 число 5, получаем 11,
- умножаем эту сумму на 5, получаем 55,
- прибавляем 10 и получаем 65,
- прибавляем число единиц (8) задуманного числа. Получаем 73, вычитаем 35.
- В итоге задуманное число — 38.
После того, как вы научились делать простые математически фокусы с числами попробуйте более сложные фокусы:
Математический фокус Дэвида Копперфильда
Фокусы знаменитого иллюзиониста Дэвида Копперфильда восхищают и поражают зрителей не только сложностью и оригинальностью, но прежде всего грандиозностью замысла и мастерством его воплощения, использованием сложнейших оптических эффектов, специальных устройств и приспособлений. Примечательно, что Дэвид Копперфильд включил в свои программы также серию математических фокусов, которые редко показывают на эстраде из-за того, что они не очень зрелищны. Тем не менее Копперфильду удалось найти эффектную подачу одного такого фокуса, описанного в известной нашим читателям книге Мартина Гарднера "Математические чудеса и тайны" (М.: Наука, 1978). Фокусник не только приглашает поучаствовать в нем всех зрителей в зале, но делает активным участником представления каждого телезрителя.
Происходит это следующим образом. Фокусник размещает на экране пятнадцать предметов, например кружков, и выкладывает их в виде шестерки: в колечке - 12, а в хвостике - 3. У Копперфильда кружки заменены одной звездочкамой и двумя стрелками (в хвостике) и картинками (в колечке), изображающими среди прочего самые известные в мире достопримечательности: Эйфелеву башню, Египетские пирамиды, Статую Свободы и т.д.). Зрителям предлагается задумать любое число больше трех (предположим, семь) и отсчитать его сверху вниз, начиная с первой звездочки, по хвостику и далее по колечку против часовой стрелки (рис. 1). Затем фокусник просит зрителей снова посчитать предметы до задуманного числа, начиная с того, на котором они остановились, но на этот раз по часовой стрелке и только вокруг колечка (рис. 2). Предмет, на который при счете попадает задуманное число, на рисунках затенен.
В принципе фокус может быть закончен уже на этой стадии, но Копперфильд идет дальше. Он уверенно снимает с экрана ряд предметов, заявляя, что они лишние и зритель остановиться на них не мог (рис. 3). Затем снова предлагает отсчитать в любом направлении еще четыре предмета, начиная с соседнего от того, на котором остановился каждый зритель на предыдущем шаге (рис. 4). Удивительно то, что в результате этих манипуляций все указывают на один и тот же предмет.
Фокусы такого типа называются фокусами с предопределенным выбором. Они основаны на том, что, независимо от варианта схемы (количества звездочек на хвостике или предметов на колечке), действий фокусника и зрителей, результат предсказуем и будет одним и тем же для всех участников, несмотря на то, что каждый из них задумал свое число. При всей кажущейся сложности объяснение этих фокусов достаточно простое.
Итак, независимо от того, какое первоначальное число задумал зритель, счет заканчивается всегда на одном и том же предмете. Чтобы его найти, нужно хвостик шестерки, в данном случае три звездочки, наложить на колечко по часовой стрелке, начиная с предмета, следующего (тоже по часовой стрелке) за тем, к которому подходит хвостик. Кончик хвостика ляжет на задуманный предмет на колечке (рис. 5). Все остальные манипуляции фокусника - лишь отвлекающий маневр для того, чтобы замаскировать этот факт. В зависимости от фантазии фокусника, он может на каком-то этапе даже снять с экрана предмет, на котором остановился зритель, при первоначальном счете, - ответ все равно будет для всех одинаковый.
Теперь легко догадаться, для чего фокусник ставит ограничение на задуманное число (в нашем случае больше трех): только выполнение этого условия позволит зрителям при счете предметов попасть на кольцо - основную фигуру для манипуляции.
Узнав секрет фокуса, вы можете модернизировать его по собственному усмотрению.
В заключение предлагаем вам некоторую вариацию описанного фокуса - угадывание задуманного числа на циферблате часов. Попытайтесь разгадать его самостоятельно.
