Рабочая программа
рабочая программа по алгебре (11 класс) на тему

Дамбаа Альбина Викторовна

Рабочая программа по алгебре 8-9, 11 классы. УМК А.Г.Мордкович

Скачать:

ВложениеРазмер
Microsoft Office document icon algebra_11_klass.doc88.5 КБ
Microsoft Office document icon algebra_9_klass.doc85 КБ
Microsoft Office document icon algebra_8_klass.doc88.5 КБ

Предварительный просмотр:

Рассмотрено на заседании ШМО протокол №__ от «__»_____20__г.

Согласовано зам.директора по УВР

___________________

Утверждено приказом директора №___от «___»_______20___г.

Рабочая программа

по алгебре и началам анализа 11 класс

Составитель: учитель математики Дамбаа Альбина Викторовна


  1. Пояснительная записка

Рабочая программа разработана на основе федерального компонента государственного стандарта среднего (полного) общего образования по математике 2004 г., примерной программы среднего (полного) общего образования по математике, рекомендаций к разработке календарно-тематического планирования по УМК  Мордковича А.Г. Алгебра и начала анализа. 10-11 класс. Ч.1.Учебник. Ч.2.Задачник.

В старшей школе на базовом уровне математика представлена двумя предметами: алгебра и начала анализа и геометрия. Цель изучения курса алгебры и начал анализа – систематическое изучение функций как важнейшего математического объекта средствами алгебры и  математического анализа, раскрытие политехнического и прикладного значения общих методов математики, связанных с исследованием функций, подготовка необходимого аппарата для изучения геометрии и физики.

Курс характеризуется содержательным раскрытием понятий, утверждений и методов, относящихся к началам анализа. Выявлением их практической значимости. При изучении вопросов анализа широко используются наглядные соображения. Уровень строгости изложения определяется с учётом общеобразовательной направленности изучения начал анализа и согласуется с уровнем строгости приложений изучаемого материала в смежных дисциплинах. Характерной особенностью курса является систематизация и обобщение знаний учащихся, закрепление и развитие умений и навыков, полученных в курсе алгебры, что осуществляется как при изучении нового материала, так и при проведении повторения.

Учащиеся систематически изучают тригонометрические, показательную и логарифмическую функции и их свойства, тождественные преобразования тригонометрических, показательных и логарифмических выражений и их применение к решению соответствующих уравнений и неравенств. Знакомятся с основными понятиями, утверждениями, аппаратом математического анализа в объёме, позволяющим исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи.

  1. Цели

  • формирование представлений о математике, как универсальном языка науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

Задачи

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе и его применение к решению математических и нематематических задач;
  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
  • изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;
  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
  • знакомство с основными идеями и методами математического анализа.

  1. Место предмета в учебном плане

Изучение курса алгебры и начала анализа в 11 классе (базовый уровень) рассчитано на 102 часа из расчёта 3 часа в неделю, в том числе 8 часов на проведение контрольных работ. При этом в ней предусмотрен резерв свободного учебного времени в объеме 6 часов для использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий.

Основная форма организации образовательного процесса – классно-урочная система.

Виды и формы контроля - контрольные работы.

 

Общеучебные умения, навыки и способы деятельности

Изучение математики в средней школе дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

  1. сформированность  мировоззрения,  соответствующего  современному  уровню  развития  науки  и  общественной  практики;  
  2. сформированность  основ  саморазвития  и  самовоспитания  в  соответствии  с общечеловеческими  нравственными  ценностями  и  идеалами  российского  гражданского  общества;  готовность  и  способность  к  самостоятельной,  творческой  и  ответственной  деятельности  (образовательной,  учебно-исследовательской,  проектной,  коммуникативной,  иной);
  3. сформированность  навыков  сотрудничества  со  сверстниками,  детьми  старшего  и  младшего  возраста,  взрослыми  в  образовательной,  общественно  полезной,  учебно- исследовательской, проектной и других видах деятельности;  
  4. готовность  и  способность  к  образованию,  в  том  числе  самообразованию,  на протяжении  всей  жизни;  сознательное  отношение  к  непрерывному  образованию  как  условию успешной профессиональной и общественной деятельности;  
  5. осознанный  выбор  будущей  профессии  на  основе  понимания  её  ценностного  содержания  и  возможностей  реализации  собственных  жизненных  планов;  отношение  к профессиональной  деятельности  как  возможности  участия  в  решении  личных,  общественных, государственных, общенациональных проблем;

