Рабочая программа 10-11
рабочая программа по математике (10, 11 класс)
Разработанная рабочая программа соответствует ФГОС нового поколения и можно использовать любой УМК.
Скачать:
Вложение | Размер |
---|---|
kopiya_rab._programma_fgos_10-11.doc | 192.5 КБ |
Предварительный просмотр:
Муниципальное бюджетное общеобразовательное учреждение
«Средняя общеобразовательная школа №9»
г. Североморск, Мурманская обл.
РАБОЧАЯ ПРОГРАММА
УЧЕБНОГО ПРЕДМЕТА « Математика»
10-11класс
(углубленный уровень)
Разработчик:
Шкурко Елена Владимировна
учитель математики
высшей квалификационной категории
Рабочая программа по учебному предмету «Математика» для 10-11 классов составлена на основе:
- Федерального государственного образовательного стандарта среднего (полного) общего образования (в редакции приказа Минобрнауки РФ от 31.12.2015 г. № 1577);
- Примерной основной образовательной программы среднего общего образования 2015 г. (в редакции протокола от 28.06.2016 г. № 2/16-з федерального учебно-методического объединения по общему образованию);
- Основной образовательной программы среднего общего образования муниципального бюджетного общеобразовательного учреждения средней общеобразовательной школы № 9 г. Североморска Мурманской области.
В рабочей программе также учтены:
- преемственность с примерными программами ФГОС второго поколения основного общего образования,
- основные идеи и положения программы развития и формирования универсальных учебных действий для среднего общего образования,
- анализ результатов ЕГЭ в Мурманской области
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
Личностные результаты:
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
Метапредметные результаты
- первоначальное представление об идеях и методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
Предметные результаты
- овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
- умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;
- умение проводить классификации, логические обоснования, доказательства математических утверждений;
- развитие представлений о числе, овладение навыками устных, письменных, инструментальных вычислений;
- умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
- умение применять изученные понятия, результаты, методы для решения задач практического характера с использованием при необходимости справочных материалов, калькулятора, компьютера.
- применять приобретенные знания и умения для решения задач практического характера, задач из смежных дисциплин.
Метапредметными результатами освоения курса является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
- самостоятельно обнаруживать и формулировать учебную проблему, определять цель УД;
- выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
- составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
- работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
- в диалоге с учителем совершенствовать самостоятельно выбранные критерии оценки.
Познавательные УУД:
- проводить наблюдение и эксперимент под руководством учителя;
- осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;
- создавать и преобразовывать модели и схемы для решения задач;
- осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
- анализировать, сравнивать, классифицировать и обобщать факты и явления;
- давать определения понятиям
Коммуникативные УУД:
- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.;
- в дискуссии уметь выдвинуть аргументы и контраргументы;
- учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения и корректировать его;
- понимая позицию другого, различать в его речи мнение (точку зрения), доказательство (аргументы), факты (гипотезы, аксиомы, теории);
- уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Математика: алгебра и начала математического анализа, геометрия
Углубленный уровень «Системно-теоретические результаты» | ||
Раздел | Выпускник научится Для успешного продолжения образования по специальностям, связанным с прикладным использованием математики | Выпускник получит возможность научиться |
Цели освоения предмета | Для обеспечения возможности успешного продолжения образования по специальностям, связанным с осуществлением научной и исследовательской деятельности в области математики и смежных наук | |
Требования к результатам | ||
Элементы теории множеств и математической логики |
В повседневной жизни и при изучении других предметов:
|
В повседневной жизни и при изучении других предметов:
|
Числа и выражения |
В повседневной жизни и при изучении других предметов:
|
|
Уравнения и неравенства |
В повседневной жизни и при изучении других предметов:
|
|
Функции |
В повседневной жизни и при изучении других учебных предметов:
|
|
Элементы математического анализа |
В повседневной жизни и при изучении других учебных предметов:
|
|
Статистика и теория вероятностей, логика и комбинаторика |
В повседневной жизни и при изучении других предметов:
|
|
Текстовые задачи |
В повседневной жизни и при изучении других предметов:
| |
Геометрия |
В повседневной жизни и при изучении других предметов:
|
|
Векторы и координаты в пространстве |
|
|
История математики |
| |
Методы математики |
|
|
Основное содержание учебного предмета
«Математика 10-11»
Углубленный уровень
Алгебра и начала анализа
Повторение. Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, преобразований многочленов и дробно-рациональных выражений. Решение задач с использованием градусной меры угла. Модуль числа и его свойства. Решение задач на движение и совместную работу, смеси и сплавы с помощью линейных, квадратных и дробно-рациональных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков. Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной пропорциональности и функции . Графическое решение уравнений и неравенств. Использование операций над множествами и высказываниями. Использование неравенств и систем неравенств с одной переменной, числовых промежутков, их объединений и пересечений. Применение при решении задач свойств арифметической и геометрической прогрессии, суммирования бесконечной сходящейся геометрической прогрессии.
