Рабочая программа
календарно-тематическое планирование по математике (6 класс) на тему
Рабочая программа для 6-го класса по учебнику аторства Н.Я.Виленкин(5 часов в неделю)
Скачать:
Вложение | Размер |
---|---|
6_g_kl_5_chasov_vilenkin_novyy.docx | 206.01 КБ |
Предварительный просмотр:
«Рассмотрено» На заседании методического объединения _______ / О.Н. Григорьева Протокол № __ от «__ » ________ 2016г. | «Согласовано» Заместитель директора по учебной работе МБОУ «Школа № 171» Советского района г. Казани _______ Р.Г. Ризванов «__ » ________ 2016г. | «Утверждаю» Директор ________ Р. Н. Галиакберова Приказ № _____ от «______»______2016 г. |
Рабочая программа
учителя математики
МБОУ «Средняя общеобразовательная школа № 171
с углубленным изучением отдельных предметов»
Советского района г. Казани
Ахмадуллиной Лейсан Гусмановны
по предмету «Математика» для 6 А класса
2016 – 2017 учебный год
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Данная рабочая программа по предмету «Математика», уровень 5-9 классы составлена в соответствии с локальным актом МБОУ «Средняя общеобразовательная школа №171 с углублённым изучением отдельных предметов» Советского района г. Казани - Положения о порядке разработки и утверждения рабочих программ учебных предметов, утвержденным приказом от 1.09.2016г. № 93; учебным планом основного общего образования на 2016-2017 учебный год и календарным учебным графиком, утвержденным приказом №75 от 19.08.2016 г.;
Рабочая программа составлена на основе требований к содержанию и результатам освоения Основной образовательной программы основного общего образования МБОУ «Средняя общеобразовательная школа №171 с углублённым изучением отдельных предметов» Советского района г. Казани; утвержденной приказом от № 93; Примерной основной образовательной программы основного общего образования по математике и программы по математике к учебному комплексу для 5-9 классов (авторы программы Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд., А.Г. Мордкович, Атанасян Л.С., Бутузов В. Ф.,Кадомцев С.Б., Поздняк Э.Г.).
Рабочая программа реализуется с использованием учебника: Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.: Мнемозина, 2013. , по приложению к учебному плану, утвержденному приказом № 75 от 19.08.2016г. на 2016-2017 учебный год.
Место предмета в учебном плане
Настоящая программа рассчитана на изучение математики в 6 классе (5 часов в неделю, 175 часов в год) для обязательного изучения математики в 6 классе.
Планируемые результаты освоения учебного предмета
Предметные результаты
Математика
Выпускник научится:
- Оперировать на базовом уровнепонятиями: множество, элемент множества, подмножество, принадлежность;
- задавать множества перечислением их элементов;
- находить пересечение, объединение, подмножество в простейших ситуациях
В повседневной жизни и при изучении других предметов:
- распознавать логически некорректные высказывания
Числа
- Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;
- использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;
- использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
- выполнять округление рациональных чисел в соответствии с правилами;
- сравнивать рациональные числа.
В повседневной жизни и при изучении других предметов:
- оценивать результаты вычислений при решении практических задач;
- выполнять сравнение чисел в реальных ситуациях;
- составлять числовые выражения при решении практических задач и задач из других учебных предметов
Статистика и теория вероятностей
- Представлять данные в виде таблиц, диаграмм,
- читать информацию, представленную в виде таблицы, диаграммы,.
Текстовые задачи
- Решать несложные сюжетные задачи разных типов на все арифметические действия;
- строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;
- осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
- составлять план решения задачи;
- выделять этапы решения задачи;
- интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
- знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
- решать задачи на нахождение части числа и числа по его части;
- решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
- находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;
- решать несложные логические задачи методом рассуждений.
В повседневной жизни и при изучении других предметов:
- выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)
Наглядная геометрия
Геометрические фигуры
- Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.
В повседневной жизни и при изучении других предметов:
- решать практические задачи с применением простейших свойств фигур.
Измерения и вычисления
- выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
- вычислять площади прямоугольников.
В повседневной жизни и при изучении других предметов:
- вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;
- выполнять простейшие построения и измерения на местности, необходимые в реальной жизни
История математики
- описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
- знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей
Выпускник получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях)
Элементы теории множеств и математической логики
- Оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,
- определять принадлежность элемента множеству, объединению и пересечению множеств;
задавать множество с помощью перечисления элементов, словесного описания
В повседневной жизни и при изучении других предметов:
- распознавать логически некорректные высказывания;
- строить цепочки умозаключений на основе использования правил логики
Числа
- Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;
- понимать и объяснять смысл позиционной записи натурального числа;
- выполнять вычисления, в том числе с использованием приёмов рациональных вычислений, обосновывать алгоритмы выполнения действий;
- использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;
- выполнять округление рациональных чисел с заданной точностью;
- упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;
- находить НОД и НОК чисел и использовать их при решении задач.
- оперировать понятием модуль числа, геометрическая интерпретация модуля числа.
В повседневной жизни и при изучении других предметов:
- применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
- выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
- составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов;
Уравнения и неравенства Этого в содержании нет
- Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство
Статистика и теория вероятностей
- Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,
- извлекать, информацию, представленную в таблицах, на диаграммах;
- составлять таблицы, строить диаграммы на основе данных.
В повседневной жизни и при изучении других предметов:
- извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений
Текстовые задачи
- Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
- использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
- знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
- моделировать рассуждения при поиске решения задач с помощью граф-схемы;
- выделять этапы решения задачи и содержание каждого этапа;
- интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
- анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
- исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;
- решать разнообразные задачи «на части»,
- решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
- осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.
В повседневной жизни и при изучении других предметов:
- выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
- решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
- решать задачи на движение по реке, рассматривая разные системы отсчета
Наглядная геометрия
Геометрические фигуры
- Оперировать понятиями фигура,точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, призма, шар, пирамида, цилиндр, конус;
- извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах
- изображать изучаемые фигуры от руки и с помощью линейки, циркуля, компьютерных инструментов.
В повседневной жизни и при изучении других предметов:
- решать практические задачи с применением простейших свойств фигур
Измерения и вычисления
- выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
- вычислять площади прямоугольников, квадратов, объёмы прямоугольных параллелепипедов, кубов.
В повседневной жизни и при изучении других предметов:
- вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объёмы комнат;
- выполнять простейшие построения на местности, необходимые в реальной жизни;
- оценивать размеры реальных объектов окружающего мира
История математики
- Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей
Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)
Элементы теории множеств и математической логики
- Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;
- задавать множества перечислением их элементов;
- находить пересечение, объединение, подмножество в простейших ситуациях;
- оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
- приводить примеры и контрпримеры для подтвержнения своих высказываний
В повседневной жизни и при изучении других предметов:
- использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов
Числа
- Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;
- использовать свойства чисел и правила действий при выполнении вычислений;
- использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
- выполнять округление рациональных чисел в соответствии с правилами;
- оценивать значение квадратного корня из положительного целого числа;
- распознавать рациональные и иррациональные числа;
- сравнивать числа.
В повседневной жизни и при изучении других предметов:
- оценивать результаты вычислений при решении практических задач;
- выполнять сравнение чисел в реальных ситуациях;
- составлять числовые выражения при решении практических задач и задач из других учебных предметов
Тождественные преобразования
- Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;
- выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
- использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;
- выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями .
В повседневной жизни и при изучении других предметов:
- понимать смысл записи числа в стандартном виде;
- оперировать на базовом уровне понятием «стандартная запись числа»
Уравнения и неравенства
- Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
- проверять справедливость числовых равенств и неравенств;
- решать линейные неравенства и несложные неравенства, сводящиеся к линейным;
- решать системы несложных линейных уравнений, неравенств;
- проверять, является ли данное число решением уравнения (неравенства);
- решать квадратные уравнения по формуле корней квадратного уравнения;
- изображать решения неравенств и их систем на числовой прямой.
В повседневной жизни и при изучении других предметов:
- составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах
Функции
- находить значение функции по заданному значению аргумента;
- находить значение аргумента по заданному значению функции в несложных ситуациях;
- определять положение точки по её координатам, координаты точки по её положению на координатной плоскости;
- по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
- строить график линейной функции;
- проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
- определять приближённые значения координат точки пересечения графиков функций;
- оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
- решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчётом без применения формул.
