Рабочая программа "Решение задач по математике профильного уровня" 10 класс
рабочая программа по математике (10 класс)
Программа курса по математике для учащихся 10 классов направлена на расширение и углубление знаний по предмету. Темы программы непосредственно примыкают к основному курсу профильной математики 10 класса.
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma.docx | 28.19 КБ |
Предварительный просмотр:
Планируемые результаты изучения курса
Уравнения и неравенства
Выпускник научится:
- Решать линейные уравнения и неравенства, квадратные уравнения;
- приводить несколько примеров корней простейшего тригонометрического уравнения вида: sin x = a, cos x = a, tg x = a, ctg x = a, где a – табличное значение соответствующей тригонометрической функции.
В повседневной жизни и при изучении других предметов:
- составлять и решать уравнения и системы уравнений при решении несложных практических задач
Выпускник получит возможность научиться:
- Решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы;
- использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;
- использовать метод интервалов для решения неравенств;
- использовать графический метод для приближенного решения уравнений и неравенств;
- изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств;
- выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями.
В повседневной жизни и при изучении других учебных предметов:
- составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов;
- использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;
- уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи
Функции
Выпускник научится:
- Оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период;
- оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
- распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций;
- соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций с формулами, которыми они заданы;
- находить по графику приближённо значения функции в заданных точках;
- определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.);
- строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.).
В повседневной жизни и при изучении других предметов:
- определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.);
- интерпретировать свойства в контексте конкретной практической ситуации
Выпускник получит возможность научиться:
- Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции;
- оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.);
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.
В повседневной жизни и при изучении других учебных предметов:
- определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.);
- интерпретировать свойства в контексте конкретной практической ситуации;
- определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)
Элементы математического анализа
Выпускник научится:
- Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции;
- определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке;
- решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой.
В повседневной жизни и при изучении других предметов:
- пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах;
- соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.);
- использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса
Выпускник получит возможность научиться:
- Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;
- вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;
- вычислять производные элементарных функций и их комбинаций, используя справочные материалы;
- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.
- В повседневной жизни и при изучении других учебных предметов:
- решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.;
- интерпретировать полученные результаты
Статистика и теория вероятностей, логика и комбинаторика
Выпускник научится:
- Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;
- оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;
- вычислять вероятности событий на основе подсчета числа исходов.
В повседневной жизни и при изучении других предметов:
- оценивать и сравнивать в простых случаях вероятности событий в реальной жизни;
- читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков
Выпускник получит возможность научиться:
- Иметь представление о дискретных и непрерывных случайных величинах, и распределениях, о независимости случайных величин;
- иметь представление о математическом ожидании и дисперсии случайных величин;
- иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;
- понимать суть закона больших чисел и выборочного метода измерения вероятностей;
- иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;
- иметь представление о важных частных видах распределений и применять их в решении задач;
- иметь представление о корреляции случайных величин, о линейной регрессии.
В повседневной жизни и при изучении других предметов:
- вычислять или оценивать вероятности событий в реальной жизни;
- выбирать подходящие методы представления и обработки данных;
- уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях
Геометрия
Выпускник научится:
- Оперировать на базовом уровне понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;
- распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
- изображать изучаемые фигуры от руки и с применением простых чертежных инструментов;
- делать (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу;
- извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;
- применять теорему Пифагора при вычислении элементов стереометрических фигур;
- находить объемы и площади поверхностей простейших многогранников с применением формул;
- распознавать основные виды тел вращения (конус, цилиндр, сфера и шар);
- находить объемы и площади поверхностей простейших многогранников и тел вращения с применением формул.
В повседневной жизни и при изучении других предметов:
- соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;
- использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания;
- соотносить площади поверхностей тел одинаковой формы различного размера;
- соотносить объемы сосудов одинаковой формы различного размера;
- оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер и граней полученных многогранников)
Выпускник получит возможность научится:
- Оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;
- применять для решения задач геометрические факты, если условия применения заданы в явной форме;
- решать задачи на нахождение геометрических величин по образцам или алгоритмам;
- делать (выносные) плоские чертежи из рисунков объемных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;
- извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
- применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;
- описывать взаимное расположение прямых и плоскостей в пространстве;
- формулировать свойства и признаки фигур;
- доказывать геометрические утверждения;
- владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);
- находить объемы и площади поверхностей геометрических тел с применением формул;
- вычислять расстояния и углы в пространстве.