Множества (числовые, геометрических фигур). Характеристическое свойство, элемент множества, пустое, конечное, бесконечное множество. Способы задания множеств Подмножество. Отношения принадлежности, включения, равенства. Операции над множествами. Круги Эйлера. Конечные и бесконечные, счетные и несчетные множества.
Истинные и ложные высказывания, операции над высказываниями. Алгебра высказываний. Связь высказываний с множествами. Кванторы существования и всеобщности.
Законы логики. Основные логические правила. Решение логических задач с использованием кругов Эйлера, основных логических правил.
Умозаключения. Обоснования и доказательство в математике. Теоремы. Виды математических утверждений. Виды доказательств. Математическая индукция. Утверждения: обратное данному, противоположное, обратное противоположному данному. Признак и свойство, необходимые и достаточные условия.
Основная теорема арифметики. Остатки и сравнения. Алгоритм Евклида. Китайская теорема об остатках. Малая теорема Ферма. q-ичные системы счисления. Функция Эйлера, число и сумма делителей натурального числа.
Радианная мера угла, тригонометрическая окружность. Тригонометрические функции чисел и углов. Формулы приведения, сложения тригонометрических функций, формулы двойного и половинного аргумента. Преобразование суммы, разности в произведение тригонометрических функций, и наоборот.
Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции и наименьший период. Четные и нечетные функции. Функции «дробная часть числа» и «целая часть числа» .
Тригонометрические функции числового аргумента , , , . Свойства и графики тригонометрических функций.
Обратные тригонометрические функции, их главные значения, свойства и графики. Тригонометрические уравнения. Однородные тригонометрические уравнения. Решение простейших тригонометрических неравенств. Простейшие системы тригонометрических уравнений.
Степень с действительным показателем, свойства степени. Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график. Число и функция .
Логарифм, свойства логарифма. Десятичный и натуральный логарифм. Преобразование логарифмических выражений. Логарифмические уравнения и неравенства. Логарифмическая функция и ее свойства и график.
Степенная функция и ее свойства и график. Иррациональные уравнения.
Первичные представления о множестве комплексных чисел. Действия с комплексными числами. Комплексно сопряженные числа. Модуль и аргумент числа. Тригонометрическая форма комплексного числа. Решение уравнений в комплексных числах.
Метод интервалов для решения неравенств. Преобразования графиков функций: сдвиг, умножение на число, отражение относительно координатных осей. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.
Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических и иррациональных неравенств.
Взаимно обратные функции. Графики взаимно обратных функций.
Уравнения, системы уравнений с параметром.
Формула Бинома Ньютона. Решение уравнений степени выше 2 специальных видов. Теорема Виета, теорема Безу. Приводимые и неприводимые многочлены. Основная теорема алгебры. Симметрические многочлены. Целочисленные и целозначные многочлены.
