Наглядный материал для оформления кабинета физики.
материал по теме
Скачать:
Вложение | Размер |
---|---|
![]() | 308.5 КБ |
Предварительный просмотр:
ΔE=Δmc2
Физика! Какая емкость слова!
Физика для нас не просто звук!
Физика – опора и основа
Всех без исключения наук!
- Будьте внимательны и дисциплинированы, точно выполняйте указания учителя.
- Не приступайте к выполнению работы без разрешения учителя.
- Размещайте приборы, материалы, оборудование на своем столе таким образом, чтобы исключить их падение или опрокидыавние.
- Перед выполнение работы внимательно изучите ее содержание и ход выполнения.
- Для предотвращения падения стеклянные сосуды (пробирки, колбы) при проведении опытов осторожно закрепляйте в лапке штатива.
- При поведении опытов не допускайте предельных нагрузок измерительных приборов. При работе с приборами из стекла соблюдайте особую осторожность. Не вынимайте термометры из пробирок с затвердевшим веществом.
- Следите за исправностью всех креплений в приборах и приспособлениях. Не прикасайтесь и не наклоняйтесь (особенно с неубранными волосами) к вращающимся частям машин.
- При сборке экспериментальных установок используйте провода(с наконечниками и предохранительными чехлами) с прочной изоляцией без видимых повреждений.
- При сборке электрической цепи избегайте пересечения проводов. Запрещается пользоваться проводником с изношеннной изоляцией и выключателем открытого типа (при напряжении выше 12В).
- Источник тока к электрической цепи подключайте в последнюю очередь. Собранную цепь включайте только после проверки и с разрешения учителя. Наличие напряжения в
- цепи можно проверять только с помощью приборов или указателей напряжения.
- Не прикасайтесь к находящимся под напряжением элементам цепей, лишенным изоляции. Не производите пересоединения в электрических цепях машин до полной остановки якоря или ротора машины.
- Следите за тем, чтобы во время работы случайно не коснуться вращающихся частей электрических машин до полной остановки якоря или ротора машины.
- Не прикасайтесь к корпусам стационарного электрооборудования, к зажимам отключенных конденсаторов.
- пользуйтесь инструментами с изолирующими ручками.
- По окончании работы отключите источник электропитания, после чего разберите электрическую цепь.
- Не уходите с рабочего места без разрешения учителя.
- Обнаружив неисправность в электрических устройствах, находящихся под напряжением, немедленно отключите источник электропитания и сообщите об этом учителю.
Основные константы
Элементарный заряд | е = 1,60219 ·10-19Кл |
Масса покоя электрона | те = 9,1095·10-31 кг = 5,486 • 10-4 а. е. м. |
Масса покоя протона | тр = 1,6726 ·10-27 кг = 1,00728 а. е. м. |
Масса покоя нейтрона | тп = 1,6749 · 10-27 кг = 1,00867 а. е. м. |
Скорость света в вакууме | с = 2,9979 · 108 м/с |
Гравитационная постоянная | G = 6,672 · 10-11 Н · м2/кг2 |
Электрическая постоянная | ε0 = 8,854 ·10-12 Ф/м |
Постоянная Авогадро | NA = 6,022 ·1023 моль-1 |
Постоянная Больцмана | k = 1,3807 · 10-23 Дж/К |
Постоянная Планка | h = 6,626 ·10-34 Дж · с = 4,136 · 10-15 эВ · с |
ħ=h/2π=1,055·10-34Дж·с=6,59·10-16эВ·с |
Производные от основных констант
Коэффициент взаимосвязи массы и энергии | с2 = Е/m = 8,9874 · 1016 Дж/кг = 931,5 МэВ/а. е. м. (1 а. е. м. = 1,66057 · 10-27 кг; 1 МэВ = 1,60219 · 10-13 Дж) |
Энергия покоя электрона | Е0е = тес2 = 8,187 ·10-14 Дж = 0,511 МэВ |
Энергия покоя протона | Е0р = трс2 =1,503 · Ю-10 Дж = 938,26 МэВ |
Энергия покоя нейтрона | Е0п = тпс2 = 1,505 ·10-10 Дж = 939,55 МэВ |
Отношение заряда электрона к его массе | e/me= 1,759 ·1011 Кл/кг |
Постоянная Фарадея | F = eNA = 9,648 · 104 Кл/моль |
Молярная газовая постоянная | R = kNA = 8,314 Дж/(моль · К) |
Кратные | Дольные | ||||
приставка | обозначение | множитель | приставка | обозначение | множитель |
экса | Э | 1018 | атто | а | 10-18 |
пета | п | 1015 | фемто | ф | 10-15 |
тера | т | 1012 | пико | п | 10-12 |
гига | г | 109 | нано | н | 10-9 |
мега | м | 106 | микро | мк | 10-6 |
кило | к | 103 | милли | м | 10-3 |
гекто | г | 102 | санти | с | 10-2 |
дека | да | 101 | деци | д | 10-1 |
- Изучение условия задачи.
