СР Признаки и свойства параллелограмма
тренажёр по геометрии (8 класс)

Кремер Виктория Владимировна

Самостоятельная работа на 2 варианта«Признаки и свойства параллелограмма»

Скачать:

ВложениеРазмер
Файл sr_priznaki_parallelogramma.docx53.8 КБ

Предварительный просмотр:

Самостоятельная работа «Признаки и свойства параллелограмма»

Вариант 1

  1. В четырехугольнике ABCD: АВ || CD, ВС || AD, АС = 20 см, BD = 10 см, АВ = 13 см. Диагонали четырехугольника ABCD пересекаются в точке О. Найдите периметр Δ COD.
  2. Из вершины В параллелограмма ABCD с острым углом А проведен перпендикуляр ВК к прямой AD; ВК = АВ : 2. Найдите C, D.
  3. Середина отрезка BD является центром окружности с диаметром АС, причем точки А, В, С, D не лежат на одной прямой. Докажите, что ABCD – параллелограмм.

Самостоятельная работа «Признаки и свойства параллелограмма»

Вариант 2

  1. В четырехугольнике ABCD АВ || CD, ВС || AD, О – точка пересечения диагоналей. Периметр Δ AOD равен 25 см, АС = 16 см, BD = 14 см. Найдите ВС.
  2. В параллелограмме ABCD с острым углом А из вершины В опущен перпендикуляр ВК к прямой AD, AK = ВК. Найдите C, D.
  3. Дан параллелограмм ABCD. На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что AM = CN. Докажите, что MBND – параллелограмм.

Самостоятельная работа «Признаки и свойства параллелограмма»

Вариант 1

  1. В четырехугольнике ABCD: АВ || CD, ВС || AD, АС = 20 см, BD = 10 см, АВ = 13 см. Диагонали четырехугольника ABCD пересекаются в точке О. Найдите периметр Δ COD.
  2. Из вершины В параллелограмма ABCD с острым углом А проведен перпендикуляр ВК к прямой AD; ВК = АВ : 2. Найдите C, D.
  3. Середина отрезка BD является центром окружности с диаметром АС, причем точки А, В, С, D не лежат на одной прямой. Докажите, что ABCD – параллелограмм.

Самостоятельная работа «Признаки и свойства параллелограмма»

Вариант 2

  1. В четырехугольнике ABCD АВ || CD, ВС || AD, О – точка пересечения диагоналей. Периметр Δ AOD равен 25 см, АС = 16 см, BD = 14 см. Найдите ВС.
  2. В параллелограмме ABCD с острым углом А из вершины В опущен перпендикуляр ВК к прямой AD, AK = ВК. Найдите C, D.
  3. Дан параллелограмм ABCD. На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что AM = CN. Докажите, что MBND – параллелограмм.

Самостоятельная работа «Признаки и свойства параллелограмма»

Вариант 1

  1. В четырехугольнике ABCD: АВ || CD, ВС || AD, АС = 20 см, BD = 10 см, АВ = 13 см. Диагонали четырехугольника ABCD пересекаются в точке О. Найдите периметр Δ COD.
  2. Из вершины В параллелограмма ABCD с острым углом А проведен перпендикуляр ВК к прямой AD; ВК = АВ : 2. Найдите C, D.
  3. Середина отрезка BD является центром окружности с диаметром АС, причем точки А, В, С, D не лежат на одной прямой. Докажите, что ABCD – параллелограмм.

Самостоятельная работа «Признаки и свойства параллелограмма»

Вариант 2

  1. В четырехугольнике ABCD АВ || CD, ВС || AD, О – точка пересечения диагоналей. Периметр Δ AOD равен 25 см, АС = 16 см, BD = 14 см. Найдите ВС.
  2. В параллелограмме ABCD с острым углом А из вершины В опущен перпендикуляр ВК к прямой AD, AK = ВК. Найдите C, D.
  3. Дан параллелограмм ABCD. На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что AM = CN. Докажите, что MBND – параллелограмм.

 

Вариант 1

  1. ABCD – параллелограмм (рис. 5.67), тогда CD = АВ = 13 см, ОС = АО = 10 см, BD = OD = 5 см (объясните). PCOD = 10 + 5 + 13 = 28 см.
  2. ВК = АВ/2 (рис. 5.68), тогда A = 30° (объясните), значит, C = 30°, D = 150° (объясните).
  3. В четырехугольнике ABCD (рис. 5.69) середину отрезка BD отметим точкой О. Отсюда следует, что BO = OD.
    Одновременно точка О является центром окружности с диагональю AC, следовательно AO = OC.
    По свойству параллелограммов (
    диагонали пересекаются и точкой пересечения делятся пополам), если BO = OD и AO = OC, то ABCD – параллелограмм.

Вариант 2

  1. ABCD – параллелограмм (рис. 5.70), тогда АО = СО = 8 см, ВО = DO = 7 см (объясните). Так как PAOD = 25 см, то ВС = AD = 10 см.
  2. AK = ВК (рис. 5.71), тогда A = 45° (объясните), C = 45°, D = 135° (объясните).
  3. ABCD – параллелограмм (рис. 5.72), тогда АО = СО, ВО = DO. В четырехугольнике MBND диагонали точкой пересечения делятся пополам, значит, MBND – параллелограмм.

Геометрия 8 Атанасян Самостоятельная 2


По теме: методические разработки, презентации и конспекты

Параллелограмм. Свойства параллелограмма.

Конспект урока геометрии в 8 классе. «Параллелограмм.  Свойства параллелограмма»На уроке повторяются свойства параллельных прямых и признаки равенства треугольников; учащиеся знакомятся  с о...

Урок открытия новых знаний "Параллелограмм. Свойства параллелограмма"

Урок открытия новых знаний "Параллелограмм. Свойства параллелограмма".Цели урока:Образовательная: познакомиться с понятием параллелограмма, сформулировать и доказать свойства параллелограмма.Воспитате...

Презентация по теме "Параллелограмм.Свойства параллелограмма."

Презентация к уроку матемакики в 8 классе по теме "Параллелограмм.Свойства параллелограмма" (к учебнику "Геометрия, 8 класс", автор А.Г.Мерзляк)...

Задачи на готовых чертежах по теме "Признаки и свойства параллелограмма"

Данная презентация содержит задачи на готовых чертежах по теме: "Признаки и свойства параллелограмма". Можно использовать при закреплении материала на устном счете....