Фокус начинается с того, что зритель задумывает какое-нибудь число от 1 до 12. Фокусник берет указку и начинает притрагиваться ее кончиком к числам на циферблате часов, причем делает это, по-видимому, в совер
шенно произвольном порядке. Зритель считает про себя прикосновения фокусника к часам и, дойдя до 20, произносит слово "стоп". И странное совпадение: в этот момент указка оказывается как раз на задуманном числе.
Подсказка.
В этом фокусе, так же, как в предыдущем, применяются принципы последовательного счета и предопределенного выбора. Чтобы его разгадать, используйте разность чисел 20 и 12, равную 8, и тот факт, что девятое прикосновение фокусника к циферблату должно обязательно попасть на одно из этих чисел.
Математические фокусы
Пригласите двух зрителей на соревнование в быстром счете. Сообщите, что на вашей стороне — сверхъестественные способности, на стороне зрителей — калькуляторы. И тем не менее вы успеете произвести вычисления первым.
Назовите для краткости первого зрителя игроком А, а второго — игроком Б. Передайте им бумагу и карандаши и попросите написать на листках буквы А и Б на расстоянии примерно 2,5 см друг от друга; на своем листке сделайте то же самое:
А-Б
Попросите игрока А назвать любое трехзначное число, состоящее иё разных цифр, например 625. Затем все трое распишите его под буквами:
А Б
625 625
Теперь попросите игрока Б назвать другое трехзначное число, также состоящее из разных цифр, — пусть это будет 784. Снова все вместе распишите это число (каждый на своем листке бумаги), но только в колонке А:
А Б
625 625
784
Скажите, что вам не хотелось бы отставать от них, и вы тоже предложите свое число. Обоим противникам оно покажется случайно выбранным, однако на самом деле это не так. Перед тем как его назвать, быстро произведите в уме вычитание — от числа 999 отнимите то, которое назвал игрок Б (999 — 784 = 215), и полученное число сообщите игрокам. Попросите их записать этот результат под первым числом в колонке Б. После этого переходите к соревнованию в быстром счете:
А Б
625 625
784 215
Передайте игрокам А и Б по калькулятору. Объясните, что просите перемножить два числа, записанные в их колонках, а затем сложить оба произведения. Вам же придется совершить эти арифметические действия в уме. Когда оба игрока поймут, что от них требуется, по команде займитесь вычислениями.
Секрет фокуса заключается в том, что вы сами сможете подсчитать число очень быстро. Для этого отнимите единицу от первого числа (625) и впишите результат (624); после этого отнимите его от 999: 999 — 624 = 375 и впишите его рядом с первым. Это число и есть искомое! У вас вычисление займет считаные секунды, тогда как ваши игроки будут значительно дольше возиться с расчетами:
А Б
625 625
784 215
430000+134375=624375
хитрый фокус (замаскирован под математический)
Вы среди зрителей выбираете 5 участников и выдаете им одинаковые листочки.
Пусть первый из них напишет на листочке любое двузначное число и покажет это число второму.
Второй участник должен приписать к этому числу справа и слева еще по такому же числу и разделить это число на 3. Результат он записывает на листочке (только результат!), показывает третьему участнику, затем складывает листочек и передает вам.
Третий зритель делит увиденное число на 7, записывает результат на листочке, показывает четвертому зрителю, складывает листочек и передает вам. Четвертый зритель делит число на 13, записывает результат на листочке, показывает пятому зрителю, складывает листочек и передает вам.
Пятый зритель делит число на 37, записывает результат на листочке, складывает и передает вам.
Вы берете такой же листочек, не заглядывая в полученные листочки, пишете исходное число, складываете свой листочек, подходите к первому зрителю и показываете его листочек остальным зрителям. Затем достаете свой листочек, развертываете его и, назвав число зрителям, показываете его.
Думаете все просто? Читайте секрет!!!
Секрет фокуса.
Если к любому двузначному числу приписать слева и справа то же самое число, то получится число в 10 101 раз больше первоначального.