- Запись условия в буквенных обозначениях.
- Выполнение чертежа, схемы.
- Анализ физических процессов, происходящих в ситуации, описанной в условии, и выявление тех законов, которым подчиня ются эти процессы. Составление плана решения.
- Запись уравнений законов и решение полученной системы уравнений относительно искомой величины с целью получения от вета в общем виде.
- Исследование полученного решения в общем виде.
- Выражение всех величин в единицах СИ.
- Проверка решения путем действий над единицами измерения величин.
- Подстановка числовых значений величин с наименованиями их единиц в формулу для нахождения ответа и вычисление искомой величины.
- Оценка разумности и достоверности полученного результата.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Выбрать систему отсчета (это предполагает выбор тела отсчета, начала системы координат, положительного направления осей, момента времени, принимаемого за начальный).
- Определить вид движения вдоль каждой из осей и написать кинематические уравнения движения вдоль каждой оси – уравнения для координат и для скорости (если тел несколько, уравнения пишутся для каждого тела).
- Определить начальные условия (координаты и проекции скоростей в начальный момент времени), а также проекции ускорения на оси и подставить эти величины в уравнения движения.
- Определить дополнительные условия, т.е. координаты или скорости для каких-либо моментов времени (для каких-либо точек траектории), и написать кинематические уравнения движения для выбранных моментов времени (т.е. подставить эти значения координат и скорости).
- Полученную систему уравнений решить относительно искомой величины.
- Решение проверить и оценить критически.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Выбрать систему отсчета.
- Найти все силы, действующие на тело, и изобразить их на чертеже. Определить (или предположить) направление ускорения и изобразить его на чертеже.
- Записать уравнение второго закона Ньютона в векторной форме и перейти к скалярной записи, заменив все векторы их проекциями на оси координат.
- Исходя из физической природы сил, выразить силы через величины, от которых они зависят.
- Если в задаче требуется определить положение или скорость точки, то к полученным уравнениям динамики добавить кинетические уравнения.
- Полученную систему уравнений решить относительно искомой величины.
- Решение проверить и оценить критически.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Выбрать систему отсчета.
- Выделить систему взаимодействующих тел и выяснить, какие силы для нее являются внутренними, а какие – внешними.
- Определить импульсы всех тел системы до и после взаимодействия.
- Если в целом система незамкнутая, сумма проекций сил на одну из осей равна нулю, то следует написать закон сохранения лишь в проекциях на эту ось.
- Если внешние силы пренебрежительно малы в сравнении с внутренними (как в случае удара тел), то следует написать закон сохранения суммарного импульса (Δp = 0) в векторной форме и перейти к скалярной.
- Если на тела системы действуют внешние силы и ими нельзя пренебречь, то следует написать закон изменения импульса
(Δp = FΔt) в векторной форме и перейти к скалярной. - Записать математически все вспомогательные условия.
- Полученную систему уравнений решить относительно искомой величины.
- Решение проверить и оценить критически.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Выбрать систему отсчета.
- Выделить два или более таких состояний тел системы, чтобы в число их параметров входили как известные, так и искомые величины.
- Выбрать нулевой уровень отсчета потенциальной энергии.
- Определить, какие силы действуют на тела системы – потенциальные или непотенциальные.
- Если на тела системы действуют только потенциальные силы, написать закон сохранения механической энергии в виде: Е1 = Е2.
- Раскрыть значение энергии в каждом состоянии и, подставить их в уравнение закона сохранения энергии.
- Полученную систему уравнений решить относительно искомой величины.
- Решение проверить и оценить критически.
Теплота (первое начало термодинамики Q = ΔU + A).
Задачи об изменении внутренней энергии тел можно разделить на три группы.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Определить изолированную систему. Установить у каких тел внутренняя энергия уменьшается, а у каких – возрастает.