В повседневной жизни и при изучении других предметов:
- использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний
СОДЕРЖАНИЕ КУРСА
Числа и выражения
Множества натуральных, целых, рациональных, действительных чисел. Множество комплексных чисел. Действия с комплексными числами. Комплексно сопряжённые числа. Модуль и аргумент числа. Тождественные преобразования степенных и иррациональных выражений. Метод математической индукции.
Функции
Функция и её свойства; нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значения функции. Периодическая функция и её наименьший период. Чётные и нечётные функции. Функции «дробная часть числа» y = {x} и «целая часть числа» y = [x]. Взаимно обратные функции. Графики взаимно обратных функций. Тригонометрические функции числового аргумента y = cos x, y = sin x, y = tg x, y = ctg x. Свойства и графики тригонометрических функций. Обратные тригонометрические функции, их главные значения, свойства и графики. Преобразования графиков функций: сдвиг, умножение на число, симметрия относительно координатных осей и начала координат.
Элементы математического анализа
Бесконечно малые и бесконечно большие числовые последовательности. Предел числовой последовательности. Касательная к графику функции. Геометрический и физический смысл производной.
Комбинаторика, вероятность и статистика, логика и теория графов
Вероятность события. Сумма вероятностей несовместных событий. Противоположные события.
Геометрия
Решение задач с применением свойств фигур на плоскости. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Геометрические места точек в пространстве
Тематическое планирование
№ п/п | Название тематического раздела | Количество часов, отводимых на освоение тематического раздела |
1 | Числа, корни и степени | 2 |
2 | Основы тригонометрии | 2 |
3 | Преобразования выражений | 2 |
4 | Уравнения | 2 |
5 | Системы уравнений | 2 |
6 | Неравенства | 2 |
7 | Системы неравенств | 2 |
8 | Определение и график функции | 2 |
9 | Элементарное исследование функций | 2 |
10 | Основные элементарные функции | 2 |
11 | Планиметрия | 2 |
12 | Производная | 2 |
13 | Исследование функций | 2 |
14 | Основы тригонометрии | 2 |
15 | Многогранники, тела вращения | 2 |
16 | Элементы комбинаторики, статистики, теории вероятностей | 2 |
17 | Тренировочный вариант ЕГЭ | 2 |
Всего | 34 |
По теме: методические разработки, презентации и конспекты
Рабочая программа спецкурса по математике для 7 класса "Логические задачи"
Спецкурс «Логические задачи» по математике для учащихся 7-го класса предназначен для развития логического мышления и познавательной активности учащихся. Материал данного курс...
Рабочая программа учебного предмета «Математика» 10-11 класс (профильный уровень). Разработана Петрашовой В.Н.
Рабочая программа учебного предмета «Математика» 10-11 класс (профильный уровень). Разработана Петрашовой В.Н....
Рабочая программа учебного курса Математика Профильный уровень 11 класс
Пояснительная запискаШкольное образование в современных условиях призвано обеспечить функциональную грамотность и социальную адаптацию обучающихся на основе приобретения ими компетентностного опыта в ...
Рабочая программа спецкурса по математике для 5 класса основного общего образования «Нестандартные задачи по математике»
Рабочая программа спецкурса по математике для 5 класса основного общего образования "Нестандартные задачи по математике" включает пояснительную записку, литературу, требования к учащимся, со...
Рабочая программа учебного курса математика профильного уровня 11 класса
Рабочая программа учебного курса математика в 11 классе...
Методы решения текстовых задач по математике профильного уровня в формате ЕГЭ
В работе представлены методы решения текстовых задач по математике профильного уровня. Задание №11....
Рабочая программа "Решение задач по математике профильного уровня" 11 класс
Программа курса направлена на расширение и углубление знаний по предмету. Темы программы непосредственно примыкают к основному курсу профильной математики 11 класса...