События и их виды. Классическое определение вероятности события"
презентация к уроку по математике (11 класс) по теме

Светлана Викторовна Козлова

Данная презентация может быть использована на учебном занятии по изучению новой темы "События и их виды. Классическое определение вероятности события". Длительность учебного занятия (пары) - 2 учебных часа. В презентации содержится произвольный показ "Основоположники теории вероятностей", содержатся задания для организации индивидуальной работы обучающихся по определению видов событий. В конце изучения новой темы предлагается самостоятельная работа по решению задач на нахождение вероятности события на 2 варианта с решениями для организации самопроверки или взаимопроверки.

Скачать:

ВложениеРазмер
Файл sobytiya._veroyatnost_sobytiya.pptx1.06 МБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

События и их виды. Классическое определение вероятности события. Козлова Светлана Викторовна преподаватель математики КГБПОУ «Назаровский энергостроительный техникум» г. Назарово Красноярского края

Слайд 2

Теория вероятностей – это раздел математики, изучающий вероятностные закономерности массовых однородных случайных событий .

Слайд 3

Опыт (испытание) – совокупность условий, при которых рассматривается появление случайного события. Исход - это результат опыта (испытания). Событие – это ожидаемый результат опыта (испытания).

Слайд 4

Достоверные Случайные Невозможные СОБЫТИЯ

Слайд 5

Задание 1. Для каждого из следующих опытов определить какие события являются достоверными, случайными, невозможными. Опыт 1. В группе 25 студентов, есть юноши и есть девушки. События: случайным образом выбранный студент – девушка; у двоих студентов день рождения 31 февраля; всем студентам группы больше 13 лет. Опыт 2. При бросании трех игральных костей. События: сумма выпавших на трех костях очков меньше 15; на первой кости выпало 2 очка, на второй – 3 очка, на третьей – 6 очков; сумма выпавших на трех костях очков равна 19.

Слайд 6

равновозможные Не равновозможные СОБЫТИЯ

Слайд 7

СОБЫТИЯ СОВМЕСТНЫЕ НЕСОВМЕСТНЫЕ ПРОТИВОПОЛОЖНЫЕ

Слайд 8

Задание 2. Найти пары совместных и несовместных событий, связанных с однократным бросанием игральной кости. выпало 3 очка, выпало нечетное число очков , выпало менее 4 очков, выпало 6 очков, выпало четное число очков, выпало более 4 очков.

Слайд 9

Полная группа событий

Слайд 10

Классическое определение вероятности события

Слайд 11

СВОЙСТВА вЕРОЯТНОСТЕЙ СОБЫТИЯ

Слайд 12

Задача 1. В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) не чёрным.

Слайд 13

События А и В называются независимыми , если появление события В не оказывает влияния на появление события А, а появление события А не оказывает влияния на появление события В.

Слайд 14

Действия над вероятностями Сложение вероятностей несовместных событий наступит или А, или В Р(А+В) = Р(А ᴗ В)= Р(А) + Р(В) Умножение вероятностей несовместных событий наступит и А, и В Р(АВ) = Р(А ᴖ В)= Р(А)∙Р(В) Сложение вероятностей совместных независимых событий наступит или А, или В, или А и В Р(А+В) = Р(А ᴗ В)= Р(А) + Р(В) – Р(А)∙Р(В)

Слайд 15

Самостоятельная работа

Слайд 16

Решения к самостоятельной работе

Слайд 17

РЕШЕНИЯ К САМОСТОЯТЕЛЬНОЙ РАБОТЕ

Слайд 18

Решения к самостоятельной работе

Слайд 19

Домашнее задание Задача 1. Записать два испытания и для каждого из них подобрать достоверное, невозможное и случайное событие. Задача 2. Деталь проходит две операции обработки. Вероятность появления брака при первой операции равна 0,02, при второй – 0,03. Найдите вероятность получения детали без брака после двух операций, предполагая, что события получения брака на отдельных операциях являются независимыми.

Слайд 20

Достоверное событие Событие называется достоверным в данном опыте, если оно обязательно произойдет в данном опыте. Например: Опыт: извлечение мяча из коробки, в которой находятся только красные мячи. Достоверное событие: «извлеченный, на удачу, мяч окажется красным».

Слайд 21

НЕВОЗМОЖНОЕ СОБЫТИЕ Событие называется невозможным в данном опыте, если оно не может произойти в данном опыте. Например: Опыт: извлечение мяча из коробки, в которой находятся только красные мячи. Невозможное событие: «извлеченный, на удачу, мяч окажется зеленым».

Слайд 22

СЛУЧАЙНОЕ СОБЫТИЕ Событие называется случайным в данном опыте, если оно может произойти, а может и не произойти в данном опыте. Например: Опыт: сдача студентом экзамена по математике. Случайное событие: «студент на экзамене получит оценку отлично».

Слайд 23

РАВНОВОЗМОЖНЫЕ СОБЫТИЯ События называются равновозможными , если нет основания полагать, что одно событие является более возможным, чем другие. Например: выпадение орла или решки при броске монеты; выпадение 1, 2, 3, 4, 5 или 6 очков при броске игрального кубика; извлечение карты трефовой, пиковой, бубновой или червовой масти из колоды карт. При этом предполагается, что монета и кубик однородны и имеют геометрически правильную форму, а колода хорошо перемешана и «идеальна» с точки зрения неразличимости рубашек карт.