- Составить уравнение теплового баланса (ΣΔU = 0), при записи которого в выражении cm(t2 – t1), для изменения внутренней энергии, нужно вычитать из конечной температуры тела начальную и суммировать члены с учетом получающегося знака.
- Полученное уравнение решить относительно искомой величины.
- Решение проверить и оценить критически.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Следует убедиться, что в процессе взаимодействия тел теплота извне к ним не подводится, т.е. действительно ли Q = 0.
- Установить у какого из двух взаимодействующих тел изменяется внутренняя энергия и что является причиной этого изменения – работа, совершенная самим телом, или работа, совершенная над телом.
- Записать уравнение 0 = ΔU + A для тела, у которого изменяется внутренняя энергия, учитывая знак перед А и к.п.д. рассматриваемого процесса.
- Если работа совершается за счет уменьшения внутренней энергии одного из тел, то А=ŋΔU, а если внутренняя энергия тела увеличивается за счет работы, совершенной над телом, то ŋА = ΔU.
- Найти выражения для ΔU и A.
- Подставляя в исходное уравнение вместо ΔU и A их выражения, получим окончательное соотношение для определения искомой величины.
- Полученное уравнение решить относительно искомой величины.
- Решение проверить и оценить критически.
Тепловое расширение твердых и жидких тел.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Для каждого теплового состояния каждого тела записать соответствующую формулу теплового расширения.
- Если в задаче наряду с расширением тел рассматриваются другие процессы, сопутствующие расширению, – теплообмен, изменение гидростатического давления жидкости или выталкивающей силы, то к уравнениям теплового расширения надо добавить формулы калориметрии и гидростатики.
- Синтез (получить результат).
- Решить полученную систему уравнений относительно искомой величины.
- Решение проверить и оценить критически.
Газы.
По условию задачи даны два или несколько состояний газа и при переходе газа из одного состояния в другое его масса не меняется.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Представить какой газ участвует в том или ином процессе.
- Определить параметры p, V и T, характеризующие каждое состояние газа.
- Записать уравнение объединенного газового закона Клапейрона для данных состояний.
- Если один из трех параметров остается неизменным, уравнение Клапейрона автоматически переходит в одно из трех уравнений: закон Бойля – Мариотта, Гей-Люссака или Шарля.
- Записать математически все вспомогательные условия.
- Решить полученную систему уравнений относительно неизвестной величины.
- Решение проверить и оценить критически.
По условию задачи дано только одно состояние газа, и требуется определить какой либо параметр этого состояния или же даны два состояния с разной массой газа.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Установить, какие газы участвуют в рассматриваемых процессах.
- Определить параметры p, V и T, характеризующие каждое состояние газа.
- Для каждого состояния каждого газа (если их несколько) составить уравнение Менделеева – Клапейрона. Если дана смесь газов, то это уравнение записывается для каждого компонента. Связь между значениями давлений отдельных газов и результирующим давлением смеси устанавливается законом Дальтона.
- Записать математически дополнительные условия задачи
- Решить полученную систему уравнений относительно неизвестной величины.
- Решение проверить и оценить критически.
Насыщающие и ненасыщающие пары. Влажность.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Установить число состояний газа, рассматриваемых в условии задачи, обратить особое внимание на то, дается ли чистый пар жидкости или смесь пара с сухим воздухом.
- Для каждого состояния пара записать уравнение Менделеева – Клапейрона и формулу относительной влажности, если о последней что-либо сказано в условии. Составить уравнение Менделеева – Клапейрона для каждого состояния сухого воздуха (если дана смесь пара с воздухом). В тех случаях, когда при переходах из одного состояния в другое масса пара не меняется, вместо уравнения Менделеева – Клапейрона можно использовать сразу объединенный газовый закон.
- Записать математически все вспомогательные условия
- Решить полученную систему уравнений относительно неизвестной величины.
- Решение проверить и оценить критически.
Электростатика.
Решение задачи о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Расставить силы, действующие на точечный заряд, помещенный в электрическое поле, и записать для него уравнение равновесия или основное уравнение динамики материальной точки.
- Выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение.
- Если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавляют уравнение закона сохранения зарядов.
- Записать математически все вспомогательные условия
- Решить полученную систему уравнений относительно неизвестной величины.
- Решение проверить и оценить критически.
Постоянный ток.
Задачи на определение силы тока, напряжения или сопротивления на участке цепи.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Начертить схему и указать на ней все элементы.
- Установить, какие элементы цепи включены последовательно, какие – параллельно.
