Рабочие программы
рабочая программа по геометрии (8 класс) на тему

Будко Валерия Михайловна

РАБОЧАЯ ПРОГРАММА ПО ГЕОМЕТИИ 8 КЛАСС, фГОС

Скачать:

ВложениеРазмер
Файл 8_g_geometriya.docx62 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение лицей №4

СОГЛАСОВАНО

на заседании ШМО

учителей математики,
физики и информатики
Руководитель ШМО
_________/ Барченкова Н.А./

СОГЛАСОВАНО
зам. директора по  УВР
________/ Е.В.Русяйкина/

31.08.2015 г.

УТВЕРЖДЕНО
Директор МБОУ лицей №4
_____________ /Е.В.Петрова/

Приказ №277 от 01.09.2015 г.

Протокол № 1 от 31.08.15 г.

РАБОЧАЯ ПРОГРАММА

по геометрии

для 8 г класса

на 2016-2017 учебный год

учителя Будко В М

г.Красногорск

2016 г.


  1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по предмету «Геометрия» для 8-г класса разработана на основе требований Федерального государственного образовательного стандарта основного общего образования, Основной образовательной программы основного общего образования МБОУ лицей №4, учебного плана МБОУ лицей №4 на 2015-2016 учебный год, на основе  авторской программы В.Ф.Бутузова «Геометрия. 7-9 классы», Федерального перечня учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования (утвержденного приказом Министерства образования и науки РФ от 31.03.2014 г. №253).

Рабочая программа ориентирована на использование учебника Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия. 7-9 классы, 2015изУМК Л.С.Атанасяна «Геометрия 7-9».

ЦЕЛИ:

Изучение геометрии в 8 классе направлено на достижение следующих целей:

Направление развития

Компетенции

Личностное

  • Развитие личностного и критического мышления, культуры речи;
  • Воспитание качеств личности, обеспечивающих, уважение к истине и критического отношения к собственным и чужим суждениям;
  • Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
  • Развитие интереса к математическому творчеству и математических способностей

Метапредметное

  • Формирование представлений об идеях и о методах математики как об универсальном языке науки и техники, части общечеловеческой культуры;
  • Умение видеть математическую задачу в окружающем мире, использовать математические средства наглядности (рисунки, чертежи, схемы) для иллюстрации, интерпретации, аргументации;
  • Овладение умением логически обосновывать то, что многие зависимости, обнаруженные путем рассмотрения отдельных частных случаев, имеют общее значение и распространяются на все фигуры определенного вида, и, кроме того, вырабатывать потребность в логическом обосновании зависимостей

Предметное

  • Выявление практической значимости науки, ее многообразных приложений в смежных дисциплинах и повседневной деятельности людей;
  • Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

С учетом требований Федерального государственного образовательного стандарта основного общего образования проектирование, организация и оценка результатов образования осуществляется на основе системно-деятельностного подхода, который обеспечивает:

•        формирование готовности обучающихся к саморазвитию и непрерывному образованию;

•        проектирование и конструирование развивающей образовательной среды образовательного учреждения;

•        активную учебно-познавательную деятельность обучающихся;

•        построение образовательного процесса с учетом индивидуальных, возрастных, психологических, физиологических, особенностей здоровья обучающихся.

Таким образом, системно-деятельностный подход ставит своей задачей ориентировать ученика не только на усвоение знаний, но, в первую очередь, на способы этого усвоения, на способы мышления и деятельности, на развитие познавательных сил и творческого потенциала ребенка. В связи с этим, во время учебных занятий учащихся необходимо вовлекать в различные виды деятельности (беседа, дискуссия, экскурсия, творческая работа, исследовательская (проектная) работа и другие), которые обеспечивали бы высокое качество знаний, развитие умственных и творческих способностей, познавательной, а главное самостоятельной деятельности учеников.

  1. ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

Овладение учащимися системой геометрических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса геометрии обусловлена тем, что её объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении геометрии способствует также усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников.

Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительный вклад в эстетическое воспитание учащихся. Её изучение развивает воображение школьников, существенно обогащает и развивает их пространственные представления.

В курсе условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии».

Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии), способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также при решении практических задач.

Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

  1. МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ

Согласно учебному плану МБОУ лицей №4 на изучение геометрии в 8-г классе отводится 2 ч в неделю, всего 68 часов в год.

