Школьны тур олимпиады по математике 2016-2017 уч.г.
олимпиадные задания по алгебре на тему

Задания с решениями к школьному туру олимпиады по математике 8-11класс.

Скачать:

ВложениеРазмер
Microsoft Office document icon shkolnyytur8-11kl.matematika_2016-17_2.doc533 КБ

Предварительный просмотр:

Школьный тур Всероссийской олимпиады школьников по математике

8 -11 класс 2016 -2017 учебный год.

8 класс.

Задача 1. В  волшебном саду выросло 2013 яблок. Сколько в этом саду яблонь, если на каждой яблони яблок выросло поровну и в этом саду все яблони разного сорта, которых меньше 30, но больше 10. (7б)

Задача 2. Дан квадрат ABCD и равносторонний треугольник ADM. Отрезок CM пересекает отрезок AD в точке К. Найдите угол АКМ. (7б)

Задача 3. Найдите все двузначные числа, каждое из которых в сумме с числом, написанном теми же цифрами, но в обратном порядке, даёт полный квадрат. (7б)

Задача 4. Однажды Гулливер подслушал разговор дежуривших около него четырёх лилипутов. Первый сказал второму «Ты лгун». Третий сказал первому «Сам ты лгун». Четвёртый сказал первому и третьему «Оба вы лгуны». Четвёртый сказал второму «И ты тоже лгун». Известно, что одни лилипуты всё время лгут, а другие говорят правду. Кто же прав? (7б)

Задача 5. Барон Мюнхгаузен  говаривал как-то, что есть два числа, у которых сумма, произведение и частное одинаково. Докажите, что барон как всегда прав. (7б)

                                Ответы. Краткие решения 8 класс.

Задача 1. Ответ: 11 яблонь. Решение:  

Задача 2. Ответ: 75°. Решение:

 B                              C    CDM=60°+90°=150° ;  

                                        KCD=(180°-150°):2=15°

                                        CKD=90°-15°=75°

  A                           D     AKM=CKD

                                       AKM=75°

              M

Задача 3. Ответ: 29; 38; 47; 56; 65; 74; 83; 92. Решение:     , значит  a+b=11.

Задача 4. Ответ: Первый и четвёртый лгуны, а второй и третий говорят правду. Решение: допустим первый сказал правду, тогда второй и третий лгуны, что противоречит высказываниям четвёртого. Допустим первый лгун, тогда второй и третий говорят правду, а четвёртый лгун.

Задача 5. Ответ: 0,5 и -1. Решение:

  1. класс.
  1. Сравните числа  и  10. (7баллов)
  2. Известно, что   и ; ; ; и т.д.  (рис. 1).  Тогда длина отрезка  равна…(7баллов)

  1. Витя задумал два числа. Их сумма равна их произведению и равна их частному. Какие числа задумал Витя? (7баллов)
  2. Решить неравенство: .(7баллов)
  3. Стрелок десять раз выстрелил по стандартной мишени и выбил 90 очков. Сколько попаданий было в семерку, восьмерку и девятку, если десяток было четыре, а других попаданий и промахов не было? (7баллов)

                                    Решения 9 класс

  1. Сравните числа  и  10.

Решение.  Возведем оба числа в квадрат, так они оба положительны:

 

;

 . Так как равны квадраты положительных чисел, значит, равны и сами числа.

Ответ:  числа равны.

2. Известно, что   и ; ; ; и т.д.  (рис. 1).  Тогда длина отрезка  равна…

Решение.По теореме Пифагора, имеем,

Ответ:  .

  1. Витя задумал два числа. Их сумма равна их произведению и равна их частному. Какие числа задумал Витя?

Решение.Запишем условие в следующем виде: a + b = a · b = a : b.                                                  Из второго равенства a · b = a : b получаем, что b2 = 1, т.е b = +1 или b = -1. Рассмотрим первое равенство a + b = a · b.  При b = 1 оно не имеет решений (1 = 0). При b = -1 получаем a = 0,5.

a + b = 0,5 — 1 = — 0,5

a · b = 0,5 · (-1) = — 0,5

a : b = 0,5 : (-1) = — 0,5

  1. Решить неравенство: .

Решение. Заметим, что все решения исходного неравенства  существуют, если подкоренные выражения неотрицательны. Одновременно эти неравенства выполняются лишь при условии x2 – 4x + 3 = 0. Это уравнение имеет два корня 1 и 3. Проверка показывает, что исходное неравенство имеет единственное решение 3.

  1. Стрелок десять раз выстрелил по стандартной мишени и выбил 90 очков. Сколько попаданий было в семерку, восьмерку и девятку, если десяток было четыре, а других попаданий и промахов не было?

Решение. Так как стрелок попадал лишь в семерку, восьмерку и девятку в остальные шесть выстрелов, то за три выстрела (по одному разу в семерку, восьмерку и девятку) он наберет 24 очка. Тогда за оставшиеся 3 выстрела надо набрать 26 очков. Что возможно при единственной комбинации 8+9+9=26. Итак, в семерку стрелок попал 1 раз, в восьмерку – 2 раза, в девятку – 3 раза.