В повседневной жизни и при изучении других предметов:
- использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
- использовать свойства линейной функции и ее график при решении задач из других учебных предметов
Статистика и теория вероятностей поставить после текстовых задач, как с содержании.
- Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;
- решать простейшие комбинаторные задачи методом прямого и организованного перебора;
- представлять данные в виде таблиц, диаграмм, графиков;
- читать информацию, представленную в виде таблицы, диаграммы, графика;
- определять основные статистические характеристики числовых наборов;
- оценивать вероятность события в простейших случаях;
- иметь представление о роли закона больших чисел в массовых явлениях.
В повседневной жизни и при изучении других предметов:
- оценивать количество возможных вариантов методом перебора;
- иметь представление о роли практически достоверных и маловероятных событий;
- сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
- оценивать вероятность реальных событий и явлений в несложных ситуациях
Текстовые задачи
- Решать несложные сюжетные задачи разных типов на все арифметические действия;
- строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;
- осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
- составлять план решения задачи;
- выделять этапы решения задачи;
- интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
- знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
- решать задачи на нахождение части числа и числа по его части;
- решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
- находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;
- решать несложные логические задачи методом рассуждений.
В повседневной жизни и при изучении других предметов:
- выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку)
Геометрические фигуры
- Оперировать на базовом уровне понятиями геометрических фигур;
- извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;
- применять для решения задач геометрические факты, если условия их применения заданы в явной форме;
- решать задачи на нахождение геометрических величин по образцам или алгоритмам.
В повседневной жизни и при изучении других предметов:
- использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания
Отношения
- Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.
В повседневной жизни и при изучении других предметов:
- использовать отношения для решения простейших задач, возникающих в реальной жизни
Измерения и вычисления
- Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
- применять формулы периметра, площади и объёма, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;
- применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.
В повседневной жизни и при изучении других предметов:
- вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни
Геометрические построения
- Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.
В повседневной жизни и при изучении других предметов:
- выполнять простейшие построения на местности, необходимые в реальной жизни
Геометрические преобразования
- Строить фигуру, симметричную данной фигуре относительно оси и точки.
В повседневной жизни и при изучении других предметов:
- распознавать движение объектов в окружающем мире;
- распознавать симметричные фигуры в окружающем мире
Векторы и координаты на плоскости
- Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;
- определять приближённо координаты точки по её изображению на координатной плоскости.
В повседневной жизни и при изучении других предметов:
- использовать векторы для решения простейших задач на определение скорости относительного движения
История математики
- Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
- знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
- понимать роль математики в развитии России
Методы математики
- Выбирать подходящий изученный метод для решении изученных типов математических задач;
- Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.
Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях
Элементы теории множеств и математической логики
- Оперировать понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;
- изображать множества и отношение множеств с помощью кругов Эйлера;
- определять принадлежность элемента множеству, объединению и пересечению множеств;
- задавать множество с помощью перечисления элементов, словесного описания;
- оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);
- строить высказывания, отрицания высказываний.
В повседневной жизни и при изучении других предметов:
- строить цепочки умозаключений на основе использования правил логики;
- использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений
Числа
- Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
- понимать и объяснять смысл позиционной записи натурального числа;
- выполнять вычисления, в том числе с использованием приёмов рациональных вычислений;
- выполнять округление рациональных чисел с заданной точностью;
- сравнивать рациональные и иррациональные числа;
- представлять рациональное число в виде десятичной дроби
- упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;
- находить НОД и НОК чисел и использовать их при решении задач.
В повседневной жизни и при изучении других предметов:
- применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
- выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
- составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;
- записывать и округлять числовые значения реальных величин с использованием разных систем измерения
Тождественные преобразования
- Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;
- выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
- выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;
- выделять квадрат суммы и разности одночленов;
- раскладывать на множители квадратный трёхчлен;
- выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;
- выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;
- выполнять преобразования выражений, содержащих квадратные корни;
- выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;
- выполнять преобразования выражений, содержащих модуль.
В повседневной жизни и при изучении других предметов:
- выполнять преобразования и действия с числами, записанными в стандартном виде;
- выполнять преобразования алгебраических выражений при решении задач других учебных предметов
Уравнения и неравенства
- Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);
- решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;
- решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;
- решать дробно-линейные уравнения;
- решать простейшие иррациональные уравнения вида , ;
- решать уравнения вида ;
- решать уравнения способом разложения на множители и замены переменной;
- использовать метод интервалов для решения целых и дробно-рациональных неравенств;
- решать линейные уравнения и неравенства с параметрами;
- решать несложные квадратные уравнения с параметром;
- решать несложные системы линейных уравнений с параметрами;
- решать несложные уравнения в целых числах.
В повседневной жизни и при изучении других предметов:
- составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;
- выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;
- выбирать соответствующие уравнения, неравенства или их системы, для составления математической модели заданной реальной ситуации или прикладной задачи;
- уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи
Функции
- Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, чётность/нечётность функции;
- строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , ,, ;
- на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;
- составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;
- исследовать функцию по её графику;
- находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;
- оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
- решать задачи на арифметическую и геометрическую прогрессию.
В повседневной жизни и при изучении других предметов:
- иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
- использовать свойства и график квадратичной функции при решении задач из других учебных предметов
Текстовые задачи
- Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
- использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
- различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;
- знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
- моделировать рассуждения при поиске решения задач с помощью граф-схемы;
- выделять этапы решения задачи и содержание каждого этапа;
- уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
- анализировать затруднения при решении задач;
- выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
- интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
- анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
- исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;
- решать разнообразные задачи «на части»,
- решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
- осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение).выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
- владеть основными методами решения задач на смеси, сплавы, концентрации;
- решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
- решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
- решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
- решать несложные задачи по математической статистике;
- овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.
В повседневной жизни и при изучении других предметов:
- выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
- решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
- решать задачи на движение по реке, рассматривая разные системы отсчета
Статистика и теория вероятностей
- Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
- извлекать информацию, представленную в таблицах, на диаграммах, графиках;
- составлять таблицы, строить диаграммы и графики на основе данных;
- оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;
- применять правило произведения при решении комбинаторных задач;
- оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;
- представлять информацию с помощью кругов Эйлера;
- решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.
В повседневной жизни и при изучении других предметов:
- извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
- определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;
- оценивать вероятность реальных событий и явлений.
Геометрические фигуры
- Оперировать понятиями геометрических фигур;
- извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
- применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;
- формулировать в простейших случаях свойства и признаки фигур;
- доказывать геометрические утверждения
- владеть стандартной классификацией плоских фигур (треугольников и четырёхугольников).
В повседневной жизни и при изучении других предметов:
- использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин
Отношения
- Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
- применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;
- характеризовать взаимное расположение прямой и окружности, двух окружностей.
В повседневной жизни и при изучении других предметов:
- использовать отношения для решения задач, возникающих в реальной жизни
Измерения и вычисления
- Оперировать представлениями о длине, площади, объёме как величинами. Применять теорему Пифагора, формулы площади, объёма при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объёма, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;
- проводить простые вычисления на объёмных телах;
- формулировать задачи на вычисление длин, площадей и объёмов и решать их. В содержании есть ещё и теорема синусов и косинусов. Либо там убрать . либо здесь добавить
В повседневной жизни и при изучении других предметов:
- проводить вычисления на местности;
- применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности
Геометрические построения
- Изображать геометрические фигуры по текстовому и символьному описанию;
- свободно оперировать чертёжными инструментами в несложных случаях,
- выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;
- изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.
В повседневной жизни и при изучении других предметов:
- выполнять простейшие построения на местности, необходимые в реальной жизни;
- оценивать размеры реальных объектов окружающего мира
Преобразования
- Оперировать понятием движения и преобразования подобия, владеть приёмами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;
- строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;
- применять свойства движений для проведения простейших обоснований свойств фигур.
В повседневной жизни и при изучении других предметов:
- применять свойства движений и применять подобие для построений и вычислений
Векторы и координаты на плоскости
- Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;
- выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;
- применять векторы и координаты для решения геометрических задач на вычисление длин, углов.