Диофантовы уравнения. Цепные дроби. Теорема Ферма о сумме квадратов.
Суммы и ряды, методы суммирования и признаки сходимости.
Теоремы о приближении действительных чисел рациональными.
Множества на координатной плоскости.
Неравенство Коши–Буняковского, неравенство Йенсена, неравенства о средних.
Понятие предела функции в точке. Понятие предела функции в бесконечности. Асимптоты графика функции. Сравнение бесконечно малых и бесконечно больших. Непрерывность функции. Свойства непрерывных функций. Теорема Вейерштрасса.
Дифференцируемость функции. Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Применение производной в физике. Производные элементарных функций. Правила дифференцирования.
Вторая производная, ее геометрический и физический смысл.
Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач. Нахождение экстремумов функций нескольких переменных.
Первообразная. Неопределенный интеграл. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла..
Методы решения функциональных уравнений и неравенств.
Геометрия
Повторение. Решение задач с использованием свойств фигур на плоскости. Решение задач на доказательство и построение контрпримеров. Применение простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисления длин и площадей. Решение задач с помощью векторов и координат.
Наглядная стереометрия. Призма, параллелепипед, пирамида, тетраэдр.
Основные понятия геометрии в пространстве. Аксиомы стереометрии и следствия из них. Понятие об аксиоматическом методе.
Теорема Менелая для тетраэдра. Построение сечений многогранников методом следов. Центральное проектирование. Построение сечений многогранников методом проекций.
Скрещивающиеся прямые в пространстве. Угол между ними. Методы нахождения расстояний между скрещивающимися прямыми.
Теоремы о параллельности прямых и плоскостей в пространстве. Параллельное проектирование и изображение фигур. Геометрические места точек в пространстве.
Перпендикулярность прямой и плоскости. Ортогональное проектирование. Наклонные и проекции. Теорема о трех перпендикулярах.
Виды тетраэдров. Ортоцентрический тетраэдр, каркасный тетраэдр, равногранный тетраэдр. Прямоугольный тетраэдр. Медианы и бимедианы тетраэдра.
Достраивание тетраэдра до параллелепипеда.
Расстояния между фигурами в пространстве. Общий перпендикуляр двух скрещивающихся прямых.
Углы в пространстве. Перпендикулярные плоскости. Площадь ортогональной проекции. Перпендикулярное сечение призмы. Трехгранный и многогранный угол. Свойства плоских углов многогранного угла. Свойства плоских и двугранных углов трехгранного угла. Теоремы косинусов и синусов для трехгранного угла.
Виды многогранников. Развертки многогранника. Кратчайшие пути на поверхности многогранника.
Теорема Эйлера. Правильные многогранники. Двойственность правильных многогранников.
Призма. Параллелепипед. Свойства параллелепипеда. Прямоугольный параллелепипед. Наклонные призмы.
Пирамида. Виды пирамид. Элементы правильной пирамиды. Пирамиды с равнонаклоненными ребрами и гранями, их основные свойства.
Площади поверхностей многогранников.
Тела вращения: цилиндр, конус, шар и сфера. Сечения цилиндра, конуса и шара. Шаровой сегмент, шаровой слой, шаровой сектор (конус).
Усеченная пирамида и усеченный конус.
Элементы сферической геометрии. Конические сечения.
Касательные прямые и плоскости. Вписанные и описанные сферы. Касающиеся сферы. Комбинации тел вращения.
Векторы и координаты. Сумма векторов, умножение вектора на число. Угол между векторами. Скалярное произведение.
Уравнение плоскости. Формула расстояния между точками. Уравнение сферы. Формула расстояния от точки до плоскости. Способы задания прямой уравнениями.
Решение задач и доказательство теорем с помощью векторов и методом координат. Элементы геометрии масс.
