Презентация "Площади фигур"
материал для подготовки к егэ (гиа) по математике (9 класс)
Презентацию можно использовать при подготовке к ОГЭ и ЕГЭ.
Скачать:
Вложение | Размер |
---|---|
ploshchad_figur.pptx | 2.6 МБ |
Предварительный просмотр:
Подписи к слайдам:
Что такое площадь: определение Площадь фигуры - это часть плоскости, ограниченная замкнутой кривой или ломаной линией. Обозначается эта величина буквой S . У разных фигур разные формулы для нахождения их площади.
Прямоугольник Площадь прямоугольника равна произведению его смежных сторон:
Треугольник Площадь треугольника равна половине произведения его основания на высоту.
Прямоугольный треугольник Площадь прямоугольного треугольника равна половине произведения его катетов.
Равнобедренный треугольник Площадь равнобедренного треугольника равняется произведению высоты на половину длины основания.
Трапеция Площадь трапеции равна произведению полусуммы оснований на высоту.
Параллелограмм Площадь параллелограмма равна произведению основания и высоты опущенной на это основание.
Практическая часть
Квадрат Задание № 1 Сторона квадрата равна 10. Найдите его площадь. Решение: Площадь квадрата равна квадрату его стороны, поэтому она равна 100. Ответ: 100.
Задание № 2 Периметр квадрата равен 40. Найдите площадь квадрата. Решение: Периметр квадрата равен сумме длин всех его сторон. Таким образом, сторона квадрата равна 10. Площадь квадрата равна квадрату его стороны, поэтому она равна 100. Ответ: 100.
Задание № 3 Периметр квадрата равен 160. Найдите площадь квадрата. Решение: Все стороны квадрата равны, поэтому сторона длинны стороны квадрата равна 160/4 = 40. Найдем площадь квадрата как квадрат его стороны: S =40*40=1600. Ответ: 1600.
Прямоугольник Задание №1 В прямоугольнике одна сторона равна 10, ругая сторона 12. Найдите площадь прямоугольника. Решение: Площадь треугольника равна произведению его смежных сторон, поэтому она равна 120. Ответ: 120.
Задание №2 Найдите площадь прямоугольника, если его периметр равен 58 и одна сторона на 5 больше другой. Решение: Площадь прямоугольника равна произведению его сторон. Найдём стороны прямоугольника. Пусть x — меньшая сторона прямоугольника, тогда другая сторона равна х+5.  Следовательно, периметр прямоугольника равен 2*(х+х+5)=58 откуда 4х=48, следовательно х=12. Поэтому площадь прямоугольника равна 12*(12+5)=204. Ответ: 204.
Задание №3. Найдите площадь прямоугольника, если его периметр равен 44 и одна сторона на 2 больше другой. Решение: Площадь прямоугольника равна произведению его сторон. Найдём стороны прямоугольника. Пусть x — меньшая сторона прямоугольника. Тогда периметр прямоугольника равен 2*( х+ (х+2))=44, откуда 2х=22-2, следовательно х=10. Поэтому площадь прямоугольника равна 10*12=120. Ответ: 120.
Прямоугольный треугольник Задание №1. Два катета прямоугольного треугольника равны 4 и 9. Найдите площадь этого треугольника. Решение: Площадь прямоугольного треугольника равна половине произведения катетов. Таким образом: S=1/2*4*9=18. Ответ: 18.
Задание №2. В прямоугольном треугольнике один из катетов равен 10, а угол, лежащий напротив него, равен 45°. Найдите площадь треугольника. Решение: Так как в прямоугольном треугольнике один из углов равен 45°, то такой треугольник является равнобедренным. Площадь прямоугольного треугольника равна половине произведения катетов. Таким образом: S =1/2*10*10=50. Ответ: 50.
Задание № 3. В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника. Решение: Сумма углов в треугольнике равна 180°, поэтому второй острый угол равен 180° − 90° − 45° = 45° . Оба острых угла равны, следовательно, данный треугольник — равнобедренный, откуда получаем, что второй катет равен 4. Площадь прямоугольного треугольника можно найти как половину произведения катетов: S =1/2*4*4=8. Ответ: 8.
Равнобедренный треугольник Задание №1. Периметр равнобедренного треугольника равен 16, а боковая сторона — 5. Найдите площадь треугольника. Решение: Так как боковая сторона равнобедренного треугольника равна 5, его основание равно 6, а полупериметр: 16/2=8, по формуле Герона имеем: Ответ: 12.
Задание №2. Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника. Решение: Пусть  а — длина основания равнобедренного треугольника,  b — длина боковой стороны равнобедренного треугольника, h  — высота, проведенная к основанию . Высота равнобедренного треугольника, проедённая к основанию, также является его биссектрисой и медианой. Из прямоугольного треугольника найдём высоту по теореме Пифагора: Площадь треугольника равна половине произведения основания на высоту: S=1/2*ah=1/2*60*16=480 Ответ: 480.
Задание № 3. Периметр равнобедренного треугольника равен 216, а боковая сторона — 78. Найдите площадь треугольника. Решение: Периметр треугольника равен сумме длин его сторон, поэтому длина основания равна 216 − 78 − 78 = 60. Высота  проведённая к основанию равнобедренного треугольника, также является его биссектрисой и медианой, поэтому (см. рис.) имеем: Площадь треугольника равна половине произведения основания на высоту: S =1/2*60*72=2160. Ответ: 2160.