В повседневной жизни и при изучении других предметов:
- использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам
История математики
- Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;
- понимать роль математики в развитии России
Методы математики
- Используя изученные методы, проводить доказательство, выполнять опровержение;
- Выбирать изученные методы и их комбинации для решения математических задач;
- использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.
Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углублённом уровне
Элементы теории множеств и математической логики
- Свободно оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;
- задавать множества разными способами;
- проверять выполнение характеристического свойства множества;
- свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний;, истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не. Условные высказывания (импликации);
- строить высказывания с использованием законов алгебры высказываний.
В повседневной жизни и при изучении других предметов:
- строить рассуждения на основе использования правил логики;
- использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов
Числа
- Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
- понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
- переводить числа из одной системы записи (системы счисления) в другую;
- доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;
- выполнять округление рациональных и иррациональных чисел с заданной точностью;
- сравнивать действительные числа разными способами;
- упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
- находить НОД и НОК чисел разными способами и использовать их при решении задач;
- выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.
В повседневной жизни и при изучении других предметов:
- выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
- записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
- составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов
Тождественные преобразования
- Свободно оперировать понятиями степени с целым и дробным показателем;
- выполнять доказательство свойств степени с целыми и дробными показателями;
- оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;
- свободно владеть приемами преобразования целых и дробно-рациональных выражений;
- выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приёмов;
- использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трёхчлена и для решения задач, в том числе задач с параметрами на основе квадратного трёхчлена;
- выполнять деление многочлена на многочлен с остатком;
- доказывать свойства квадратных корней и корней степени n;
- выполнять преобразования выражений, содержащих квадратные корни, корни степени n;
- свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;
- выполнять различные преобразования выражений, содержащих модули.
В повседневной жизни и при изучении других предметов:
- выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;
- выполнять преобразования рациональных выражений при решении задач других учебных предметов;
- выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей
Уравнения и неравенства
- Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
- решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;
- знать теорему Виета для уравнений степени выше второй;
- понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
- владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
- использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
- решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
- владеть разными методами доказательства неравенств;
- решать уравнения в целых числах;
- изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.
В повседневной жизни и при изучении других предметов:
- составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
- выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов
- составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;
- составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты
Функции
- Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, чётность/нечётность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,
- строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;
- использовать преобразования графика функции для построения графиков функций ;
- анализировать свойства функций и вид графика в зависимости от параметров;
- свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;
- использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;
- исследовать последовательности, заданные рекуррентно;
- решать комбинированные задачи на арифметическую и геометрическую прогрессии.
В повседневной жизни и при изучении других предметов:
- конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;
- использовать графики зависимостей для исследования реальных процессов и явлений;
- конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета
Статистика и теория вероятностей после задач
- Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
- выбирать наиболее удобный способ представления информации, адекватный её свойствам и целям анализа;
- вычислять числовые характеристики выборки;
- свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;
- свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
- свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
- знать примеры случайных величин, и вычислять их статистические характеристики;
- использовать формулы комбинаторики при решении комбинаторных задач;
- решать задачи на вычисление вероятности в том числе с использованием формул.
В повседневной жизни и при изучении других предметов:
- представлять информацию о реальных процессах и явлениях способом, адекватным её свойствам и цели исследования;
- анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;
- оценивать вероятность реальных событий и явлений в различных ситуациях
Текстовые задачи
- Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;
- распознавать разные виды и типы задач;
- использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;
- различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;
- знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);
- моделировать рассуждения при поиске решения задач с помощью граф-схемы;
- выделять этапы решения задачи и содержание каждого этапа;
- уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
- анализировать затруднения при решении задач;
- выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
- интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
- изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;
- анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние).при решение задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;
- исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;
- решать разнообразные задачи «на части»;
- решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
- объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
- владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;
- решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
- решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
- решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
- решать несложные задачи по математической статистике;
- овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.
В повседневной жизни и при изучении других предметов:
- конструировать новые для данной задачи задачные ситуации с учётом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
- решать задачи на движение по реке, рассматривая разные системы отсчёта;
- конструировать задачные ситуации, приближенные к реальной действительности
Геометрические фигуры
- Свободно оперировать геометрическими понятиями при решении задач и проведении математических рассуждений;
- самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новые классы фигур, проводить в несложных случаях классификацию фигур по различным основаниям;
- исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;
- решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;
- формулировать и доказывать геометрические утверждения.
В повседневной жизни и при изучении других предметов:
- составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат
Отношения
- Владеть понятием отношения как метапредметным;
- свободно оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
- использовать свойства подобия и равенства фигур при решении задач.
В повседневной жизни и при изучении других предметов:
- использовать отношения для построения и исследования математических моделей объектов реальной жизни
Измерения и вычисления
- Свободно оперировать понятиями длина, площадь, объём, величина угла как величинами, использовать равновеликость и равносоставленность при решении задач на вычисление, самостоятельно получать и использовать формулы для вычислений площадей и объёмов фигур, свободно оперировать широким набором формул на вычисление при решении сложных задач, в том числе и задач на вычисление в комбинациях окружности и треугольника, окружности и четырёхугольника, а также с применением тригонометрии;
- самостоятельно формулировать гипотезы и проверять их достоверность.
В повседневной жизни и при изучении других предметов:
- свободно оперировать формулами при решении задач в других учебных предметах и при проведении необходимых вычислений в реальной жизни
Геометрические построения
- Оперировать понятием набора элементов, определяющих геометрическую фигуру,
- владеть набором методов построений циркулем и линейкой;
- проводить анализ и реализовывать этапы решения задач на построение.
В повседневной жизни и при изучении других предметов:
- выполнять построения на местности;
- оценивать размеры реальных объектов окружающего мира
Преобразования
- Оперировать движениями и преобразованиями как метапредметными понятиями;
- оперировать понятием движения и преобразования подобия для обоснований, свободно владеть приемами построения фигур с помощью движений и преобразования подобия, а также комбинациями движений, движений и преобразований;
- использовать свойства движений и преобразований для проведения обоснования и доказательства утверждений в геометрии и других учебных предметах;
- пользоваться свойствами движений и преобразований при решении задач.
В повседневной жизни и при изучении других предметов:
- применять свойства движений и применять подобие для построений и вычислений
Векторы и координаты на плоскости
- Свободно оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, скалярное произведение векторов, координаты на плоскости, координаты вектора;
- Владеть векторным и координатным методом на плоскости для решения задач на вычисление и доказательства;
- выполнять с помощью векторов и координат доказательство известных ему геометрических фактов (свойства средних линий, теорем о замечательных точках и т.п.) и получать новые свойства известных фигур;
- использовать уравнения фигур для решения задач и самостоятельно составлять уравнения отдельных плоских фигур.
В повседневной жизни и при изучении других предметов:
- использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам
История математики
- Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;
- рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России
Методы математики
- Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их;
- владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;
характеризовать произведения искусства с учётом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве.
Личностные результаты обучения:
1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость использования русского языка и языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа). Осознание этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.
2. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; веротерпимость, уважительное отношение к религиозным чувствам, взглядам людей или их отсутствию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского общества и российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества). Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.
4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров). 6. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами;идентификация себя в качестве субъекта социальных преобразований, освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).
7. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.
8. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видение окружающего мира; способность к эмоционально-ценностному освоению мира, самовыражению и ориентации в художественном и нравственном пространстве культуры; уважение к истории культуры своего Отечества, выраженной в том числе в понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностно-значимой ценности).
9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).
Метапредметные результаты обучения:
Регулятивные УУД
- Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
- анализировать существующие и планировать будущие образовательные результаты;
- идентифицировать собственные проблемы и определять главную проблему;
- выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- ставить цель деятельности на основе определенной проблемы и существующих возможностей;
- формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.
- Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
- определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
- обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
- выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
- выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
- составлять план решения проблемы (выполнения проекта, проведения исследования);
- определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
- описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;
- планировать и корректировать свою индивидуальную образовательную траекторию.
- Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
- определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
- систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
- отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
- находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
- работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
- устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
- сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
- Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
- определять критерии правильности (корректности) выполнения учебной задачи;
- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
- оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
- обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
- фиксировать и анализировать динамику собственных образовательных результатов.
- Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной. Обучающийся сможет:
- наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
- соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
- принимать решение в учебной ситуации и нести за него ответственность;
- самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
- ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
- демонстрировать приемы регуляции психофизиологических/ эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).
Познавательные УУД
- Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
- подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;
- выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;
- выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
- объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
- выделять явление из общего ряда других явлений;
- определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
- строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
- излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
- самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
- вербализовать эмоциональное впечатление, оказанное на него источником;
- объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
- выявлять и называть причины события, явления, в том числе возможные / наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
- делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
- Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
- обозначать символом и знаком предмет и/или явление;
- определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
- создавать абстрактный или реальный образ предмета и/или явления;
- строить модель/схему на основе условий задачи и/или способа ее решения;
- создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
- преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
- переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
- строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
- строить доказательство: прямое, косвенное, от противного;
- анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
- Смысловое чтение. Обучающийся сможет:
- находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
- ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
- устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
- резюмировать главную идею текста;
- преобразовывать текст, «переводя» его в другую модальность, интерпретировать текст (художественный и нехудожественный – учебный, научно-популярный, информационный, текст non-fiction);
- критически оценивать содержание и форму текста.
- Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Обучающийся сможет:
- определять свое отношение к природной среде;
- анализировать влияние экологических факторов на среду обитания живых организмов;
- проводить причинный и вероятностный анализ экологических ситуаций;
- прогнозировать изменения ситуации при смене действия одного фактора на действие другого фактора;
- распространять экологические знания и участвовать в практических делах по защите окружающей среды;
- выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.
10. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем. Обучающийся сможет:
- определять необходимые ключевые поисковые слова и запросы;
- осуществлять взаимодействие с электронными поисковыми системами, словарями;
- формировать множественную выборку из поисковых источников для объективизации результатов поиска;
- соотносить полученные результаты поиска со своей деятельностью.
Коммуникативные УУД
- Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
- определять возможные роли в совместной деятельности;
- играть определенную роль в совместной деятельности;
- принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
- строить позитивные отношения в процессе учебной и познавательной деятельности;
- корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
- предлагать альтернативное решение в конфликтной ситуации;
- выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
- определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
- отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
- представлять в устной или письменной форме развернутый план собственной деятельности;
- соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
- высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
- принимать решение в ходе диалога и согласовывать его с собеседником;
- создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
- использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
- использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
- делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
- Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее – ИКТ). Обучающийся сможет:
- целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
- выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
- выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
- использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
- использовать информацию с учетом этических и правовых норм;
- создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.
Основное содержание учебного предмета «Математика» на уровне основного общего образования
Cодержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.
Элементы теории множеств и математической логики
Согласно ФГОС основного общего образования в курс математики введен раздел «Логика», который не предполагает дополнительных часов на изучении и встраивается в различные темы курсов математики и информатики и предваряется ознакомлением с элементами теории множеств.
Множества и отношения между ними
Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Подмножество. Отношение принадлежности, включения, равенства. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.
Операции над множествами
Пересечение и объединение множеств. Разность множеств, дополнение множества, Интерпретация операций над множествами с помощью кругов Эйлера.
Элементы логики
Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.
Высказывания
Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).
Содержание курса математики в 5–6 классах
Натуральные числа и нуль
Натуральный ряд чисел и его свойства
Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.
Запись и чтение натуральных чисел
Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.
Округление натуральных чисел
Необходимость округления. Правило округления натуральных чисел.
Сравнение натуральных чисел, сравнение с числом 0
Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулём, математическая запись сравнений, способы сравнения чисел.
Действия с натуральными числами
Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.
Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.
Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.
Степень с натуральным показателем
Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.
Числовые выражения
Числовое выражение и его значение, порядок выполнения действий.
Деление с остатком
Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.
Свойства и признаки делимости
Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.
Разложение числа на простые множители
Простые и составные числа, решето Эратосфена.
Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.
Алгебраические выражения
Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.
Делители и кратные
Делитель и его свойства, общий делитель двух более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.
Дроби
Обыкновенные дроби
Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).
Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.
Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.
Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.
Арифметические действия со смешанными дробями.
Арифметические действия с дробными числами.
Способы рационализации вычислений и их применение при выполнении действий.
Десятичные дроби
Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.
Отношение двух чисел
Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.
Среднее арифметическое чисел
Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.
Проценты
Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.
Диаграммы
Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.
Рациональные числа
Положительные и отрицательные числа
Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.
Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.
Решение текстовых задач
Единицы измерений: длины, площади, объёма, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.
Задачи на все арифметические действия
Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Задачи на движение, работу и покупки
Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.
Задачи на части, доли, проценты
Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.
Логические задачи
Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения текстовых задач: арифметический, перебор вариантов.
Наглядная геометрия
Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.
Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.
Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.
Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.
Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.
Решение практических задач с применением простейших свойств фигур.
История математики
Появление цифр, букв, иероглифов в процессе счёта и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.
Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.
Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.
Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?
Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.
Содержание курса математики в 7–9 классах
Алгебра
Числа
Рациональные числа
Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.
Иррациональные числа
Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа. Применение в геометрии .Сравнение иррациональных чисел. Множество действительных чисел.
Тождественные преобразования
Числовые и буквенные выражения
Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.
Целые выражения
Степень с натуральным показателем и её свойства. Преобразования выражений, содержащих степени с натуральным показателем.
Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращённого умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращённого умножения. Квадратный трёхчлен, разложение квадратного трёхчлена на множители.
Дробно-рациональные выражения
Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.
Преобразование выражений, содержащих знак модуля.
Квадратные корни
Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.
Уравнения и неравенства
Равенства
Числовое равенство. Свойства числовых равенств. Равенство с переменной.
Уравнения
Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).
Линейное уравнение и его корни
Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.
Квадратное уравнение и его корни
Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений: использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.
Дробно-рациональные уравнения
Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.
Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.
Простейшие иррациональные уравнения вида , .
Уравнения вида.Уравнения в целых числах.
Системы уравнений
Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.
Понятие системы уравнений. Решение системы уравнений.
Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.
Системы линейных уравнений с параметром.
Неравенства
Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.
Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).
Решение линейных неравенств.
Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.
Решение целых и дробно-рациональных неравенств методом интервалов.
Системы неравенств
Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.
Функции
Понятие функции
Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, чётность/нечётность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по её графику.
Представление об асимптотах.
Непрерывность функции. Кусочно заданные функции.
Линейная функция
Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от её углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.
Квадратичная функция
Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.
Обратная пропорциональность
Свойства функции . Гипербола.
Графики функций. Преобразование графика функции для построения графиков функций вида .
Графики функций , ,, .
Последовательности и прогрессии
Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и её свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.
Решение текстовых задач
Задачи на все арифметические действия
Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Задачи на движение, работу и покупки
Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объёмов выполняемых работ при совместной работе.
Задачи на части, доли, проценты
Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.
Логические задачи
Решение логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).
Статистика и теория вероятностей
Статистика
Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.
Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.
Случайные события
Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера.Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор.Представление эксперимента в виде дерева.Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.
Элементы комбинаторики
Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.
Случайные величины
Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.
Геометрия
Геометрические фигуры
Фигуры в геометрии и в окружающем мире
Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».
Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и её свойства, виды углов, многоугольники, круг.
Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.
Многоугольники
Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.
Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.
Четырёхугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.
Окружность, круг
Их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырёхугольников, правильных многоугольников.
Геометрические фигуры в пространстве (объёмные тела)
Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.
Отношения
Равенство фигур
Свойства равных треугольников. Признаки равенства треугольников.
Параллельность прямых
Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.
Перпендикулярные прямые
Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.
Подобие
Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.
Взаимное расположение прямой и окружности, двух окружностей.
Измерения и вычисления
Величины
Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.
Понятие о площади плоской фигуры и её свойствах. Измерение площадей. Единицы измерения площади.
Представление об объёме и его свойствах. Измерение объёма. Единицы измерения объёмов.
Измерения и вычисления
Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.
Расстояния
Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.
Геометрические построения
Геометрические построения для иллюстрации свойств геометрических фигур.
Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,
Построение треугольников по трём сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.
Деление отрезка в данном отношении.
Геометрические преобразования
Преобразования
Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.
Движения
Осевая и центральная симметрия, поворот и параллельный перенос.Комбинации движений на плоскости и их свойства.
Векторы и координаты на плоскости
Векторы
Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.
Координаты
Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.
Применение векторов и координат для решения простейших геометрических задач.
