Рабочая программа "Решение задач по математике профильного уровня" 10 класс
рабочая программа по математике (10 класс)

Потехина Жанна Григорьевна

Программа курса по математике для учащихся 10 классов направлена на расширение и углубление знаний по предмету. Темы программы непосредственно примыкают к основному курсу профильной математики 10 класса.

Скачать:

ВложениеРазмер
Файл rabochaya_programma.docx28.19 КБ

Предварительный просмотр:

Планируемые результаты изучения курса

Уравнения и неравенства

Выпускник научится:

  • Решать линейные уравнения и неравенства, квадратные уравнения;
  • приводить несколько примеров корней простейшего тригонометрического уравнения вида: sin x = a,  cos x = a,  tg x = a, ctg x = a, где a – табличное значение соответствующей тригонометрической функции.

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения и системы уравнений при решении несложных практических задач

Выпускник получит возможность научиться:

  • Решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы;
  • использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;
  • использовать метод интервалов для решения неравенств;
  • использовать графический метод для приближенного решения уравнений и неравенств;
  • изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств;
  • выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями.

В повседневной жизни и при изучении других учебных предметов:

  • составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов;
  • использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;
  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи

Функции

Выпускник научится:

  • Оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период;
  • оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
  • распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций;
  • соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций с формулами, которыми они заданы;
  • находить по графику приближённо значения функции в заданных точках;
  • определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.);
  • строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.).

В повседневной жизни и при изучении других предметов:

  • определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.);
  • интерпретировать свойства в контексте конкретной практической ситуации

Выпускник получит возможность научиться:

  • Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции;
  • оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
  • определять значение функции по значению аргумента при различных способах задания функции;
  • строить графики изученных функций;
  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
  • строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.);
  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.

В повседневной жизни и при изучении других учебных предметов:

  • определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.);
  • интерпретировать свойства в контексте конкретной практической ситуации; 
  • определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)

Элементы математического анализа

Выпускник научится:

  • Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции;
  • определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке;
  • решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой.

В повседневной жизни и при изучении других предметов:

  • пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах;
  • соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.);
  • использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса

Выпускник получит возможность научиться:

  • Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;
  • вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;
  • вычислять производные элементарных функций и их комбинаций, используя справочные материалы;
  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.
  • В повседневной жизни и при изучении других учебных предметов:
  • решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.;
  •  интерпретировать полученные результаты

Статистика и теория вероятностей, логика и комбинаторика

Выпускник научится:

  • Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;
  • оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;
  • вычислять вероятности событий на основе подсчета числа исходов.

В повседневной жизни и при изучении других предметов:

  • оценивать и сравнивать в простых случаях вероятности событий в реальной жизни;
  • читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков

Выпускник получит возможность научиться:

  • Иметь представление о дискретных и непрерывных случайных величинах, и распределениях, о независимости случайных величин;
  • иметь представление о математическом ожидании и дисперсии случайных величин;
  • иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;
  • понимать суть закона больших чисел и выборочного метода измерения вероятностей;
  • иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;
  • иметь представление о важных частных видах распределений и применять их в решении задач;
  • иметь представление о корреляции случайных величин, о линейной регрессии.

В повседневной жизни и при изучении других предметов:

  • вычислять или оценивать вероятности событий в реальной жизни;
  • выбирать подходящие методы представления и обработки данных;
  • уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях

Геометрия

Выпускник научится:

  • Оперировать на базовом уровне понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;
  • распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
  • изображать изучаемые фигуры от руки и с применением простых чертежных инструментов;
  • делать (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу;
  • извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;
  • применять теорему Пифагора при вычислении элементов стереометрических фигур;
  • находить объемы и площади поверхностей простейших многогранников с применением формул;
  • распознавать основные виды тел вращения (конус, цилиндр, сфера и шар);
  • находить объемы и площади поверхностей простейших многогранников и тел вращения с применением формул.

