25.обратные тригонометрические функции
план-конспект урока по математике

Игнатова Софья Николаевна

.

Скачать:

ВложениеРазмер
Файл 25.docx101.41 КБ

Предварительный просмотр:

№25

Здравствуйте, ребята!

Итак, приступим!

(конспект проверю сразу 8.11.21) №25: Обратные тригонометрические функции. Арксинус, арккосинус, арктангенс.

Графики проверю в первую очередь!!!!

Изучение нового материала

2) Функции y=arcsinx,y=arccosx,y=arctgx,y=arcctgx называются обратными тригонометрическими функциями. Приставка «arc» означает обратный.

Функция y = arcsin x

По определению арксинуса числа для каждого x[−1;1] определено одно число y=arcsinx. Тем самым на отрезке [−1;1] задана функция y=arcsinx,−1≤x≤1

График функции y=arcsinx симметричен графику функции

y=sinx, где −π/2≤x≤π/2 относительно прямой y=x .

Основные свойства функции y=arcsinx

1. Область определения - отрезок [−1;1]

2. Область изменения - отрезок [−π/2;π/2]

3. Функция y=arcsinx является нечётной, так как

arcsin(−x)=−arcsinx

Функция y = arccos x

По определению арккосинуса числа для каждого x[−1;1] определено одно число y=arccosx. Тем самым на отрезке [−1;1] определена функция

y=arccosx,где −1≤x≤1.

Основные свойства функции y=arccosx

1. Область определения - отрезок [−1;1]

2. Множество значений - отрезок [0;π]

3. Функция y=arccosx убывает

Функция y = arctg x

По определению арктангенса числа для каждого действительного x определено одно число y=arctgx. Тем самым на всей числовой прямой определена функция y=arctgx,xR.

Основные свойства функции y=arctgx

1. Область определения - множество R всех действительных чисел

2. Множество значений - интервал (−π/2;π/2)

3. Функция y=arctgx возрастает.

4. Функция y=arctgx является нечётной, так как

arctg(−x)=−arctgx

Функция y=arcctgx

Поэтому, график функции y=arcctgx можно получить из графика функции

y=ctgx, x(0;π) с

Свойства функцииy=arcctgx

1. D(f)=(−∞;+∞)

2. E(f)=(0;π)

3. Функция не является ни чётной, ни нечётной, т.к. график функции не симметричен ни относительно начала координат, ни относительно оси y.

4. Функция убывает.

5. Функция непрерывна.

arcctga - это такое число из интервала (0;π), котангенс которого равен a

Итак, arcctga=t{ctgt=a,0

Для арккотангенса имеет место соотношение, аналогичное для арккосинуса

arcctg(−a)=π−arcctga


По теме: методические разработки, презентации и конспекты

Элективный курс "Обратные тригонометрические функции"

Элективный курс на 17 часов с тестами и контрольной работой....

Элективный курс "Обратные тригонометрические функции"

Элективный курс на 17 часов с тестами и контрольной работой....

Разработка урока алгебры Обратные тригонометрические функции

Тема урока:Обратные тригонометрические функции. Арксинус и арккосинус.Тип урока: закрепление изученного материала.Методы обучения: наглядный, словесный, практический.Средства обучения: доска, ко...

Тест по теме «Обратные тригонометрические функции» в 4-х вариантах

Задачи теста «Обратные тригонометрические функции» соответствуют программным требованиям. Тест предназначен для проверки уровня знаний, умений и навыков учащихся по данной теме и могут помочь выпускни...

Выпускная работа "Обратные тригонометрические функции. Задачи, содержащие обратные тригонометрические функции"

Выпускная работа на тему "Обратные тригонометрические функции. Задачи, содержащие обратные тригонометрические функции" выполнена на курсах повышения квалификации. Содержит краткий теоретический матер...

Тема 21. Итоговый контроль по темам № 16-20: «Преобразования и вычисления тригонометрических выражений. Тригонометрические уравнения. Действия с обратными тригонометрическими функциями».

Уважаемые коллеги!Актуальной задачей на сегодняшний день является качественная подготовка учащихся к  единому государственному экзамену (ЕГЭ) по математике, а также  абитуриентов к вступител...