История математики
Возникновение математики как науки, этапы её развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырёх. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э.Галуа.
Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.
От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.
Геометрия и искусство. Геометрические закономерности окружающего мира.
Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.
Роль российских учёных в развитии математики: Л.Эйлер. Н.И.Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н.Колмогоров.
Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н.Крылов. Космическая программа и М.В.Келдыш.
Содержание курса математики в 7-9 классах (углублённый уровень)
Алгебра
Числа
Рациональные числа
Сравнение рациональных чисел. Действия с рациональными числами. Конечные и бесконечные десятичные дроби. Представление рационального числа в виде десятичной дроби.
Иррациональные числа
Понятие иррационального числа. Распознавание иррациональных чисел. Действия с иррациональными числами. Свойства действий с иррациональными числами. Сравнение иррациональных чисел. Множество действительных чисел.
Представления о расширениях числовых множеств.
Тождественные преобразования
Числовые и буквенные выражения
Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.
Законы арифметических действий. Преобразования числовых выражений, содержащих степени с натуральным и целым показателем.
Многочлены
Одночлен, степень одночлена. Действия с одночленами. Многочлен, степень многочлена. Значения многочлена. Действия с многочленами: сложение, вычитание, умножение, деление. Преобразование целого выражения в многочлен. Формулы сокращённого умножения: разность квадратов, квадрат суммы и разности. Формулы преобразования суммы и разности кубов, куб суммы и разности. Разложение многочленов на множители: вынесение общего множителя за скобки, группировка, использование формул сокращённого умножения. Многочлены с одной переменной. Стандартный вид многочлена с одной переменной.
Квадратный трёхчлен. Корни квадратного трёхчлена. Разложение на множители квадратного трёхчлена. Теорема Виета. Теорема, обратная теореме Виета. Выделение полного квадрата. Разложение на множители способом выделения полного квадрата.
Понятие тождества
Тождественное преобразование. Представление о тождестве на множестве.
Дробно-рациональные выражения
Алгебраическая дробь. Преобразования выражений, содержащих степени с целым показателем. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, умножение, деление.
Преобразование выражений, содержащих знак модуля.
Иррациональные выражения
Арифметический квадратный корень. Допустимые значения переменных в выражениях, содержащих арифметические квадратные корни. Преобразование выражений, содержащих квадратные корни.
Корни n-ых степеней. Допустимые значения переменных в выражениях, содержащих корни n-ых степеней. Преобразование выражений, содержащих корни n-ых степеней.
Степень с рациональным показателем. Преобразование выражений, содержащих степень с рациональным показателем.
Уравнения
Равенства
Числовое равенство. Свойства числовых равенств. Равенство с переменной.
Уравнения
Понятие уравнения и корня уравнения. Представление о равносильности уравнений и уравнениях-следствиях.
Представление о равносильности на множестве. Равносильные преобразования уравнений.
Методы решения уравнений
Методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений, использование теоремы Виета для уравнений степени выше 2.
Линейное уравнение и его корни
Решение линейных уравнений. Количество корней линейного уравнения. Линейное уравнение с параметром.
Квадратное уравнение и его корни
Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Количество действительных корней квадратного уравнения. Решение квадратных уравнений: графический метод решения, использование формулы для нахождения корней, разложение на множители, подбор корней с использованием теоремы Виета. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратное уравнение с параметром. Решение простейших квадратных уравнений с параметрами. Решение некоторых типов уравнений 3 и 4 степени.
Дробно-рациональные уравнения
Решение дробно-рациональных уравнений.
Простейшие иррациональные уравнения вида: ; и их решение. Решение иррациональных уравнений вида .
Системы уравнений
Уравнение с двумя переменными. Решение уравнений в целых числах. Линейное уравнение с двумя переменными. Графическая интерпретация линейного уравнения с двумя переменными.
Представление о графической интерпретации произвольного уравнения с двумя переменными: линии на плоскости.
Понятие системы уравнений. Решение систем уравнений.
Представление о равносильности систем уравнений.
Методы решения систем линейных уравнений с двумя переменными графический метод, метод сложения, метод подстановки. Количество решений системы линейных уравнений. Система линейных уравнений с параметром.
Системы нелинейных уравнений. Методы решения систем нелинейных уравнений. Метод деления, метод замены переменных. Однородные системы.
Неравенства
Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.
Неравенство с переменной. Строгие и нестрогие неравенства. Доказательство неравенств. Неравенства о средних для двух чисел.
Понятие о решении неравенства. Множество решений неравенства.
Представление о равносильности неравенств.
Линейное неравенство и множества его решений. Решение линейных неравенств. Линейное неравенство с параметром.
Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.
Квадратное неравенство с параметром и его решение.
Простейшие иррациональные неравенства вида: ; ; .
Обобщённый метод интервалов для решения неравенств.
Системы неравенств
Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных, дробно-рациональных, иррациональных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.
Неравенство с двумя переменными. Представление о решении линейного неравенства с двумя переменными. Графическая интерпретация неравенства с двумя переменными. Графический метод решения систем неравенств с двумя переменными.
Функции
Понятие зависимости
Прямоугольная система координат. Формирование представлений о метапредметном понятии «координаты». График зависимости.
Функция
Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, чётность/нечётность, возрастание и убывание, промежутки монотонности, наибольшее и наименьшее значение, периодичность. Исследование функции по её графику.
Линейная функция
Свойства, график. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от её коэффициентов.
Квадратичная функция
Свойства. Парабола. Построение графика квадратичной функции. Положение графика квадратичной функции в зависимости от её коэффициентов. Использование свойств квадратичной функции для решения задач.
Обратная пропорциональность
Свойства функции . Гипербола. Представление об асимптотах.
Степенная функция с показателем3
Свойства. Кубическая парабола.
Функции , , . Их свойства и графики. Степенная функция с показателем степени больше 3.
Преобразование графиков функций: параллельный перенос, симметрия, растяжение/сжатие, отражение.
Представление о взаимно обратных функциях.
Непрерывность функции и точки разрыва функций. Кусочно заданные функции.
Последовательности и прогрессии
Числовая последовательность. Примеры. Бесконечные последовательности. Арифметическая прогрессия и её свойства. Геометрическая прогрессия. Суммирование первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия. Сумма сходящейся геометрической прогрессии. Гармонический ряд. Расходимость гармонического ряда.
Метод математической индукции, его применение для вывода формул, доказательства равенств и неравенств, решения задач на делимость.
Решение текстовых задач
Задачи на все арифметические действия
Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Решение задач на движение, работу, покупки
Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объёмов выполняемых работ при совместной работе.
Решение задач на нахождение части числа и числа по его части
Решение задач на проценты, доли, применение пропорций при решении задач.
Логические задачи
Решение логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения задач
Арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).
Статистика и теория вероятностей
Статистика
Табличное и графическое представление данных, столбчатые и круговые диаграммы, извлечение нужной информации. Диаграммы рассеивания. Описательные статистические показатели: среднее арифметическое, медиана, наибольшее и наименьшее значения числового набора. Отклонение. Случайные выбросы. Меры рассеивания: размах, дисперсия и стандартное отклонение. Свойства среднего арифметического и дисперсии. Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.
Случайные опыты и случайные события
Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Независимые события. Последовательные независимые испытания. Представление эксперимента в виде дерева, умножение вероятностей. Испытания до первого успеха. Условная вероятность. Формула полной вероятности.
Элементы комбинаторики и испытания Бернулли
Правило умножения, перестановки, факториал. Сочетания и число сочетаний. Треугольник Паскаля и бином Ньютона. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением элементов комбинаторики. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.
Геометрическая вероятность
Случайный выбор точки из фигуры на плоскости, отрезка и дуги окружности. Случайный выбор числа из числового отрезка.
Случайные величины
Дискретная случайная величина и распределение вероятностей. Равномерное дискретное распределение. Геометрическое распределение вероятностей. Распределение Бернулли. Биномиальное распределение. Независимые случайные величины. Сложение, умножение случайных величин. Математическое ожидание и его свойства. Дисперсия и стандартное отклонение случайной величины; свойства дисперсии. Дисперсия числа успехов в серии испытаний Бернулли. Понятие о законе больших чисел. Измерение вероятностей и точность измерения. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.
