СР Признаки и свойства параллелограмма
тренажёр по геометрии (8 класс)
Самостоятельная работа на 2 варианта«Признаки и свойства параллелограмма»
Скачать:
Вложение | Размер |
---|---|
sr_priznaki_parallelogramma.docx | 53.8 КБ |
Предварительный просмотр:
Самостоятельная работа «Признаки и свойства параллелограмма»
Вариант 1
- В четырехугольнике ABCD: АВ || CD, ВС || AD, АС = 20 см, BD = 10 см, АВ = 13 см. Диагонали четырехугольника ABCD пересекаются в точке О. Найдите периметр Δ COD.
- Из вершины В параллелограмма ABCD с острым углом А проведен перпендикуляр ВК к прямой AD; ВК = АВ : 2. Найдите ∠C, ∠D.
- Середина отрезка BD является центром окружности с диаметром АС, причем точки А, В, С, D не лежат на одной прямой. Докажите, что ABCD – параллелограмм.
Самостоятельная работа «Признаки и свойства параллелограмма»
Вариант 2
- В четырехугольнике ABCD АВ || CD, ВС || AD, О – точка пересечения диагоналей. Периметр Δ AOD равен 25 см, АС = 16 см, BD = 14 см. Найдите ВС.
- В параллелограмме ABCD с острым углом А из вершины В опущен перпендикуляр ВК к прямой AD, AK = ВК. Найдите ∠C, ∠D.
- Дан параллелограмм ABCD. На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что AM = CN. Докажите, что MBND – параллелограмм.
Самостоятельная работа «Признаки и свойства параллелограмма»
Вариант 1
- В четырехугольнике ABCD: АВ || CD, ВС || AD, АС = 20 см, BD = 10 см, АВ = 13 см. Диагонали четырехугольника ABCD пересекаются в точке О. Найдите периметр Δ COD.
- Из вершины В параллелограмма ABCD с острым углом А проведен перпендикуляр ВК к прямой AD; ВК = АВ : 2. Найдите ∠C, ∠D.
- Середина отрезка BD является центром окружности с диаметром АС, причем точки А, В, С, D не лежат на одной прямой. Докажите, что ABCD – параллелограмм.
Самостоятельная работа «Признаки и свойства параллелограмма»
Вариант 2
- В четырехугольнике ABCD АВ || CD, ВС || AD, О – точка пересечения диагоналей. Периметр Δ AOD равен 25 см, АС = 16 см, BD = 14 см. Найдите ВС.
- В параллелограмме ABCD с острым углом А из вершины В опущен перпендикуляр ВК к прямой AD, AK = ВК. Найдите ∠C, ∠D.
- Дан параллелограмм ABCD. На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что AM = CN. Докажите, что MBND – параллелограмм.
Самостоятельная работа «Признаки и свойства параллелограмма»
Вариант 1
- В четырехугольнике ABCD: АВ || CD, ВС || AD, АС = 20 см, BD = 10 см, АВ = 13 см. Диагонали четырехугольника ABCD пересекаются в точке О. Найдите периметр Δ COD.
- Из вершины В параллелограмма ABCD с острым углом А проведен перпендикуляр ВК к прямой AD; ВК = АВ : 2. Найдите ∠C, ∠D.
- Середина отрезка BD является центром окружности с диаметром АС, причем точки А, В, С, D не лежат на одной прямой. Докажите, что ABCD – параллелограмм.
Самостоятельная работа «Признаки и свойства параллелограмма»
Вариант 2
- В четырехугольнике ABCD АВ || CD, ВС || AD, О – точка пересечения диагоналей. Периметр Δ AOD равен 25 см, АС = 16 см, BD = 14 см. Найдите ВС.
- В параллелограмме ABCD с острым углом А из вершины В опущен перпендикуляр ВК к прямой AD, AK = ВК. Найдите ∠C, ∠D.
- Дан параллелограмм ABCD. На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что AM = CN. Докажите, что MBND – параллелограмм.
Вариант 1
- ABCD – параллелограмм (рис. 5.67), тогда CD = АВ = 13 см, ОС = АО = 10 см, BD = OD = 5 см (объясните). PCOD = 10 + 5 + 13 = 28 см.
- ВК = АВ/2 (рис. 5.68), тогда ∠A = 30° (объясните), значит, ∠C = 30°, ∠D = 150° (объясните).
- В четырехугольнике ABCD (рис. 5.69) середину отрезка BD отметим точкой О. Отсюда следует, что BO = OD.
Одновременно точка О является центром окружности с диагональю AC, следовательно AO = OC.
По свойству параллелограммов (диагонали пересекаются и точкой пересечения делятся пополам), если BO = OD и AO = OC, то ABCD – параллелограмм.
Вариант 2
- ABCD – параллелограмм (рис. 5.70), тогда АО = СО = 8 см, ВО = DO = 7 см (объясните). Так как PAOD = 25 см, то ВС = AD = 10 см.
- AK = ВК (рис. 5.71), тогда ∠A = 45° (объясните), ∠C = 45°, ∠D = 135° (объясните).
- ABCD – параллелограмм (рис. 5.72), тогда АО = СО, ВО = DO. В четырехугольнике MBND диагонали точкой пересечения делятся пополам, значит, MBND – параллелограмм.
По теме: методические разработки, презентации и конспекты
Параллелограмм. Свойства параллелограмма.
Конспект урока геометрии в 8 классе. «Параллелограмм. Свойства параллелограмма»На уроке повторяются свойства параллельных прямых и признаки равенства треугольников; учащиеся знакомятся с о...
Урок открытия новых знаний "Параллелограмм. Свойства параллелограмма"
Урок открытия новых знаний "Параллелограмм. Свойства параллелограмма".Цели урока:Образовательная: познакомиться с понятием параллелограмма, сформулировать и доказать свойства параллелограмма.Воспитате...
Презентация по теме "Параллелограмм.Свойства параллелограмма."
Презентация к уроку матемакики в 8 классе по теме "Параллелограмм.Свойства параллелограмма" (к учебнику "Геометрия, 8 класс", автор А.Г.Мерзляк)...
План конспект к уроку геометрии в 8 классе по теме: "Параллелограмм. Свойства параллелограмма"
Урок изучения нового материала...
Самостоятельная работа по теме: "Определение параллелограмма. Свойства параллелограмма."
Самостоятельная работа по геометрии, 8 класс....
Самостоятельная работа по теме: "Определение параллелограмма. Свойства параллелограмма."
Самостоятельная работа по геометрии, 8 класс....
Задачи на готовых чертежах по теме "Признаки и свойства параллелограмма"
Данная презентация содержит задачи на готовых чертежах по теме: "Признаки и свойства параллелограмма". Можно использовать при закреплении материала на устном счете....