Понятие объема. Объемы многогранников. Объемы тел вращения. Аксиомы объема. Вывод формул объемов прямоугольного параллелепипеда, призмы и пирамиды. Формулы для нахождения объема тетраэдра. Теоремы об отношениях объемов.
Приложения интеграла к вычислению объемов и поверхностей тел вращения. Площадь сферического пояса. Объем шарового слоя. Применение объемов при решении задач.
Площадь сферы.
Развертка цилиндра и конуса. Площадь поверхности цилиндра и конуса.
Комбинации многогранников и тел вращения.
Подобие в пространстве. Отношение объемов и площадей поверхностей подобных фигур.
Движения в пространстве: параллельный перенос, симметрия относительно плоскости, центральная симметрия, поворот относительно прямой.
Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов.
Вероятность и статистика, логика, теория графов и комбинаторика
Повторение. Использование таблиц и диаграмм для представления данных. Решение задач на применение описательных характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии и стандартного отклонения. Вычисление частот и вероятностей событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Использование комбинаторики. Вычисление вероятностей независимых событий. Использование формулы сложения вероятностей, диаграмм Эйлера, дерева вероятностей, формулы Бернулли.
Вероятностное пространство. Аксиомы теории вероятностей.
Условная вероятность. Правило умножения вероятностей. Формула полной вероятности. Формула Байеса.
Дискретные случайные величины и распределения. Совместные распределения. Распределение суммы и произведения независимых случайных величин. Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин.
Бинарная случайная величина, распределение Бернулли. Геометрическое распределение. Биномиальное распределение и его свойства. Гипергеометрическое распределение и его свойства.
Непрерывные случайные величины. Плотность вероятности. Функция распределения. Равномерное распределение.
Показательное распределение, его параметры.
Распределение Пуассона и его применение. Нормальное распределение. Функция Лапласа. Параметры нормального распределения. Примеры случайных величин, подчиненных нормальному закону (погрешность измерений, рост человека). Центральная предельная теорема.
Неравенство Чебышева. Теорема Чебышева и теорема Бернулли. Закон больших чисел. Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе.
Ковариация двух случайных величин. Понятие о коэффициенте корреляции. Совместные наблюдения двух случайных величин. Выборочный коэффициент корреляции. Линейная регрессия.
Статистическая гипотеза. Статистика критерия и ее уровень значимости. Проверка простейших гипотез. Эмпирические распределения и их связь с теоретическими распределениями. Ранговая корреляция.
Построение соответствий. Инъективные и сюръективные соответствия. Биекции. Дискретная непрерывность. Принцип Дирихле.
Кодирование. Двоичная запись.
Основные понятия теории графов. Деревья. Двоичное дерево. Связность. Компоненты связности. Пути на графе. Эйлеровы и Гамильтоновы пути.
Рабочая программа рассчитана на 2 года с 10 по 11 класс (6 часов в неделю) 408 часов
Тематический план
Название раздела | Количество часов | ||
Рабочая программа | 10 класс | 11 класс | |
Алгебра и начала анализа | 258 | 139 | 119 |
Геометрия | 130 | 65 | 65 |
Вероятность и статистика, логика, теория графов и комбинаторика | 20 | 20 | |
Итого | 408 | 204 | 204 |
Рабочая программа ориентирована на использование учебно-методического комплекта:
- «Алгебра и начала математического анализа. 10 класс»: учебник для общеобразовательных учреждений: базовый и профильный уровни / Ю.М. Колягин и др.; под ред. А.В.Жижченко.-4-е изд.- М.: Просвещение, 2017.
- «Изучение алгебры и начала математического анализа в 10-11 классе»: книга для учителя / Н.Е. Федорова, М.В. Ткачева. – М. Просвещение, 2009.
