Рабочая программа по геометрии 8 класса Л.С.Атанасяна 2 часа в неделю
рабочая программа по геометрии (8 класс) по теме

Саетова Алия Фаиловна

Программа составлена  на основании федерального компонента государственного стандарта базового уровня общего образования 2004 года, минимума содержания образования и примерной программы по математике 2002 года, а также УМК, методических рекомендаций  Мордковича А.Г., Атанасяна Л.С., авторского планирования  Мордковича А.Г.,   Атанасяна Л.С.

Скачать:

ВложениеРазмер
Файл rabochaya_progr.8_kl._geom.docx30.47 КБ

Предварительный просмотр:

«Согласовано»                              «Согласовано»                                            «Утверждаю»

Руководитель МО          Заместитель руководителя по УВР                     ДиректорМБОУ СОШ№1          

________/Флюрова В.М./           ____________/Гилязова И.Р./               _________/Амирханов Р.Г/

Протокол№1___от                                                                                       Приказ№____от

«____»________2013г.               «____»___________2013г.                     «___»____________2013г.

Рабочая программа

учителя

муниципального бюджетного общеобразовательного учреждения

средней общеобразовательной школы №1 села Чекмагуш

Саетовой Алии Фаиловны

первой квалификационной категории

по геометрии в 8 классе.

  Рассмотрено на заседании    

                                                                                                                                                                               

                                                                                                  педагогического совета

                                                                                                 

                                                                                                 протокол №____от

                                                                                                «___»__________2013г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

        Программа составлена  на основании федерального компонента государственного стандарта базового уровня общего образования 2004 года, минимума содержания образования и примерной программы по математике 2002 года, а также УМК, методических рекомендаций  Мордковича А.Г., Атанасяна Л.С., авторского планирования  Мордковича А.Г.,   Атанасяна Л.С.

Общая характеристика учебного предмета

        В курсе математики 8 класса содержание образования развивается в следующих направлениях:

  • систематическое изучение свойств геометрических фигур на плоскости;
  • развитие логического мышления;
  • подготовка аппарата, необходимого для изучения стереометрии в старших классах.
  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов;
  • усвоение аппарата уравнений и неравенств как основного средствами математического моделирования прикладных задач;
  • осуществление функциональной подготовки школьников;
  • овладение приемами вычислений на калькуляторе в ходе изучения курса.

Курс характеризуется рациональным сочетанием логической стройности и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль  дедукции, степень абстракции изучаемого материала. Обучающиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач.

Прикладная направленность курса обеспечивается систематическим обращением к примерам, раскрывающим возможности применения математики к изучению действительности и решению практических задач.

Систематическое изучение курса позволяет вести работу по формированию представлений обучающихся о строении математической теории, обеспечивает развитие логического мышления школьников.

Место предмета в базисном учебном плане

        Согласно  Федеральному базисному учебному плану 2004 года для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится не менее 175 ч из расчета 5 ч в неделю.

        Составленная программа рассчитана на обучение по учебнику Алгебра 8 А.Г. Мордковича и по учебнику Геометрия 7-9 Л.С. Атанасяна.

        Кроме  тематических текущих контрольных работ,  в конце каждой четверти возможно проведение четвертных контрольных работ, в каждой из которых должны быть отражены все изученные к этому времени темы.

         Повторение курса, предусмотренное во 11 полугодии 8 класса, носит обобщающий и систематизирующий характер.

        Определенные вопросы, отмеченные в программе курсивом, подлежат изучению, но не включаются в требования к уровню подготовки школьников.

        Раздел программы «Контроль уровня обученности» включает в себя контрольно-измерительные материалы при контроле за курс 8 класса в форме контрольной работы.

Цели

        Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения  в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

ГЕОМЕТРИЯ

Треугольник. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0˚ до 90˚. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Замечательные точки треугольника: точки пересечения  серединных перпендикуляров, биссектрис, медиан.

Четырехугольник. Параллелограмм, его свойства и признаки.  Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники.

Окружность и круг. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники.

Измерение геометрических величин. Величина угла. Градусная мера угла, соответствие между величиной угла и длиной дуги окружности. Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: формула Герона. Площадь четырехугольника. Связь между площадями подобных фигур.