Слайд 24

Не равновозможные события События называются не равновозможными , если есть основания полагать, что одно событие является более возможным, чем другие. Например, если у монеты или кубика смещён центр тяжести , то гораздо чаще будут выпадать вполне определённые грани.

Слайд 25

СОВМЕСТНЫЕ СОБЫТИЯ Два события называют совместными в данном опыте, если появление одного из них не исключает появление другого. Например: Опыт: бросание игральной кости. Совместные события: «Выпадение четного числа очков». «Выпадение 4 очков».

Слайд 26

Несовместные события Два события называются несовместными в данном опыте, если они не могут появиться вместе в одном и том же опыте. Например: Опыт: бросание игральной кости. Несовместные события: «Выпадение четного числа очков». «Выпадение 3 очков». Несколько событий называют несовместными , если они попарно несовместны.

Слайд 27

ПРОТИВОПОЛОЖНЫЕ СОБЫТИЯ Два события называются противоположными , если появление одного из них равносильно не появлению другого (это простейший пример несовместных событий). Например: Опыт: покупка лотерейного билета. Противоположные события: А – «выпадение выигрыша на купленный билет». Ᾱ - « не выпадение выигрыша на тот же билет»

Слайд 28

Задача 2. На складе имеется 50 деталей, изготовленных тремя бригадами. Из них 25 изготовлено 1 бригадой, 15 – 2бригадой и 10 – 3 бригадой. Найти вероятность того, что на сборку поступила деталь, изготовленная 2 или 3 бригадой.

Слайд 29

Задача 3. Прибор, работающий в течении времени t , состоит из 3 узлов, каждый из которых, независимо от других, может в течение времени t отказать (выйти из строя). Отказ хотя бы одного узла приводит к отказу прибора в целом. За время t вероятность безотказной работы 1 узла = 0,8, 2 узла = 0,9, 3 узла = 0,7. Найти надежность прибора в целом.

Слайд 30

Задача 4. Вероятность попадания в мишень для 1 стрелка 0,85, а для 2 стрелка 0,8. Стрелки независимо друг от друга произвели по одному выстрелу. Какова вероятность того, что в мишень попадет хотя бы один стрелок?

Слайд 31

Основоположники теории вероятностей Блез Паскаль (19 июня1623г. – 19 августа 1662г) французский математик, физик, философ, один из основателей математического анализа, теории вероятностей и проектной геометрии

Слайд 32

Основоположники теории вероятностей Пьер де Ферма (17 августа 1601 — 12 января 1665) французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе.

Слайд 33

Основоположники теории вероятностей Христиан Гюйгенс (14 апреля 1629, Гаага — 8 июля 1695, Гаага) нидерландский механик, физик, математик, астроном и изобретатель. Один из основоположников теоретической механики и теории вероятностей. Первый иностранный член Лондонского королевского общества (1663), член Французской академии наук с момента её основания (1666) и её первый президент (1666—1681)

Слайд 34

Основоположники теории вероятностей Якоб Бернулли ( 6 января 1655, Базель, — 16 августа 1705, там же) швейцарский математик. Один из основателей теории вероятностей и математического анализа. Старший брат Иоганна Бернулли, совместно с ним положил начало вариационному исчислению. Доказал частный случай закона больших чисел — теорему Бернулли. Профессор математики Базельского университета (с 1687 года) Иностранный член Парижской академии наук (1699) и Берлинской академии наук

Слайд 35

Используемая литература и интернет ресурсы Дадаян А.А. Математика: Учебник – 2-е издание – М.: ФОРУМ: ИНФРА-М. 2005. – 552с. – (Профессиональное образование). Дадаян А.А. Сборник задач по математике. М.: ФОРУМ: ИНФРА-М. 2005. – 352с. – (Профессиональное образование). http://www.mathprofi.ru/teorija_verojatnostei.html https://ru.wikipedia.org/wiki/ История_теории_вероятностей http://sernam.ru/book_tp.php?id=11 картинки теория вероятностей


По теме: методические разработки, презентации и конспекты

Классическое определение вероятности

урок на тему Классическое определение  вероятности, случайность, случайные события, ошибка Даламбера, знакомство с классическим определением вероятности...

презентация к уроку Классическое определение вероятности

презентация к уроку классическое определение вероятности, основоположники классической теории вероятности, понятие классической теории вероятности, случай и случайные события, решение задач по теме кл...

Презентация на тему: "Классическое определение вероятности"

В данной презентации рассмотрены все основные задачи, посвещенные теме "Классическое определение вероятности", что соответствует заданиям ЕГЭ 2014 г....

Классическое определение вероятности

Презентация, теоретический материал. Достоверные, невозмождные, случайные события. Вероятность события. Противоположное событие. Задачи....

ЕГЭ В 5 Классическое определение вероятности

Материал предназначен для подготовки учащихся к ОГЭ и ЕГЭ по теме "Теория вероятности". Решение задач на применение классического определения вероятности....

разработка урока на тему " Классическое определение вероятности ".

Тема:  Классическое определение вероятности . Урок с мультимедийной презентацией. Имеютя подробные решения задач.. Цели урока : -  проверить  умения решать простейшие комбинаторные...

Презентация по теме "Частота и вероятность случайного события. Классическое определение вероятности" 9 класс

В данной презентации даётся определение вероятности, вероятностным событиям, рассматриваются задачи ОГЭ по теме "Частота и вероятность случайного события. Классическое определение вероятност...