  1. ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ СОДЕРЖАНИЯ КУРСА

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общегообразования:

личностные:

  • формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
  • формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  • формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  • креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
  • умение контролировать процесс и результат учебной математической деятельности;
  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

регулятивные универсальные учебные действия:

  • умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
  • умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
  • умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

познавательные универсальные учебные действия:

  • осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
  • умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
  • умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
  • формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
  • формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
  • умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
  • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

коммуникативные универсальные учебные действия:

  • умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
  • умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
  • слушать партнера;
  • формулировать, аргументировать и отстаивать свое мнение;

предметные:

  • овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (геометрическая фигура, величина) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
  • умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
  • овладение навыками устных письменных, инструментальных вычислений;
  • овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
  • усвоение систематических знаний о плоских фигурах и их свойствах, умение применять систематические знания о них для решения геометрических и практических задач;
  • умение измерять длины отрезков, величины углов;
  • умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочные материалы и технические средства.

  1. СОДЕРЖАНИЕ КУРСА (68 ч.)

1.Четырехугольники (14 ч). Многоугольник, выпуклый многоугольник, четырехугольник.Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, ихсвойства. Осевая и центральная симметрии.

Основная цель - изучить наиболее важныевиды четырехугольников- параллелограмм, прямоугольник, ромб, квадрат, трапецию;
дать представление о фигурах, обладающих осевой и центральной симметрией.

2.Площадь многоугольника(14 ч). Понятие площади многоугольника. Площади прямоугольника,
параллелограмма, треугольника, трапеции. Теорема Пифагора.

Основная цель- расширить и углубить полученные в 5-6 классах представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии -теорему Пифагора.

3.Подобные треугольники (19ч). Подобные треугольники. Признаки подобия
треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Основная цель - ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

4.Окружность (17 ч). Взаимное расположение прямой и окружности. Касательная к
окружности, ее свойство и признак. Центральные и вписанные углы. Четыре
замечательные точки треугольника. Вписанная и описанная окружности.

 Основная цель -расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.

5. Итоговое повторение курса 8 класса. Решение задач (4 часа)


  1. КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ урока

Содержание материала

Количество часов

Характеристика основных видов деятельности (на уровне учебных действий)

Плановые сроки (учебная неделя)

Скорректированные сроки

Глава V. Четырёхугольники

14

Распознавать, формулировать определение и изображать многоугольники, параллелограмм, прямоугольник, квадрат, ромб, трапецию, равнобедренную и прямоугольную трапеции, среднюю линию трапеции.

Формулировать и доказывать теоремы о признаках и свойствах параллелограмма, прямоугольника, квадрата, ромба, трапеции, теорему о сумме углов выпуклого многоуголь

ника. Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи  с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат с условием задачи.

Выполнять проекты по темам геометрических преобразований на плоскости.

1-2

Многоугольники

2

1

3-6

Параллелограмм и трапеция

4

2-3

7-10

Прямоугольник. Ромб. Квадрат

4

4-5

11-12

Решение задач

2

6

13

Контрольная работа № 1

1

7

14

Зачет №1

1

7

Глава VI. Площадь

14

Объяснять и иллюстрировать понятия равновеликих и равносоставленных  фигур.  

Выводить формулы площадей параллелограмма, прямоугольника, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними. Формулировать и доказывать теорему Пифагора. Находить площадь многоугольника разбиением на треугольники  и четырехугольники. Решать задачи на вычисление площадей треугольников, четырехугольников. Опираясь на данные условия задачи, находить возможности применения необходимых формул. Преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе решения. Интерпретировать полученный результат с условием задачи

15-16

Площадь многоугольника

2

8

17-20

Площади параллелограмма, треугольника и трапеции

4

9-10

21-23

Теорема Пифагора

3

11-12

24-26

Решение задач

3

12-13

27

Контрольная работа № 2

1

14

28

Зачет №1

1

14

Глава VII. Подобные треугольники

19

Формулировать определение подобных треугольников. Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса. Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и разъяснять основное тригонометрическое тождество.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи  с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат с условием задачи.

29-30

Определение подобных треугольников

2

15

31-34

Признаки подобия треугольников

4

16-17

35

Контрольная работа № 3

1

18

36-41

Применение подобия к доказательству теорем и решению задач

6

18-21

42-43

Соотношения между сторонами и углами прямоугольного треугольника

2

21-22

44-46

Решение задач

3

22-23

47

Контрольная работа № 4

1

24

ГлаваVIII. Окружность

17

Формулировать определения понятий, связанных с окружностью, секущей и касательной к окружности, углов, связанных с окружностью. Формулировать и доказывать теоремы об углах, связанных с окружностью. Изображать, распознавать и описывать взаимное расположение прямой и окружности. Формулировать и доказывать теоремы, выражающие  свойства биссектрисы угла и серединного перпендикуляра к отрезку. Изображать и формулировать определения вписанных и описанных многоугольников,    

треугольников; окружности, вписанной в треугольник, и окружности, описанной около многоугольника, треугольника. Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений в треугольнике.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи  с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат с условием задачи.

