Презентация
презентация к уроку по математике (11 класс)
Предварительный просмотр:
Подписи к слайдам:
Окружность и круг Часть плоскости, ограниченная окружностью, называется кругом. r d r Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии r от данной точки. r – радиус; d – диаметр
Определение сферы R Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии ( R) от данной точки ( центра т.О). Сфера – тело полученное в результате вращения полуокруж-ности вокруг её диаметра. т. О – центр сферы О D – диаметр сферы – отрезок, соединяющий любые 2 точки сферы и проходящий через центр. D = 2R Параллель (экватор) меридиан диаметр R – радиус сферы – отрезок, соединяющий любую точку сферы с центром.
Шар Тело, ограниченное сферой, называется шаром. Центр, радиус и диаметр сферы являются также центром, радиусом и диаметром шара. Шар радиуса R и центром О содержит все точки пространства, которые расположены от т. О на расстоянии, не превышающем R.
Исторические сведения о сфере и шаре Оба слова « шар » и « сфера » происходят от греческого слова «сфайра» - мяч. В древности сфера и шар были в большом почёте. Астрономические наблюдения над небесным сводом вызывали образ сферы. Пифагорейцы в своих полумистических рассуждениях утверждали, что сферические небесные тела располагаются друг от друга на расстоянии пропорциональном интервалам музыкальной гаммы. В этом усматривались элементы мировой гармонии. Отсюда пошло выражение «музыка сферы». Аристотель считал, что шарообразная форма, как наиболее совершенная, свойственна Солнцу, Земле, Луне и всем мировым телам. Так же он полагал, что Земля окружена рядом концентрических сфер. Сфера, шар всегда широко применялись в различных областях науки и техники.
Как изобразить сферу? R 1. Отметить центр сферы (т.О) 2. Начертить окружность с центром в т.О 3. Изобразить видимую вертикальную дугу ( меридиан) 4. Изобразить невидимую вертикальную дугу 5. Изобразить видимую гори-зонтальную дугу (параллель) 6. Изобразить невидимую горизонтальную дугу 7. Провести радиус сферы R О
Уравнение окружности следовательно уравнение окружности имеет вид: (x – x 0 ) 2 + (y – y 0 ) 2 = r 2 С(х 0 ;у 0 ) М(х;у) х у О Зададим прямоугольную систему координат О xy Построим окружность c центром в т. С и радиусом r Расстояние от произвольной т. М ( х;у) до т.С вычисляется по формуле: МС = (x – x 0 ) 2 + (y – y 0 ) 2 МС = r , или МС 2 = r 2
Уравнение сферы (x – x 0 ) 2 + (y – y 0 ) 2 + (z – z 0 ) 2 = R 2 х у z М(х;у ;z ) R Зададим прямоугольную систему координат О xyz Построим сферу c центром в т. С и радиусом R МС = (x – x 0 ) 2 + (y – y 0 ) 2 + (z – z 0 ) 2 МС = R , или МС 2 = R 2 C(x 0 ;y 0 ;z 0 ) следовательно уравнение сферы имеет вид:
Взаимное расположение окружности и прямой r d Если d < r , то прямая и окружность имеют 2 общие точки. d = r d > r Если d = r , то прямая и окружность имеют 1 общую точку. Если d > r , то прямая и окружность не имеют общих точек. Возможны 3 случая
α C (0 ;0; d) Взаимное расположение сферы и плоскости В зависимости от соотношения d и R возможны 3 случая… х у z O Введем прямоугольную систему координат Oxyz Построим плоскость α , сов-падающую с плоскостью Оху Изобразим сферу с центром в т.С, лежащей на положительной полуоси Oz и имеющей координаты (0;0; d) , где d - расстояние (перпендикуляр) от центра сферы до плоскости α .
α C (0 ;0; d) Сечение шара плоскостью есть круг. х у z O r Взаимное расположение сферы и плоскости Рассмотрим 1 случай d < R , т.е. если расстояние от центра сферы до плоскости меньше радиуса сферы, то сечение сферы плоскостью есть окружность радиусом r . r = R 2 - d 2 М С приближением секущей плоскости к центру шара радиус круга увеличивается. Плоскость, проходящая через диаметр шара, называется диаметральной . Круг, полученный в результате сечения, называется большим кругом.
α C (0 ;0; d) d = R , т.е. если расстояние от центра сферы до плоскости равно радиусу сферы, то сфера и плоскость имеют одну общую точку х у z O Взаимное расположение сферы и плоскости Рассмотрим 2 случай
α C (0 ;0; d) d > R , т.е. если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек. х у z O Взаимное расположение сферы и плоскости Рассмотрим 3 случай
Площадь сферы Площадь сферы радиуса R : S сф =4 π R 2 Сферу нельзя развернуть на плоскость. Опишем около сферы многогран ник, так чтобы сфера касалась всех его граней. За площадь сферы принимается предел последовательности площадей поверхностей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани т.е.: Площадь поверхности шара равна учетверенной площади большего круга S шара =4 S круга
По теме: методические разработки, презентации и конспекты
Урок по теме: "Мультимедийные интерактивные презентации. Дизайн презентации и макеты слайдов. "
Данный урок рассматривается первым по счету в разделе «Компьютерные презентации». На данном уроке учащиеся знакомятся с программой POWERPOINT, учатся изменять дизайн и макет слайдов....
Презентация "Использование мультимедийных презентаций как универсального средства познания"
В презентации "Использование мультимедийных презентаций как универсального средства познания" даются советы по оформлению и наполнению презентаций....
Разработка урока и презентации "The Sightseeng Tours" London and Saint-Petersburg c презентацией
Цели: развитие речевого умения (монологическое высказывание); совершенствование грамматических навыков чтения и говорения (прошедшее неопределенное время, определенный артикль) Задачи: учи...
Презентация "Рекомендации по созданию мультимедийных презентаций"
§Предложить рекомендации по подготовке презентаций; §научить профессиональному оформлению слайдов. ...
Презентация к уроку "Обобщение по теме презентации"
Урок – деловая игра «Работа с пакетом презентаций Power Point». В ходе урока организовано повторение материала "электронные таблицы" с использованием КИМов, повторение технологи...
Презентация "Лица Победы". Данную презентацию можно использовать на уроках литературы в день памяти о тех, кто сражался и погиб в годы Великой Отечественной войны.
Данная презентация посвящена событиям Великой Отечественной войны и может быть использована в средних и старших классах как на уроках литературы, так и на внеклассных мероприятиях для пров...
Проектная деятельность на уроках литературы. 7 класс. Стихи Н.А.Некрасова .Презентация. презентация
Презентация к уроку"Проектная деятельность на уроках литературы.Стихи Н.А.Некрасова.7класс"...