Геометрия
Геометрические фигуры
Фигуры в геометрии и в окружающем мире
Геометрическая фигура. Внутренняя, внешняя области фигуры, граница. Линии и области на плоскости. Выпуклая и невыпуклая фигуры. Плоская и неплоская фигуры.
Выделение свойств объектов. Формирование представлений о метапредметном понятии «фигура». Точка, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и её свойства, виды углов, многоугольники, окружность и круг.
Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.
Многоугольники
Многоугольник, его элементы и его свойства. Правильные многоугольники. Выпуклые и невыпуклые многоугольники. Сумма углов выпуклого многоугольника.
Треугольник. Сумма углов треугольника. Равнобедренный треугольник, свойства и признаки. Равносторонний треугольник. Медианы, биссектрисы, высоты треугольников. Замечательные точки в треугольнике. Неравенство треугольника.
Четырёхугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата. Теорема Вариньона.
Окружность, круг
Их элементы и свойства. Хорды и секущие, их свойства. Касательные и их свойства. Центральные и вписанные углы. Вписанные и описанные окружности для треугольников. Вписанные и описанные окружности для четырёхугольников. Вневписанные окружности. Радикальная ось.
Фигуры в пространстве (объемные тела)
Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамидах, параллелепипедах, призмах, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.
Отношения
Равенство фигур
Свойства и признаки равенства треугольников. Дополнительные признаки равенства треугольников. Признаки равенства параллелограммов.
Параллельность прямых
Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Первичные представления о неевклидовых геометриях. Теорема Фалеса.
Перпендикулярные прямые
Прямой угол. Перпендикуляр к прямой. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности прямых. Наклонные, проекции, их свойства.
Подобие
Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия треугольников. Отношение площадей подобных фигур.
Взаимное расположениепрямой и окружности, двух окружностей.
Измерения и вычисления
Величины
Понятие величины. Длина. Измерение длины. Единцы измерения длины.
Величина угла. Градусная мера угла. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Понятие о площади плоской фигуры и её свойствах. Измерение площадей. Единицы измерения площади.
Представление об объёме пространственной фигуры и его свойствах. Измерение объёма. Единицы измерения объёмов.
Измерения и вычисления
Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей, вычисление элементов треугольников с использованием тригонометрических соотношений. Площади. Формулы площади треугольника, параллелограмма и его частных видов, трапеции, формула Герона, формула площади выпуклого четырёхугольника, формулы длины окружности и площади круга. Площадь кругового сектора, кругового сегмента. Площадь правильного многоугольника.
Теорема Пифагора. Пифагоровы тройки. Тригонометрические соотношения в прямоугольном треугольнике. Тригонометрические функции тупого угла.
Теорема косинусов. Теорема синусов.
Решение треугольников. Вычисление углов. Вычисление высоты, медианы и биссектрисы треугольника. Ортотреугольник. Теорема Птолемея. Теорема Менелая. Теорема Чевы.
Расстояния
Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.
Равновеликие и равносоставленные фигуры.
Свойства (аксиомы) длины отрезка, величины угла, площади и объёма фигуры.
Геометрические построения
Геометрические построения для иллюстрации свойств геометрических фигур.
Инструменты для построений. Циркуль, линейка.
Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному.
Построение треугольников по трём сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам, по другим элементам.
Деление отрезка в данном отношении.
Основные методы решения задач на построение (метод геометрических мест точек, метод параллельного переноса, метод симметрии, метод подобия).
Этапы решения задач на построение.
Геометрические преобразования
Преобразования
Представление о межпредметном понятии «преобразование». Преобразования в математике (в арифметике, алгебре, геометрические преобразования).
Движения
Осевая и центральная симметрии, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.
Подобие как преобразование
Гомотетия. Геометрические преобразования как средство доказательства утверждений и решения задач.
Векторы и координаты на плоскости
Векторы
Понятие вектора, действия над векторами, коллинеарные векторы, векторный базис, разложение вектора по базисным векторам. Единственность разложения векторов по базису, скалярное произведение и его свойства, использование векторов в физике.
Координаты
Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.
Применение векторов и координат для решения геометрических задач.
Аффинная система координат. Радиус-векторы точек. Центроид системы точек.
История математики
Возникновение математики как науки, этапы её развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырёх. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э.Галуа.
Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных координат.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.
От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.
Геометрия и искусство. Геометрические закономерности окружающего мира.
Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.
Роль российских учёных в развитии математики: Л.Эйлер. Н.И.Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н.Колмогоров.
Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н.Крылов. Космическая программа и М.В.Келдыш.
Календарно- тематическое планирование по предмету Математика для 6 А класса
№ | Тема урока | Кол-во часов | Дата проведения | Примечания | |||||||||||||
план | факт | ||||||||||||||||
Раздел 1. Повторение курса 5 класса. - 5ч. | |||||||||||||||||
Повторение. Арифметические действия | 1 | 2.09 | |||||||||||||||
Повторение. Основы геометрии | 1 | 5.09-9.09 | |||||||||||||||
Повторение | 1 | 5.09-9.09 | |||||||||||||||
Повторение | 1 | 5.09-9.09 | |||||||||||||||
Диагностическая контрольная работа | 1 | 5.09-9.09 | |||||||||||||||
Раздел 2. Делимость чисел - 20 ч. | |||||||||||||||||
Анализ контрольной работы. Делители и кратные | 1 | 5.09-9.09 | |||||||||||||||
Делители и кратные | 1 | 12.09-16.09 | |||||||||||||||
Делители и кратные | 1 | 12.09-16.09 | |||||||||||||||
Признаки делимости на 10, на 5 и на 2 | 1 | 12.09-16.09 | |||||||||||||||
Признаки делимости на 10, на 5 и на 2 | 1 | 12.09-16.09 | |||||||||||||||
Признаки делимости на 9 и на 3 | 1 | 12.09-16.09 | |||||||||||||||
Признаки делимости на 9 и на 3 | 1 | 19.09-23.09 | |||||||||||||||
Простые и составные числа | 1 | 19.09-23.09 | |||||||||||||||
Простые и составные числа | 1 | 19.09-23.09 | |||||||||||||||
Разложение на простые множители | 1 | 19.09-23.09 | |||||||||||||||
Разложение на простые множители | 1 | 19.09-23.09 | |||||||||||||||
Наибольший общий делитель. Взаимно простые числа | 1 | 26.09-30.09 | |||||||||||||||
Наибольший общий делитель. Взаимно простые числа | 1 | 26.09-30.09 | |||||||||||||||
Наибольший общий делитель. Взаимно простые числа | 1 | 26.09-30.09 | |||||||||||||||
Наибольший общий делитель. Взаимно простые числа | 1 | 26.09-30.09 | |||||||||||||||
Наименьшее общее кратное | 1 | 26.09-30.09 | |||||||||||||||
Наименьшее общее кратное | 1 | 3.10-7.10 | |||||||||||||||
Наименьшее общее кратное | 1 | 3.10-7.10 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Делимость чисел» | 1 | 3.10-7.10 | |||||||||||||||
Контрольная работа №1 по теме: «Делимость чисел» | 1 | 3.10-7.10 | |||||||||||||||