Геометрические преобразования. Примеры движений фигур. Симметрия фигур. Осевая и центральная симметрия. Понятие о гомотетии. Подобие фигур.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ

В результате изучения математики ученик должен

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: для углов от 0˚ до 90˚ определять значения  тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по  значению одной из них,  находить стороны, углы и площади треугольников, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя  дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
  • проводить доказательные рассуждения при решении задач, используя  известные теоремы, обнаруживая возможности для их использования;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;
  • расчетов, включающих простейшие тригонометрические формулы;
  • решения геометрических задач с использованием тригонометрии;
  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

ГЕОМЕТРИЯ

  1. Повторение (3 ч)

Основные понятия. Смежные и вертикальные углы и их свойства. Признаки равенства треугольников. Медианы, биссектрисы и высоты  треугольника. Признаки параллельности прямых. Свойства параллельных прямых. Сумма углов треугольника. Свойства, признаки равенства прямоугольных треугольников.

Основная цель - систематизация знаний обучающихся.

В результате изучения темы учащийся должен

знать/понимать

- понятие середины отрезка и биссектрисы угла;

- понятие длины отрезка и ее свойства;

- понятие градуса и градусной меры угла и ее свойства;

- смежные и вертикальные углы и их свойства;

- понятие перпендикулярных прямых и их свойство;

- формулировки и доказательство признаков равенства треугольников;

- понятие перпендикуляра к прямой, медианы, биссектрисы и высоты треугольника, их свойства;

- формулировку теоремы о перпендикуляре;

- понятия равнобедренного и равностороннего треугольников и их свойств;

- понятие окружности и ее элементов;

- понятие параллельных прямых, признаки параллельности двух прямых;

- понятие накрест лежащих, односторонних и соответственных углов;

- аксиому параллельных прямых и ее следствия;

- свойства параллельных прямых

- формулировки  теоремы о сумме углов треугольника и ее следствия;

- формулировки  теоремы о соотношении между сторонами и углами треугольника и ее следствий;

- формулировка  теоремы о неравенстве треугольника;

- понятие прямоугольного треугольника;

- свойства прямоугольных треугольников;

- признак прямоугольного треугольника;

- признаки равенства прямоугольных треугольников;

- понятие перпендикуляра к прямой, наклонной;

- расстояние от точки до прямой, расстояние между параллельными прямыми;

уметь

- строить биссектрису угла;

- находить длины части отрезка (угла) или всего отрезка (угла);

- измерять углы;

- строить угол, смежный с данным углом, вертикальные углы, находить на рисунке смежные и вертикальные углы;

- строить перпендикулярные прямые;

- решать задачи на применение признаков равенства треугольников;

- строить перпендикуляр к прямой, медиану, биссектрису и высоту треугольника;

- применять  свойства равнобедренного треугольника на практике;

- строить и находить на чертеже накрест лежащие, односторонние и соответственные углы;

- решать задачи на применение признаков параллельности двух прямых, аксиомы параллельных прямых, свойств параллельных прямых;

-  решать задачи на применение теоремы о сумме углов треугольника и ее следствия, теоремы о соотношении между сторонами и углами треугольника и ее следствий, теоремы о неравенстве треугольника, свойств прямоугольных треугольников, признака прямоугольного треугольника, признаков равенства прямоугольных треугольников;

- решать задачи на нахождение расстояния от точки до прямой, расстояния между параллельными прямыми;

- строить и находить на чертеже остроугольные, прямоугольные и тупоугольные треугольники, прямоугольные треугольники;

- решать задачи на построение с помощью циркуля и линейки;

использовать в практической деятельности

- умение решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники,  технические средства);

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.

  1. Четырехугольники (13 ч)

Основные понятия: 

 Понятия  многоугольника,  выпуклого многоугольника. Параллелограмм и его признаки и свойства. Трапеция. Прямоугольник, ромб,  квадрат и их свойства. Осевая и центральная симметрии.

Основная цель: дать систематические сведения  о четырехугольниках и их свойствах; сформировать представления о фигурах, симметричных, относительно точки или прямой.