В повседневной жизни и при изучении других предметов:

  • соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;
  • использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания;
  • соотносить площади поверхностей тел одинаковой формы различного размера;
  • соотносить объемы сосудов одинаковой формы различного размера;
  • оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер и граней полученных многогранников)

Выпускник получит возможность научится:

  • Оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;
  • применять для решения задач геометрические факты, если условия применения заданы в явной форме;
  • решать задачи на нахождение геометрических величин по образцам или алгоритмам;
  • делать (выносные) плоские чертежи из рисунков объемных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;
  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
  • применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;
  • описывать взаимное расположение прямых и плоскостей в пространстве;
  • формулировать свойства и признаки фигур;
  • доказывать геометрические утверждения;
  • владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);
  • находить объемы и площади поверхностей геометрических тел с применением формул;
  • вычислять расстояния и углы в пространстве.

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний

СОДЕРЖАНИЕ КУРСА

Числа и выражения

Множества натуральных, целых, рациональных, действительных чисел. Множество комплексных чисел. Действия с комплексными числами. Комплексно сопряжённые числа. Модуль и аргумент числа. Тождественные преобразования степенных и иррациональных выражений. Метод математической индукции.

Функции

Функция и её свойства; нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значения функции. Периодическая функция и её наименьший период. Чётные и нечётные функции. Функции «дробная часть числа» y = {x} и «целая часть числа» y = [x]. Взаимно обратные функции. Графики взаимно обратных функций. Тригонометрические функции числового аргумента y = cos x, y = sin x, y = tg x, y = ctg x. Свойства и графики тригонометрических функций. Обратные тригонометрические функции, их главные значения, свойства и графики. Преобразования графиков функций: сдвиг, умножение на число, симметрия относительно координатных осей и начала координат.

Элементы математического анализа

Бесконечно малые и бесконечно большие числовые последовательности. Предел числовой последовательности. Касательная к графику функции. Геометрический и физический смысл производной.

Комбинаторика, вероятность и статистика, логика и теория графов

Вероятность события. Сумма вероятностей несовместных событий. Противоположные события.

Геометрия

Решение задач с применением свойств фигур на плоскости. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Геометрические места точек в пространстве

Тематическое планирование

п/п

Название тематического раздела

Количество часов, отводимых на освоение тематического раздела

1

Числа, корни и степени

2

2

Основы тригонометрии

2

3

Преобразования выражений

2

4

Уравнения

2

5

Системы уравнений

2

6

Неравенства

2

7

Системы неравенств

2

8

Определение и график функции

2

9

Элементарное исследование функций

2

10

Основные элементарные функции

2

11

Планиметрия

2

12

Производная

2

13

Исследование функций

2

14

Основы тригонометрии

2

15

Многогранники, тела вращения

2

16

Элементы комбинаторики, статистики, теории вероятностей

2

17

Тренировочный вариант ЕГЭ

2

Всего

34


По теме: методические разработки, презентации и конспекты

Рабочая программа спецкурса по математике для 7 класса "Логические задачи"

  Спецкурс «Логические задачи» по математике для учащихся 7-го класса предназначен для развития логического мышления  и  познавательной активности учащихся. Материал данного курс...

Рабочая программа учебного предмета «Математика» 10-11 класс (профильный уровень). Разработана Петрашовой В.Н.

Рабочая программа учебного предмета «Математика» 10-11 класс (профильный уровень). Разработана Петрашовой В.Н....

Рабочая программа учебного курса Математика Профильный уровень 11 класс

Пояснительная запискаШкольное образование в современных условиях призвано обеспечить функциональную грамотность и социальную адаптацию обучающихся на основе приобретения ими компетентностного опыта в ...

Рабочая программа спецкурса по математике для 5 класса основного общего образования «Нестандартные задачи по математике»

Рабочая программа спецкурса по математике для 5 класса основного общего образования "Нестандартные задачи по математике" включает пояснительную записку, литературу, требования к учащимся, со...

Рабочая программа учебного курса математика профильного уровня 11 класса

Рабочая программа учебного курса математика в 11 классе...

Методы решения текстовых задач по математике профильного уровня в формате ЕГЭ

В работе представлены методы решения текстовых задач по математике профильного уровня. Задание №11....

Рабочая программа "Решение задач по математике профильного уровня" 11 класс

Программа курса  направлена на расширение и углубление знаний по предмету. Темы программы непосредственно примыкают к основному курсу профильной математики 11 класса...