Раздел 3. Сложение и вычитание дробей с разными знаменателями ( 22ч.) | |||||||||||||||||
Анализ контрольной работы. Основное свойство дроби | 1 | 3.10-7.10 | |||||||||||||||
Сокращение дробей | 1 | 10.10 – 14.10 | |||||||||||||||
Сокращение дробей | 1 | 10.10 – 14.10 | |||||||||||||||
Приведение дробей к общему знаменателю | 1 | 10.10 – 14.10 | |||||||||||||||
Приведение дробей к общему знаменателю | 1 | 10.10 – 14.10 | |||||||||||||||
Сравнение дробей с разными знаменателями | 1 | 10.10 – 14.10 | |||||||||||||||
Сравнение дробей с разными знаменателями | 1 | 17.10 – 21.10 | |||||||||||||||
Сложение и вычитание дробей с разными знаменателями | 1 | 17.10 – 21.10 | |||||||||||||||
Сложение и вычитание дробей с разными знаменателями | 1 | 17.10 – 21.10 | |||||||||||||||
Сложение и вычитание дробей с разными знаменателями | 1 | 17.10 – 21.10 | |||||||||||||||
Сложение и вычитание дробей с разными знаменателями | 1 | 17.10 – 21.10 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Сложение и вычитание дробей с разными знаменателями» | 1 | 24.10 – 28.10 | |||||||||||||||
Контрольная работа №2 по теме: «Сложение и вычитание дробей с разными знаменателями» | 1 | 24.10 – 28.10 | |||||||||||||||
Анализ контрольной работы. Сложение смешанных чисел | 1 | 24.10 – 28.10 | |||||||||||||||
Сложение смешанных чисел | 1 | 24.10 – 28.10 | |||||||||||||||
Вычитание смешанных чисел | 1 | 24.10 – 28.10 | |||||||||||||||
Вычитание смешанных чисел | 1 | 7.11 – 11.11 | |||||||||||||||
Сложение и вычитание смешанных чисел | 1 | 7.11 – 11.11 | |||||||||||||||
Сложение и вычитание смешанных чисел | 1 | 7.11 – 11.11 | |||||||||||||||
Сложение и вычитание смешанных чисел | 1 | 7.11 – 11.11 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Сложение и вычитание смешанных чисел» | 1 | 7.11 – 11.11 | |||||||||||||||
Контрольная работа №3 по теме: «Сложение и вычитание смешанных чисел» | 1 | 14.11 – 18.11 | |||||||||||||||
Раздел 4. Умножение и деление обыкновенных дробей ( 31ч.) | |||||||||||||||||
Анализ контрольной работы. Умножение дробей | 1 | 14.11 – 18.11 | |||||||||||||||
Умножение дробей | 1 | 14.11 – 18.11 | |||||||||||||||
Умножение дробей | 1 | 14.11 – 18.11 | |||||||||||||||
Умножение дробей | 1 | 14.11 – 18.11 | |||||||||||||||
Нахождение дроби от числа | 1 | 21.11 – 25.11 | |||||||||||||||
Нахождение дроби от числа | 1 | 21.11 – 25.11 | |||||||||||||||
Нахождение дроби от числа | 1 | 21.11 – 25.11 | |||||||||||||||
Нахождение дроби от числа | 1 | 21.11 – 25.11 | |||||||||||||||
Применение распределительного свойства умножения | 1 | 21.11 – 25.11 | |||||||||||||||
Применение распределительного свойства умножения | 1 | 28.11 – 2.12 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Умножение дробей. Нахождение дроби от числа» | 1 | 28.11 – 2.12 | |||||||||||||||
Контрольная работа №4 по теме: «Умножение дробей. Нахождение дроби от числа» | 1 | 28.11 – 2.12 | |||||||||||||||
Анализ контрольной работы. Взаимно обратные числа | 1 | 28.11 – 2.12 | |||||||||||||||
Взаимно обратные числа | 1 | 28.11 – 2.12 | |||||||||||||||
Деление | 1 | 5.12 – 9.12 | |||||||||||||||
Деление | 1 | 5.12 – 9.12 | |||||||||||||||
Деление | 1 | 5.12 – 9.12 | |||||||||||||||
Деление | 1 | 5.12 – 9.12 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Деление дробей» | 1 | 5.12 – 9.12 | |||||||||||||||
Контрольная работа №5 по теме: «Деление дробей» | 1 | 12.12 – 16.12 | |||||||||||||||
Анализ контрольной работы. Нахождение числа по его дроби | 1 | 12.12 – 16.12 | |||||||||||||||
Итоговая контрольная работа за 1 полугодие | 1 | 12.12 – 16.12 | |||||||||||||||
Нахождение числа по его дроби | 1 | 12.12 – 16.12 | |||||||||||||||
Нахождение числа по его дроби | 1 | 12.12 – 16.12 | |||||||||||||||
Нахождение числа по его дроби | 1 | 19.12 – 23.12 | |||||||||||||||
Нахождение числа по его дроби | 1 | 19.12 – 23.12 | |||||||||||||||
Дробные выражения | 1 | 19.12 – 23.12 | |||||||||||||||
Дробные выражения | 1 | 19.12 – 23.12 | |||||||||||||||
Дробные выражения | 1 | 19.12 – 23.12 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Нахождение числа по его дроби. Дробные выражения» | 1 | 9.01 – 13.01 | |||||||||||||||
Контрольная работа №6 по теме: «Нахождение числа по его дроби. Дробные выражения» | 1 | 9.01 – 13.01 | |||||||||||||||
Раздел 5. Отношения и пропорции - 20ч | |||||||||||||||||
Анализ контрольной работы. Отношения | 1 | 9.01 – 13.01 | |||||||||||||||
Отношения | 1 | 9.01 – 13.01 | |||||||||||||||
Отношения | 1 | 9.01 – 13.01 | |||||||||||||||
Отношения | 1 | 16.01 – 20.01 | |||||||||||||||
Пропорции | 1 | 16.01 – 20.01 | |||||||||||||||
Пропорции | 1 | 16.01 – 20.01 | |||||||||||||||
Пропорции | 1 | 16.01 – 20.01 | |||||||||||||||
Прямая и обратная пропорциональные зависимости | 1 | 16.01 – 20.01 | |||||||||||||||
Прямая и обратная пропорциональные зависимости | 1 | 23.01 – 27.01 | |||||||||||||||
Прямая и обратная пропорциональные зависимости | 1 | 23.01 – 27.01 | |||||||||||||||
Обобщение и систематизация знаний по теме: "Отношения и пропорции" | 1 | 23.01 – 27.01 | |||||||||||||||
Контрольная работа №7 по теме: «Отношения и пропорции» | 1 | 23.01 – 27.01 | |||||||||||||||
Анализ контрольной работы. Масштаб | 1 | 23.01 – 27.01 | |||||||||||||||
Масштаб | 1 | 30.01 – 3.02 | |||||||||||||||
Длина окружности и площадь круга | 1 | 30.01 – 3.02 | |||||||||||||||
Длина окружности и площадь круга | 1 | 30.01 – 3.02 | |||||||||||||||
Шар | 1 | 30.01 – 3.02 | |||||||||||||||
Шар | 1 | 30.01 – 3.02 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Масштаб. Длина окружности и площадь круга» | 1 | 6.02 -10.02 | |||||||||||||||
Контрольная работа №8 по теме: «Масштаб. Длина окружности и площадь круга» | 1 | 6.02 -10.02 | |||||||||||||||
Раздел 6. Положительные и отрицательные числа - 12ч | |||||||||||||||||
Анализ контрольной работы. Координаты на прямой | 1 | 6.02 -10.02 | |||||||||||||||
Координаты на прямой | 1 | 6.02 -10.02 | |||||||||||||||
Противоположные числа | 1 | 6.02 -10.02 | |||||||||||||||
Противоположные числа | 1 | 13.02 – 17.02 | |||||||||||||||
Модуль числа | 1 | 13.02 – 17.02 | |||||||||||||||
Модуль числа | 1 | 13.02 – 17.02 | |||||||||||||||
Сравнение чисел | 1 | 13.02 – 17.02 | |||||||||||||||
Сравнение чисел | 1 | 13.02 – 17.02 | |||||||||||||||
Изменение величин | 1 | 20.02 – 24.02 | |||||||||||||||
Изменение величин | 1 | 20.02 – 24.02 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Положительные и отрицательные числа» | 1 | 20.02 – 24.02 | |||||||||||||||
Контрольная работа №9 по теме: «Положительные и отрицательные числа» | 1 | 20.02 – 24.02 | |||||||||||||||
Раздел 7. Сложение и вычитание положительных и отрицательных чисел - 14ч | |||||||||||||||||
Анализ контрольной работы. Сложение чисел с помощью координатной прямой | 1 | 20.02 – 24.02 | |||||||||||||||
Сложение чисел с помощью координатной прямой | 1 | 24.02 – 3.03 | |||||||||||||||
Сложение отрицательных чисел | 1 | 24.02 – 3.03 | |||||||||||||||
Сложение отрицательных чисел | 1 | 24.02 – 3.03 | |||||||||||||||
Сложение чисел с разными знаками | 1 | 24.02 – 3.03 | |||||||||||||||
Сложение чисел с разными знаками | 1 | 24.02 – 3.03 | |||||||||||||||
Сложение чисел с разными знаками | 1 | 6.03 – 10.03 | |||||||||||||||
Сложение чисел с разными знаками | 1 | 6.03 – 10.03 | |||||||||||||||
Сложение чисел с разными знаками | 1 | 6.03 – 10.03 | |||||||||||||||
Вычитание | 1 | 6.03 – 10.03 | |||||||||||||||
Вычитание | 1 | 6.03 – 10.03 | |||||||||||||||
Вычитание | 1 | 13.03 – 17.03 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Сложение и вычитание положительных и отрицательных чисел» | 1 | 13.03 – 17.03 | |||||||||||||||