48-49

Касательная к окружности

2

24-25

50-53

Центральные и вписанные углы

4

25-27

54-56

Четыре замечательные точки треугольника

3

27-28

57-60

Вписанная и описанная окружности

4

29-30

61-62

Решение задач

2

31

63

Контрольная работа № 5

1

32

64

Зачет №2

1

32

      65-68                  

Повторение. Решение задач

4

33-34



  1. УЧЕБНОЕ МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ:
  1. Геометрия. Сборник рабочих программ. 7 – 9 классы: пособие для учителей общеобразовательных организаций /автор-составитель Т.А. Бурмистрова. – М.: Просвещение, 2014
  2. Учебник. Геометрия: 7 – 9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – М.: Просвещение, 2015.
  3. Рабочая тетрадь по геометрии: 8 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Ю.А. Глазков, П.М. Камаев. – М.: Издательство «Экзамен», 2014
  4. Контрольные работы по геометрии: 8 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Н.Б. Мельникова. – М.: Издательство «Экзамен», 2014
  5. Тесты по геометрии: 8 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / А.В. Фарков. – М.: Издательство «Экзамен», 2014
  6. Дидактические материалы по геометрии: 8 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Н.Б. Мельникова, Г.А. Захарова. – М.: Издательство «Экзамен», 2014
  7. Геометрия 7 – 9 классы: задачи на готовых чертежах для подготовки к ГИА и ЕГЭ / Э.Н.. Балаян. – Ростов-на-Дону: Издательство «Феникс», 2013
  8. Геометрия. 8 класс. Самостоятельные работ. Тематические тесты. Тесты для промежуточной аттестации. Справочник. Рабочая тетрадь / Ф.Ф.Лысенко, С.Ю.Кулабухова. – Ростов-на-Дону: Издательство «Легион», 2013
  9. Методический журнал для учителей математики «Математика», ИД «Первое сентября»

  1. Планируемые результаты изучения геометрии в 8 классе

Геометрические фигуры

Ученик научится:

  • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
  • находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°,
  • применяя определения, свойства и признаки фигур и их элементов, равенство фигур;
  • решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
  • решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
  • решать простейшие планиметрические задачи в пространстве.

Ученик получит возможность:

  • овладеть методами решения задач на вычисления и доказательства: методом от противного, методом перебора вариантов и методом геометрических мест точек;
  • овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
    приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ.

Измерение геометрических величин

Ученик научится:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;
  • решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).


По теме: методические разработки, презентации и конспекты

ПМ 01, 02, 03, 04, 05 Рабочая программа по бух-учету, по налогам, для специальности 080110 и рабочие программы по налогам и бух-учету для специальности 080114 и программа экзаменов для ПМ 01 и 02

Рабочие программы:ПМ 01 -Документирование хозяйственных операций и ведение бухгвалтерского учета имущества организацииПМ 02-Ведение бухучета источников формирования имущества, выполнения работ по инве...

Рабочая программа курса химии 8 класс, разработанная на основе Примерной программы основного общего образования по химии (авторская рабочая программа)

Рабочая программа курса химии 8 класс,разработанная на основеПримерной программы основного общего образования по химии,Программы курса химии для 8-9 классовобщеобразовательных учреждений (а...

Рабочая программа по литературе для 6 класса (по программе В. Коровиной) Рабочая программа по литературе для 10 класса (по программе ]В. Коровиной)

Рабочая программа содержит пояснительную записку, тематическое планирование., описание планируемых результатов, форм и методов, которые использую на уроках. Даётся необходимый список литературы...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

Рабочая программа по русскому языку 5 класс Разумовская, рабочая программа по литературе 5 класс Меркин, рабочая программа по русскому языку 6 класс разумовская

рабочая программа по русскому языку по учебнику Разумовской, Львова. пояснительная записка, календарно-тематическое планирование; рабочая программа по литературе 5 класс автор Меркин. рабочая программ...

Рабочая программа по Биологии за 7 класс (УМК Сонина), Рабочая программа по Биологии для реализации детского технопарка Школьный кванториум, 5-9 классы, Рабочая программа по Биохимии.

Рабочая программа по биологии составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по биологи...

Рабочая программа по биологии 5-9 класс, Рабочая программа по внеурочной деятельности с использованием оборудования центра "Точка роста" 5 класс, Рабочая программа по химии, Рабочая программа по географии

Рабочая программа по биологии 5-9 класс, Рабочая программа по внеурочной деятельности с использованием оборудования центра "Точка роста" 5 класс, Рабочая программа по химии, Рабочая программ...