3 7 13 37 = 10 101. Поэтому число, записанное на листочке у пятого участника, совпадает с числом, записанным у первого участника.
Этот листочек вы и показываете зрителям (на вашем листочке может быть записано что угодно!!!!! :).
Вот такие хитрые фокусы бывают :)
Угадать задуманное число
Фокусник предлагает кому-нибудь из зрителей написать на листе бумаги любое трехзначное число. Далее передать его соседу, который должен приписать к нему это же число еще раз. Получится шестизначное число. Передать лист соседу, пусть он разделит это число на 7. Передать листочек дальше, пусть следующий зритель разделит полученное число на 11. Следующий, умножит это число на 2. Снова передать результат дальше, чтобы следующий зритель разделил полученное число на 13. Затем передать листочек “фокуснику”. Он может назвать задуманное число. Разгадка фокуса: |
Фокус: 10 чисел Фибоначчи
Раскрою Вам секрет интересного, вычислительного фокуса с числами Фибоначчи. Этот фокус демонстрируют так: показывающий просит кого-нибудь записать друг под другом два любых числа, какие он пожелает. Допустим для примера, что были выбраны 2 и 7. Затем зритель должен сложить эти числа. Найденное таким образом третье число складывается со вторым (стоящим над ним), и получается четвертое число. Этот процесс повторяют до тех пор, пока в вертикальном столбце не окажется десять чисел: 2 7 9 16 25 41 66 107 173 280 Во время записывания чисел фокусник стоит, повернувшись спиной к зрителям. Когда все числа будут записаны, он поворачивается, проводит под колонкой цифр черту и, не задумываясь, подписывает сумму этих чисел. Чтобы получить эту сумму, ему просто нужно взять четвертое число снизу и умножить его на 11 -операция, которую легко можно проделать в уме. В нашем случае четвертым числом будет 66, поэтому в ответе получится число 66, взятое 11 раз, т.е. 726. Фокусы с предсказанием результатов действий над числами и фокусы с отгадыванием чисел легко обратимы; под этим подразумевается, что фокус с предсказанием числа можно показывать как фокус с отгадыванием этого числа, и наоборот. Допустим, например, что показывающий знает наперед результат вычисления, который, как предполагает зритель ему не может быть известен. Тогда показывающий может оформить фокус в виде предсказания, записав известный ему результат будущего вычисления на листке бумаги; в этом случае фокус следует рассматривать как фокус с предсказанием. Но этот же фокус он может оформить как «чтение мыслей» зрителя - после того как зритель закончит свои вычисления,- в этом случае фокус нужно отнести к категории фокусов с отгадыванием числа. (Третьим вариантом может быть оформление фокуса в виде молниеносного вычисления.) Удивляйте и удивляйтесь! |
Распишем все члены последовательности: а1 и а2 начальные данные
а3=а1+а2
а4=а2+а3=2*а2+а1
а5=а3+а4=3*а2+2*а1
а6=5*а2+3*а1
а7=8*а2+5*а1
а8=13*а2+8*а1
а9=21*а2+13*а1
а10=34*а2+21*а1
сумма от а1 до а10 равна 88*а2+55*а1, что равносильно 11*(8*а2+5*а1). не трудно заметить что 8*а2+5*а1=а7.
По теме: методические разработки, презентации и конспекты
Математические фокусы
математические фокусы интересны для младших школьников. Можно использовать для кружковой работы, для предметных недель....
Математические фокусы
Математические фокусы...
Математические фокусы
Математические фокусы, которые можно показать и детям и взрослым!...
Секреты математических фокусов
Математические фокусы для 5-6 классов. Из опыта работы. Занятие математического кружка....
Секреты математических фокусов
Математические фокусы для 5-6 классов. Из опыта работы. Занятие математического кружка....
Секреты математических фокусов
Из опыта работы. Занятие математического кружка для учащихся 5-6 классов....
Секреты математических фокусов
Из опыта работы. Занятие математического кружка для учащихся 5-6 классов....