                                            

  1. класс

  1. Делится ли  на 61? (7баллов)
  2. Решить уравнение .(7баллов)
  3. Известно, что в ΔABC  A = 2C, сторона ВС на 2см больше стороны АВ, а АС = 5см. Найти АВ и ВС. (7баллов)
  4. При каких значениях а разность корней уравнения равна 3? (7баллов)
  5. Сумма десяти первых членов арифметической прогрессии равна 140, а произведение . Найти прогрессию, если она является возрастающей. (7баллов)

Решения 10 класс

  1. Делится ли  на 61?

Решение. 

Разложить заданное число на множители. Тогда, получим    – делится на 61.

  1. Решить уравнение .

Решение.

Обозначив , где , получим , откуда , ( – не подходит). Далее, решая , получим уравнения  и  (не имеет действительных корней), находим из первого уравнения .

Ответ. .

  1. Известно, что в ΔABC A = 2C, сторона ВС на 2см больше стороны АВ, а АС = 5см. Найти АВ и ВС.

Решение.

Проведем биссектрису AD. Тогда 1 = 2 = 3. В ΔADC  AD = DC. Пусть АВ = х, AD = DC = y, тогда ВС = х + 2, BD = x + 2 – y. Заметим, что ΔABD ~ ΔABC по двум углам (В – общий, 1 = 3).

Из подобия имеем: ,

или .

Для нахождения х и у получим систему уравнений:

 

Вычитая из первого уравнения второе, получим  откуда , тогда  значит АВ = 4см, ВС = 6см.

II способ. Указание: применить теорему синусов.

Ответ. AB = 4см, ВС = 6см.

  1. При каких значениях а разность корней уравнения равна 3?

Решение. I способ:

Пусть  откуда  тогда согласно т. Виета имеем:  .

Составим систему уравнений

 откуда получим .

II способ:

 где , тогда

 

решая последнее, получим .

Ответ: .

  1. Сумма десяти первых членов арифметической прогрессии равна 140, а произведение . Найти прогрессию, если она является возрастающей.

Решение.  откуда

, получили систему:

Т.к. прогрессия возрастает, то  следовательно,

 – формула n-ого члена а.п.

Ответ: .

  1. класс

  1. Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки B1, D1 и середину ребра CD. Доказать, что построенное сечение – трапеция. (7баллов)
  2. Найдите все решения уравнения: .(7баллов)
  3. В квадрате KCNM на серединах сторон КМ и MN отмечены точки А и В, которые соединены с вершиной С. Найти ACB. (7баллов)
  4. Можно ли разрезать арбуз на 4 части так, чтобы после того, как его съели, осталось 5 корок? (7баллов)

      5.Найти значение выражения:  при .(7баллов)

Решения 11 класс

  1. Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки B1, D1 и середину ребра CD. Доказать, что построенное сечение – трапеция.

Решение. 

По условию задачи точка N – середина DC.

Известно, что если плоскость проходит через данную прямую, параллельную  другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой. Значит, плоскость сечения пересечет основания А1В1C1D1 и ABCD по параллельным отрезкам. Проведем BD, BD || B1D1.

Из точки N проводим MN BD, значит MN B1D1. Соединим точки B1 и М, D1 и N, тогда B1D1NM – искомое сечение. Таким образом, в четырехугольнике B1D1NM имеем B1D1 NM, значит B1D1NM – трапеция (по определению).

  1. Найдите все решения уравнения: .

Решение. 

Ответ: 

  1. В квадрате KCNM на серединах сторон КМ и MN отмечены точки А и В, которые соединены с вершиной С. Найти ACB.

Решение. Пусть сторона квадрата –  тогда   , . В равнобедренном треугольнике по теореме косинусов найдем косинус угла ACB. .

Следовательно,

Ответ: 

  1. Можно ли разрезать арбуз на 4 части так, чтобы после того, как его съели, осталось 5 корок?

Решение. Вырежем из арбуза длинный тонкий цилиндр, протыкающий арбуз насквозь. Это одна из частей, от которой останется две корки. Остальную часть арбуза произвольным образом разрежем на три части, каждая из которых дает по одной корке.

  1. Найти значение выражения:  при .

Решение. 

Если , то .

Ответ:–2002



По теме: методические разработки, презентации и конспекты

Школьный тур олимпиады по биологии 2016-2017 учебного года для учащихся 11 класса (г. Меленки, Владимирская область)

Школьный тур олимпиады включает задания тестового типа, задания с выбором нескольких правильных ответов, задания на установление соответствия и задачу по генетике. Школьный тур заданий - это первый ша...

Приказ ДО Об организации работы муниципальной предметно-методической комиссии для проведения школьного этапа всероссийской олимпиады школьников в 2016-2017 учебном году

Приказ ДО Об организации работы муниципальной предметно-методической комиссии для проведения школьного этапа всероссийской олимпиады школьников в 2016-2017 учебном году...

Олимпиада. Школьный этап. 5-6 класс. 2016/2017.

Олмпиадные задания с ответами...

Олимпиада. Школьный этап. 9-11 класс. 2016/2017.

Олимпиадные задания с ответами....

Приказ "О проведении школьного этапа всероссийской олимпиады школьников в 2016\2017 учебном году".

Приказ №173-о-О от 11.09.2017 г. "О проведении школьного этапа всероссийской олимпиады школьников в 2016-2017 учебном году"....