Трапеция Задание №1. Найдите площадь трапеции, изображённой на рисунке. Решение: Площадь трапеции равна произведению полусуммы оснований на высоту: S= (1/2*(7+9+12))*12=168 Ответ: 168.
Задание №2. Найдите площадь трапеции, изображённой на рисунке. Решение: Площадь трапеции вычисляется по формуле S= (( a+b )/2)*h , где a и b – основания, а h – высота трапеции. S =((5+7+15)/2)*24=324. Ответ: 324.
Задание №3. Основания равнобедренной трапеции равны 5 и 17, а ее боковые стороны равны 10. Найдите площадь трапеции. Решение: Ответ: 88.
Треугольники общего вида Задание №1. В треугольнике одна из сторон равна 10, а опущенная на нее высота — 5. Найдите площадь треугольника. Решение: Площадь треугольника равна половине произведения высоты на основание. Таким образом: S= 1/2*10*5=25 Ответ: 25.
Задание №2. Найдите площадь треугольника, изображённого на рисунке. Решение: Площадь треугольника можно найти как половину произведения основания на высоту: S= 1/2* a * h= 1/2*(32+10)*24=504. Ответ: 504.
Задание №3. Сторона треугольника равна 12, а высота, проведённая к этой стороне, равна 33. Найдите площадь этого треугольника. Решение: Площадь треугольника равна полупроизведению стороны треугольника на высоту, проведенную к этой стороне:  S =1/2*12*33=198 Ответ: 198.
Параллелограмм Задание №1. Найдите площадь параллелограмма, изображённого на рисунке. Решение: Площадь параллелограмма равна произведению длины основания на высоту: S=(3+7)*4=40 Ответ: 40.
Задание №2. Сторона ромба равна 5, а диагональ равна 6. Найдите площадь ромба. Решение: Площадь ромба равна половине произведения диагоналей: ½*8*6=24 Ответ: 24.
Задание №3. Периметр ромба равен 40, а один из углов равен 30°. Найдите площадь ромба. Решение: Периметр ромба равен сумме длин всех его сторон. Так как все стороны равны, сторона ромба равна 10. Площадь ромба равна произведению сторон на синус угла между ними. Таким образом, S= 10*10*1/2=50 Ответ: 50.
Задания для самостоятельной проверки знаний №1. Найдите площадь квадрата , описанного вокруг окружности радиуса 83 . № 2. Найдите площадь квадрата, если его диагональ равна 1.
№ 3. Из квадрата вырезали прямоугольник (см. рисунок ). Найдите площадь получившейся фигуры. № 4. На стороне BC прямоугольника ABCD, у которого AB = 12 и AD = 17, отмечена точка E так, что ∠EAB = 45°. Найдите ED.
№ 5. В прямоугольнике одна сторона равна 96, а диагональ равна 100. Найдите площадь прямоугольника. № 6 . Два катета прямоугольного треугольника равны 4 и 9. Найдите площадь этого треугольника . № 7. В прямоугольном треугольнике гипотенуза равна 70, а один из острых углов равен 45°. Найдите площадь треугольника .
№ 8 . Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника. № 9. В треугольнике ABC отрезок DE — средняя линия. Площадь треугольника CDE равна 97. Найдите площадь треугольника ABC. № 10. Периметр ромба равен 116, а один из углов равен 30°. Найдите площадь ромба . № 11. Радиус круга равен 3, а длина ограничивающей его окружности равна 6π. Найдите площадь круга. В ответ запишите площадь, деленную на π .
По теме: методические разработки, презентации и конспекты
площади фигур
площади фигур в планиметрии...
Презентация к уроку геометрии в 8 классе "Площади фигур"
Презентация к зачёту по геометрии в 8 классе по теме "Площади фигур" для класса со слабой математической подготовкой. При работе с презентацией - смотрите заметки к слайдам....
Урок 5 класса "Измерение фигуры человека и запись мерок для построения чертежа выкроек фартука"
Урок 5 класса "Измерение фигуры человека и запись мерок для построения чертежа выкроек фартука"...
ИП "Поэтический синтаксис и интонационные фигуры"
Интерактивные плакаты необходимы: 1.Информация, представленная на них, охватывает темы нескольких классов. Этим создается огромная экономия времени по созданию презентации по данной теме в ...
Презентация. Знакомим детей с геометрическими фигурами. Игра "Нарисуй картинку"
В презентации представлены игры с плоскостными геометрическими фигурами для детей дошкольного возраста. Игры имеют разную степень сложности, поэтому в нее могут играть дети 3-7 лет....
Понятие симметричной фигуры.Нахождение осей симметрии фигур.
Презентация к уроку математики...
Тема :Стилистические фигуры,основанные на возможностях русского синтаксиса. Тема :Стилистические фигуры,основанные на возможностях русского синтаксиса.
Цель: показать роль стилистических фигур в текстах художественного стиля;Формировать навыки культуры речи; отрабатывать умение работать с типовыми заданиями ЕГЭ; совершенствовать умение различат...