В результате изучения темы учащийся должен

знать/понимать

- понятие многоугольника и выпуклого многоугольника, элементов многоугольника, внутренней и внешней области;

- понятие периметра многоугольника;

 - формулу суммы углов выпуклого многоугольника;

- понятие параллелограмма,  его признаки и свойства;

- понятие трапеции, равнобедренной и прямоугольной трапеции;

- понятие прямой и обратной теоремы;

- понятия прямоугольника, ромба и квадрата, их свойства и признаки;

- понятие симметричных точек и фигур относительно прямой и точки;

уметь

- объяснить, какая фигура называется многоугольником, назвать его элементы;

- выводить и пользоваться формулой суммы углов выпуклого многоугольника;

- доказывать и применять свойства и признаки параллелограмма и трапеции  при решении задач;

- доказывать и применять свойства и признаки   прямоугольника, ромба и квадрата при решении задач;

- выполнять чертежи по условию задачи;

- делить отрезок на n равных частей с помощью циркуля и линейки;

- решать задачи на построение;

- строить симметричные точки, распознавать фигуры, обладающие осевой и центральной симметрией;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.

  1. Площади фигур (13 ч)

Основные понятия:

 Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Основная цель: сформировать понятие площади многоугольника, развить умение вычислять площади фигур, применяя изученные свойства  и формулы, применять теорему Пифагора.

В результате изучения темы учащийся должен

знать/понимать

- основные свойства площадей;

- формулу для вычисления площади прямоугольника;

- формулы для вычисления площади параллелограмма, треугольника и трапеции;

- теорему об отношении площадей треугольников, имеющих по равному углу;

- теорему Пифагора и обратную ей теорему;

уметь

- вывести формулу площади прямоугольника, параллелограмма, треугольника и трапеции;

- доказывать теорему об отношении площадей треугольников, имеющих по равному углу;

- доказывать Пифагора и обратную ей теорему;

- применять все изученные формулы при решении задач;

- выполнять чертежи по условию задачи;

использовать в практической деятельности

- конструирования новых алгоритмов;

приобретать опыт

- вычислений при осуществлении алгоритмической деятельности.

  1. Подобные треугольники. (19 ч)

Основные понятия:

 Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательствам теорем и решению задач.  Соотношения между сторонами и углами треугольника.

Основная цель: сформировать понятия подобных треугольников, выработать умение применять признаки подобия треугольников, сформировать аппарат решения прямоугольного треугольника.

В результате изучения темы учащийся должен

знать/понимать

- понятие пропорциональных отрезков и подобных треугольников;

- теорему об отношении площадей подобных треугольников и свойство биссектрисы треугольника;

- признаки подобия  треугольников;

- утверждении о пропорциональности отрезков, отсеченными параллельными прямыми на сторонах угла;

- теоремы о средней линии и пропорциональных отрезках в прямоугольном треугольнике;

- понятие синуса, косинуса, тангенса острого угла прямоугольного треугольника;

- основное тригонометрическое тождество;

- значения синуса, косинуса, тангенса для углов 30˚, 45˚, 60˚;

уметь

- доказывать признаки подобия  треугольников;

- доказывать теоремы о средней линии и пропорциональных отрезках в прямоугольном треугольнике;

- доказывать  основное тригонометрическое тождество;

- выполнять чертежи по условию задачи;

- применять все изученные формулы при решении задач;

- с помощью циркуля и линейки делить отрезок в данном отношении;

- решать задачи на построение;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.

  1. Окружность (16 ч)

Основные понятия:  Касательная к окружности и ее свойства. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Основная цель: систематизировать сведения об окружности и ее свойствах, вписанной или описанной окружностях.

В результате изучения темы учащийся должен

знать/понимать

- возможные случаи взаимного расположения прямой и окружности;

- понятие касательной, ее свойство и признак;

- понятие центрального и вписанного угла;

- как определяется градусная мера дуги окружности;

- теорему о вписанном угле, следствия из нее;

- теорему о произведении отрезков пересекающихся хорд;

- теорему о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

- теорему о пересечении высот треугольника;

- понятие окружности, вписанной в многоугольник, и окружности, описанной около многоугольника;

- теорему об окружности, вписанной в многоугольник, и об окружности, описанной около многоугольника;

- свойства вписанного и описанного четырехугольника;

-  при каком условии  четырехугольник является вписанным и описанным;

уметь

- доказывать признак и свойства касательной;

- доказывать теорему о произведении отрезков пересекающихся хорд;

- доказывать теорему о вписанном угле, следствия из нее;

- доказывать теорему о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

 - доказывать теорему о пересечении высот треугольника;

 - доказывать теорему об окружности, вписанной в многоугольник, и об окружности, описанной около многоугольника;

- доказывать свойства вписанного и описанного четырехугольника;

- выполнять чертежи по условию задачи;

- применять все изученные теоремы и утверждения при решении задач;

- доказывать подобие треугольников с использованием соответствующих признаков;

- вычислять элементы подобных треугольников;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.