- Расставить токи и напряжения на каждом участке цепи и записать для каждой точки разветвления (если они есть) уравнения токов и уравнения, связывающие напряжения на участках цепи.
- Используя закон Ома, установить связь между токами, напряжениями и э.д.с.
- Если в схеме делают какие-либо переключения сопротивлений или источников, уравнения составляют для каждого режима работы цепи.
- Решить полученную систему уравнений относительно неизвестной величины.
- Решение проверить и оценить критически.
Электромагнетизм.
Задачи о силовом действии магнитного поля на проводники с током.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Сделать схематический чертеж, на котором указать контур с током и направление силовых линий поля. Отметить углы между направлением поля и отдельными элементами контура.
- Используя правило левой руки, определить направление сил поля (сила Ампера), действующих на каждый элемент контура, и проставить векторы этих сил на чертеже.
- Указать все остальные силы, действующие на контур.
- Исходя из физической природы сил, выразить силы через величины, от которых они зависят.
- Решить полученную систему уравнений относительно неизвестной величины.
- Решение проверить и оценить критически.
Задачи о силовом действии магнитного поля на заряженные частицы.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Нужно сделать чертеж, указать на нем силовые линии магнитного и электрического полей, проставить вектор начальной скорости частицы и отметить знак ее заряда.
- Изобразить силы, действующие на заряженную частицу.
- Определить вид траектории частицы.
- Разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному.
- Составить основное уравнение динамики материальной точки по каждому из направлений разложения сил.
- Исходя из физической природы сил, выразить силы через величины, от которых они зависят.
- Решить полученную систему уравнений относительно неизвестной величины.
- Решение проверить и оценить критически.
Задачи на закон электромагнитной индукции.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Установить причины изменения магнитного потока, связанного с контуром, и определить какая из величин В, S, входящих в выражение для Ф, изменяется с течением времени.
- Записать формулу закона электромагнитной индукции.
- Выражение для Ф представить в развернутом виде и подставить в исходную формулу закона электромагнитной индукции.
- Записать математически все вспомогательные условия.
- Полученную систему уравнений решить относительно искомой величины.
- Решение проверить и оценить критически.
Преломление света.
Задачи о преломлении света на плоской границе раздела двух сред.
- Понять предложенную задачу (увидеть физическую модель).
- Анализ (построить математическую модель явления):
- Установить переходит ли луч из оптически менее плотной среды в более плотную или наоборот.
- Сделать чертеж, где указать ход лучей, идущих из одной среды в другую.
- В точке падения луча на границу раздела сред провести нормаль и отметить углы падения и преломления.
- Записать формулу закона преломления для каждого перехода луча из одной среды в другую.
- Составить вспомогательные уравнения, связывающие углы и расстояния, используемые в задаче.
- Полученную систему уравнений решить относительно искомой величины.
- Решение проверить и оценить критически.
По теме: методические разработки, презентации и конспекты
![](/sites/default/files/pictures/2023/03/06/picture-70301-1678092991.jpg)
Плакаты для оформления кабинета физики
В архив помещены плакаты для оформления кабинета физики (выполнены в Word): "Сведения о Солнце, Земле и Луне", "Фундаментальнын физические постоянные", "Множители и приставки СИ", "Метрическая система...
Материал для оформления стенда "Физика в мире наук"
Данный материал можно использовать для оформления стенда, на тематической неделе и просто на уроках, как интересные факты....
![](/sites/default/files/pictures/2012/11/12/picture-136098-1352740310.jpg)
Плакаты для оформления кабинета физики
Плакакт предназначен для оказания помощи обучающимся в запоминании основных физических величин....
Для оформления кабинета физики
Для оформления кабинета физики...
![](/sites/default/files/pictures/2013/07/25/picture-263848-1374756498.jpg)
ПОДБОРКА МАТЕРИАЛА ДЛЯ ОФОРМЛЕНИЯ КАБИНЕТА МАТЕМАТИКИ
ПОДБОРКА МАТЕРИАЛА ДЛЯ ОФОРМЛЕНИЯ КАБИНЕТА СОДЕРЖИТ ИСТОРИЮ МАТЕМАТИКИ И ФОРМУЛЫ...
![](/sites/default/files/pictures/2017/10/21/picture-121992-1508577431.jpg)
Материал для оформления кабинета английского языка
Яркие, подробные материалы формата А4 о Великобритании и англоговорящих странах....