Контрольная работа №10 по теме: «Сложение и вычитание положительных и отрицательных чисел» | 1 | 13.03 – 17.03 | |||||||||||||||
Раздел 8. Умножение и деление положительных и отрицательных чисел - 13ч | |||||||||||||||||
Анализ контрольной работы. Умножение | 1 | 13.03 – 17.03 | |||||||||||||||
Умножение | 1 | 13.03 – 17.03 | |||||||||||||||
Умножение | 1 | 29.03 -31.03 | |||||||||||||||
Умножение | 1 | 29.03 -31.03 | |||||||||||||||
Деление | 1 | 29.03 -31.03 | |||||||||||||||
Деление | 1 | 3.04 -7.04 | |||||||||||||||
Деление | 1 | 3.04 -7.04 | |||||||||||||||
Рациональные числа | 1 | 3.04 -7.04 | |||||||||||||||
Свойства действий с рациональными числами | 1 | 3.04 -7.04 | |||||||||||||||
Свойства действий с рациональными числами | 1 | 3.04 -7.04 | |||||||||||||||
Свойства действий с рациональными числами | 1 | 10.04 – 14.04 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Умножение и деление положительных и отрицательных чисел» | 1 | 10.04 – 14.04 | |||||||||||||||
Контрольная работа №11 по теме: «Умножение и деление положительных и отрицательных чисел» | 1 | 10.04 – 14.04 | |||||||||||||||
Раздел 9. Решение уравнений - 14ч | |||||||||||||||||
Анализ контрольной работы. Раскрытие скобок | 1 | 10.04 – 14.04 | |||||||||||||||
Раскрытие скобок | 1 | 10.04 – 14.04 | |||||||||||||||
Раскрытие скобок | 1 | 17.04 – 21.04 | |||||||||||||||
Коэффициент | 1 | 17.04 – 21.04 | |||||||||||||||
Подобные слагаемые | 1 | 17.04 – 21.04 | |||||||||||||||
Подобные слагаемые | 1 | 17.04 – 21.04 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Коэффициент. Подобные слагаемые» | 1 | 17.04 – 21.04 | |||||||||||||||
Контрольная работа №12 по теме: «Коэффициент. Подобные слагаемые» | 1 | 24.04 – 28.04 | |||||||||||||||
Анализ контрольной работы. Решение уравнений | 1 | 24.04 – 28.04 | |||||||||||||||
Решение уравнений | 1 | 24.04 – 28.04 | |||||||||||||||
Решение уравнений | 1 | 24.04 – 28.04 | |||||||||||||||
Решение уравнений | 1 | 24.04 – 28.04 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Решение уравнений» | 1 | 1.05 – 5.05 | |||||||||||||||
Контрольная работа №13 по теме: «Решение уравнений» | 1 | 1.05 – 5.05 | |||||||||||||||
Раздел 10. Координаты на плоскости – 9 ч | |||||||||||||||||
Анализ контрольной работы. Перпендикулярные прямые | 1 | 1.05 – 5.05 | |||||||||||||||
Параллельные прямые | 1 | 1.05 – 5.05 | |||||||||||||||
Параллельные прямые | 1 | 1.05 – 5.05 | |||||||||||||||
Координатная плоскость | 1 | 8.05 – 12.05 | |||||||||||||||
Столбчатые диаграммы | 1 | 8.05 – 12.05 | |||||||||||||||
Графики | 1 | 8.05 – 12.05 | |||||||||||||||
Графики | 1 | 8.05 – 12.05 | |||||||||||||||
Обобщение и систематизация знаний по теме: «Координаты на плоскости» | 1 | 8.05 – 12.05 | |||||||||||||||
Контрольная работа №14 по теме: «Координаты на плоскости» | 1 | 15.05 – 19.05 | |||||||||||||||
Раздел 11. Итоговое повторение курса математики 5-6 класса – 15 ч | |||||||||||||||||
Анализ контрольной работы. Повторение. Подготовка к итоговой контрольной работе. | 1 | 15.05 – 19.05 | |||||||||||||||
Повторение. Подготовка к итоговой контрольной работе | 1 | 15.05 – 19.05 | |||||||||||||||
Итоговая контрольная работа за 6 класс | 1 | 15.05 – 19.05 | |||||||||||||||
Анализ контрольной работы. Повторение. Признаки делимости. НОД и НОК чисел | 1 | 15.05 – 19.05 | |||||||||||||||
| Повторение. Сложение и вычитание дробей с разными знаменателями | 1 | 22.05 – 26.05 | ||||||||||||||
Повторение. Отношение и пропорции | 1 | 22.05 – 26.05 | |||||||||||||||
Повторение. Отношение и пропорции | 1 | 22.05 – 26.05 | |||||||||||||||
Повторение. Умножение и деление обыкновенных дробей | 1 | 22.05 – 26.05 | |||||||||||||||
Повторение. Умножение и деление обыкновенных дробей | 1 | 22.05 – 26.05 | |||||||||||||||
Повторение. Сложение и вычитание положительных и отрицательных чисел | 1 | 29.05 – 31.05 | |||||||||||||||
Повторение. Сложение и вычитание положительных и отрицательных чисел | 1 | 29.05 – 31.05 | |||||||||||||||
Повторение. Решение уравнений | 1 | 29.05 – 31.05 | |||||||||||||||
Повторение. Решение уравнений | 1 | 29.05 – 31.05 | |||||||||||||||
Решение задач с помощью уравнений | 1 | 29.05 – 31.05 | |||||||||||||||
Решение задач с помощью уравнений | 1 | 29.05 – 31.05 |
КРИТЕРИИ ОЦЕНОК ПО МАТЕМАТИКЕ
Оценка устных ответов учащихся
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником, изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при отработке умений и навыков;
- отвечал самостоятельно без наводящих вопросов учителя. Возможны одна-две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Ответ оценивается отметкой «4»,если
- он удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившие математическое содержание ответа;
- допущены один-два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.
Отметка «3» ставится в следующих случаях:
- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»);
- имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2»ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
- ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.
Оценка письменных работ учащихся
Отметка «5»ставится, если:
- работа выполнена полностью;
- в логических рассужденияхи обосновании решения нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).
Отметка «4» ставится, если:
- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).
Отметка «3» ставится, если:
- допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
- допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере.
Отметка «1» ставится, если:
- работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
По теме: методические разработки, презентации и конспекты
ПМ 01, 02, 03, 04, 05 Рабочая программа по бух-учету, по налогам, для специальности 080110 и рабочие программы по налогам и бух-учету для специальности 080114 и программа экзаменов для ПМ 01 и 02
Рабочие программы:ПМ 01 -Документирование хозяйственных операций и ведение бухгвалтерского учета имущества организацииПМ 02-Ведение бухучета источников формирования имущества, выполнения работ по инве...
Рабочая программа курса химии 8 класс, разработанная на основе Примерной программы основного общего образования по химии (авторская рабочая программа)
Рабочая программа курса химии 8 класс,разработанная на основеПримерной программы основного общего образования по химии,Программы курса химии для 8-9 классовобщеобразовательных учреждений (а...
Рабочая программа по литературе для 6 класса (по программе В. Коровиной) Рабочая программа по литературе для 10 класса (по программе ]В. Коровиной)
Рабочая программа содержит пояснительную записку, тематическое планирование., описание планируемых результатов, форм и методов, которые использую на уроках. Даётся необходимый список литературы...
Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.
Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
Рабочая программа по русскому языку 5 класс Разумовская, рабочая программа по литературе 5 класс Меркин, рабочая программа по русскому языку 6 класс разумовская
рабочая программа по русскому языку по учебнику Разумовской, Львова. пояснительная записка, календарно-тематическое планирование; рабочая программа по литературе 5 класс автор Меркин. рабочая программ...
Рабочая программа по Биологии за 7 класс (УМК Сонина), Рабочая программа по Биологии для реализации детского технопарка Школьный кванториум, 5-9 классы, Рабочая программа по Биохимии.
Рабочая программа по биологии составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по биологи...