  1. Повторение. Решение задач.  (6 ч)

 Основные понятия: Параллелограмм и его признаки и свойства. Трапеция. Прямоугольник, ромб,  квадрат и их свойства. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора. Признаки подобия треугольников. Применение подобия к доказательствам теорем и решению задач.  Соотношения между сторонами и углами треугольника. Касательная к окружности и ее свойства. Центральные и вписанные углы. Вписанная и описанная окружности.

Основная цель: систематизация знаний учащихся

В результате изучения темы учащийся должен

знать/понимать

- формулу суммы углов выпуклого многоугольника;

- понятие и свойства равнобедренной и прямоугольной трапеции;

- понятия параллелограмма, прямоугольника, ромба и квадрата, их свойства и признаки;

- формулы для вычисления площади  прямоугольника, параллелограмма, треугольника и трапеции;

- теорему об отношении площадей треугольников, имеющих по равному углу;

- теорему Пифагора;

- признаки подобия  треугольников;

- теоремы о средней линии и пропорциональных отрезках в прямоугольном треугольнике;

- основное тригонометрическое тождество;

- теорему о вписанном угле, следствия из нее;

- теорему о произведении отрезков пересекающихся хорд;

- теорему об окружности, вписанной в многоугольник, и окружности, описанной около многоугольника;

- свойства вписанного и описанного четырехугольника;

уметь

- выводить и пользоваться формулой суммы углов выпуклого многоугольника;

- доказывать и применять свойства и признаки параллелограмма, трапеции, прямоугольника, ромба и квадрата  при решении задач;

- выполнять чертежи по условию задачи;

- делить отрезок на n равных частей,  в данном отношении  с помощью циркуля и линейки;

- решать задачи на построение;

- строить симметричные точки, распознавать фигуры, обладающие осевой и центральной симметрией;

- выводить и использовать  формулу площади прямоугольника, параллелограмма, треугольника и трапеции;

- применять все изученные  формулы и теоремы  при решении задач, проводя  аргументацию  в ходе решения задач;

- доказывать подобие треугольников с использованием соответствующих признаков;

- вычислять элементы подобных треугольников;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

-умение решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства);

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации;

- вычислений при осуществлении алгоритмической деятельности.

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

Геометрия  (2 ч в неделю, всего 70)

№ п/п

№ п/п в теме

Содержание учебного материала

Количество часов

1

2

3

4

Повторение

3

1-2

1-2

Решение задач

2

3

3

Контрольная работа

1

Четырехугольники

13

4-5

1-2

Понятия  многоугольника,  выпуклого многоугольника.

2

6-11

3-8

Параллелограмм и его признаки и свойства. Трапеция.

6

12-14

9-11

Прямоугольник, ромб,  квадрат и их свойства.

3

15

12

Осевая и центральная симметрии.

1

16

13

Контрольная работа

1

Площади фигур

13

17-18

1-2

Понятие площади многоугольника. Площадь прямоугольника.

2

19-24

3-8

Площади  параллелограмма, треугольника, трапеции.

6

25-27

9-11

Теорема Пифагора.

3

28

12

Решение задач

1

29

13

Контрольная работа

1

Подобные треугольники.

19

30-31

1-2

Подобные треугольники.

2

32-36

3-7

Признаки подобия треугольников.

5

37

8

Контрольная работа

1

38-44

9-15

Применение подобия к доказательствам теорем и решению задач.  

7

45-47

16-18

Соотношения между сторонами и углами треугольника.

3

48

19

Контрольная работа

1

Окружность

16

49-51

1-3

Касательная к окружности и ее свойства.

3

52-55

4-7

Центральные и вписанные углы.

4

56-58

8-10

Четыре замечательные точки треугольника.

3

59-62

11-14

Вписанная и описанная окружности.

4

63

15

Решение задач

1

64

16

Контрольная работа

1

Повторение. Решение задач.