- «Алгебра и начала математического анализа. 10 класс»: дидактические материалы. Базовый и углубленный уровни / М.И. Шабунин и др. – М. : Просвещение,2017
- «Алгебра и начала математического анализа. 10 класс»: тематические тесты. ЕГЭ. Базовый и углубленный уровни / М.В. Ткачева, Н.Е. Федорова. – М. : Просвещение, 2009
- «Алгебра и начала математического анализа. 11 класс»: учебник для общеобразовательных учреждений: базовый и профильный уровни / Ю.М. Колягин и др.; под ред. А.В.Жижченко.-4-е изд.- М.: Просвещение, 2017.
- «Алгебра и начала математического анализа. 11 класс»: дидактические материалы. Базовый и углубленный уровни / М.И. Шабунин и др. – М. : Просвещение,2017
- «Алгебра и начала математического анализа. 11 класс»: тематические тесты. ЕГЭ. Базовый и углубленный уровни / М.В. Ткачева, Н.Е. Федорова. – М. : Просвещение, 2009
- «Геометрия 10-11» /А.В.Погорелов-М.: Просвещение, 2009
- «Геометрия» 10 класс, 11 класс: самостоятельные и контрольные работы : разноуровневые дидактические материалы/Ершова А.П. и др. – М.: Илекса, 2009
- «Математика. Задачи и упражнения на готовых чертежах. Геометрия 10-11 классы» /Е.М. Рабинович – М.: Илекса, 2009
Интернет – ресурсы:
- http://www.alleng.ru/edu/math3.htm-Типовые (тематические) задания ЕГЭ.
- http://eek.diary.ru/p62222263.htm- Подготовка к ЕГЭ по математике.
- http://4ege.ru/matematika/page/2- УГЭ портал «Математика».
- http://www.ctege.org/content/view/910/39 - Учебные пособия, разработанные специалистами ФИПИ.
- http://www. Mathege.ru:8080/or/ege/Main?view=TrainArcyive – Открытый банк заданий ЕГЭ по математике.
По теме: методические разработки, презентации и конспекты
ПМ 01, 02, 03, 04, 05 Рабочая программа по бух-учету, по налогам, для специальности 080110 и рабочие программы по налогам и бух-учету для специальности 080114 и программа экзаменов для ПМ 01 и 02
Рабочие программы:ПМ 01 -Документирование хозяйственных операций и ведение бухгвалтерского учета имущества организацииПМ 02-Ведение бухучета источников формирования имущества, выполнения работ по инве...
Рабочая программа курса химии 8 класс, разработанная на основе Примерной программы основного общего образования по химии (авторская рабочая программа)
Рабочая программа курса химии 8 класс,разработанная на основеПримерной программы основного общего образования по химии,Программы курса химии для 8-9 классовобщеобразовательных учреждений (а...
Рабочая программа по литературе для 6 класса (по программе В. Коровиной) Рабочая программа по литературе для 10 класса (по программе ]В. Коровиной)
Рабочая программа содержит пояснительную записку, тематическое планирование., описание планируемых результатов, форм и методов, которые использую на уроках. Даётся необходимый список литературы...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
Рабочая программа по русскому языку 5 класс Разумовская, рабочая программа по литературе 5 класс Меркин, рабочая программа по русскому языку 6 класс разумовская
рабочая программа по русскому языку по учебнику Разумовской, Львова. пояснительная записка, календарно-тематическое планирование; рабочая программа по литературе 5 класс автор Меркин. рабочая программ...
Рабочая программа по Биологии за 7 класс (УМК Сонина), Рабочая программа по Биологии для реализации детского технопарка Школьный кванториум, 5-9 классы, Рабочая программа по Биохимии.
Рабочая программа по биологии составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по биологи...
Рабочая программа по биологии 5-9 класс, Рабочая программа по внеурочной деятельности с использованием оборудования центра "Точка роста" 5 класс, Рабочая программа по химии, Рабочая программа по географии
Рабочая программа по биологии 5-9 класс, Рабочая программа по внеурочной деятельности с использованием оборудования центра "Точка роста" 5 класс, Рабочая программа по химии, Рабочая программ...