6

65-69

1

Решение задач

5

70

4

 Контрольная работа

1

                                                               ЛИТЕРАТУРА

  1. Алгебра. 8 кл: поурочные планы по учебнику А.Г. Мордковича и др. / авт.-сост. Е.А.Ким. - Волгоград: Учитель,  2007.
  2. Геометрия. 8 кл: поурочные планы по учебнику Л.С.Атанасяна,  В.Б.Бутузова, С.Б.Кадомцева и др. / авт.-сост. Т.Л.Афонасьева, Л.А.Тапилина. - Волгоград: Учитель, 2006.
  3. А.Г. Мордкович Алгебра-8.Учебник; А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская. Алгебра-8.Задачник. М.: Мнемозина, 2005.
  4. Л.С. Атанасян,  В.Б.Бутузов, С.Б.Кадомцев и др. «Геометрия 7-9 кл.» - М.: Просвещение, 2008
  5. А.Г. Мордкович, Семенов П.В. События. Вероятности. Статистическая обработка данных. Дополнительные параграфы к курсу алгебры 7-9 классов общеобразовательных учреждений. – М.: Мнемозина, 2005.
  6. Оценка качества подготовки выпускников основной школы по математике / Г.В.Дорофеев, Л.В.Кузнецова, Г.М.Кузнецова и др. – М.: Дрофа, 2000
  7. Изучение геометрии в 7-9 классах: Метод. Рекомендации к учеб.: Кн. для учителя / Л.С. Атанасян,  В.Б.Бутузов, Ю.А.Глазков и др. – М.: Просвещение, 1999
  8. Программы для общеобразоват. школ, гимназий, лицеев: Математика. 5-11 кл. / Сост. Г.М.Кузнецова, Н.Г. Миндюк. – М.: Дрофа, 2002
  9. Рабинович Е.М. Задачи и упражнения на готовых чертежах. 7-9 классы. Геометрия. – М.: Илекса, Харьков: Гимназия, 1999
  10. Федеральный компонент государственного стандарта общего образования. Математика / Министерство образования РФ. – М., 2004
  11. Мордкович А.Г. Алгебра. 7-9 кл.: Методическое пособие для учителя. – М.: Мнемозина, 2000
  12. Геометрия: Разрезные карточки для тестового контроля к учебнику Л.С. Атанасяна. 8 класс /сост. Т.В.Коломиец. – Волгоград: Учитель, 2005
  13. Г.Г. Левитас.  Карточки для коррекции знаний по математике для 8-9  классов. – М.: Илекса, 1999
  14. Г.Г. Левитас.  Карточки для коррекции знаний по геометрии для 8-9  классов. – М.: Илекса, 2003


По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии 7-9 (учебник Атанасяна)

Рабочая программа содержит пояснительную записку, содержание тем, календарно-тематическое планирование, презентации к урокам 8 класс...

РАБОЧАЯ ПРОГРАММА ПО ЛИТЕРАТУРЕ 11класс рассчитана на 4 часа в неделю, 136 часов в год.

РАБОЧАЯ  ПРОГРАММА  ПО  ЛИТЕРАТУРЕ  11класс  рассчитана  на 4 часа в неделю, 136 часов в год....

РАБОЧАЯ ПРОГРАММА ПО ГЕОМЕТРИИ Л.С.АТАНАСЯН 2 часа в неделю 8 класс

программа содержит пояснительную записку,концепцию,нормы оценок и почасовую  раскладку...

РАБОЧАЯ ПРОГРАММА ПО ГЕОМЕТРИИ Л.С.АТАНАСЯН 2 часа в неделю 7 класс

РАБОЧАЯ ПРОГРАММА ПО ГЕОМЕТРИИ  Л.С.АТАНАСЯН  2 часа в неделю  7 класс...

рабочая программа спортивной секции по баскетболу на 2 часа в неделю

Физическое воспитание в учреждениях общего образования (школа, гимназия, лицей) является неотъемлемой частью учебно-педагогического процесса, рационально содействуя воспитанию здоровых, физически разв...

Рабочая программа по физике для 10 кл (3 часа в неделю)

Планирование к учебнику Мякишев Г.Я. Буховцев Б.Б. Сотский Н.Н (3 часа в неделю)...