в метапредметном направлении:

  1. умение  самостоятельно  определять  цели  и  составлять  планы;  самостоятельно  осуществлять,  контролировать  и  корректировать  урочную  и  внеурочную  (включая  внешкольную)  деятельность;  использовать  различные  ресурсы  для  достижения  целей;  выбирать успешные стратегии в трудных ситуациях;  
  2. умение  продуктивно  общаться  и  взаимодействовать  в  процессе  совместной  деятельности, учитывать позиции другого, эффективно разрешать конфликты;  
  3. владение  навыками  познавательной,  учебно-исследовательской  и  проектной  деятельности, навыками разрешения проблем; способность и готовность к самостоятельному  поиску методов решения практических задач, применению различных методов познания;  
  4. готовность  и  способность  к  самостоятельной  информационно-познавательной  деятельности,  включая  умение  ориентироваться  в различных  источниках  информации,  критически  оценивать  и  интерпретировать  информацию,  получаемую  из  различных  источников;  
  5. владение  языковыми  средствами  –  умение  ясно,  логично  и  точно  излагать  свою  точку зрения, использовать адекватные языковые средства;
  6. владение  навыками  познавательной  рефлексии  как  осознания  совершаемых  действий  и  мыслительных процессов, их  результатов  и  оснований,  границ  своего знания  и  незнания, новых познавательных задач и средств их достижения.  

в предметном направлении:

  1. сформированность  представлений  о  математике  как  части  мировой  культуры  и  о месте  математики  в  современной  цивилизации,  о  способах  описания  на  математическом  языке явлений реального мира;  
  2. сформированность  представлений  о  математических  понятиях  как  о  важнейших  математических  моделях,  позволяющих  описывать  и  изучать  разные  процессы  и  явления;  понимание возможности аксиоматического построения математических теорий;  
  3. владение  методами  доказательств  и  алгоритмов  решения;  умение  их  применять,  проводить доказательные рассуждения в ходе решения задач;  
  4. владение  стандартными  приёмами  решения  рациональных  и  иррациональных,  показательных,  степенных,  тригонометрических  уравнений  и  неравенств,  их  систем;  использование  готовых  компьютерных  программ,  в том  числе  для  поиска  пути  решения  и  иллюстрации решения уравнений и неравенств;  
  5. сформированность  представлений  об  основных  понятиях,  идеях  и  методах  математического анализа;  
  6. владение  основными  понятиями  о  плоских  и  пространственных  геометрических  фигурах,  их  основных  свойствах;  сформированность  умения  распознавать  на  чертежах,  моделях  и  в  реальном  мире  геометрические  фигуры;  применение  изученных  свойств  геометрических фигур и формул для решения геометрических задач и задач с практическим  содержанием;  
  7. сформированность  представлений  о  процессах  и  явлениях,  имеющих  вероятностный характер,  о статистических закономерностях в реальном мире, об  основных  понятиях  элементарной  теории  вероятностей;  умений  находить  и  оценивать  вероятности  наступления  событий  в  простейших  практических  ситуациях  и  основные  характеристики  случайных величин;  
  8. владение навыками использования готовых компьютерных программ при решении  задач.  

 

В ходе освоения содержания математического образования учащиеся овладевают системой  личностных,  регулятивных,  познавательных,  коммуникативных  универсальных  учебных  действий, построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

  • выполнение и самостоятельное составление алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
  • самостоятельная работа с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
  • проведение доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
  • самостоятельная и коллективная деятельность, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
  • развитие  у  обучающихся  способности  к  самосознанию,  саморазвитию  и  самоопределению;  
  • формирование  личностных  ценностно-смысловых  ориентиров  и  установок,    способности  их  использования  в  учебной,  познавательной  и  социальной  практике;
  • самостоятельного  планирования  и  осуществления  учебной  деятельности  и  организации  учебного  сотрудничества  с  педагогами  и  сверстниками,  к  построению  индивидуальной  образовательной траектории;
  • формирование  у  обучающихся  системных  представлений  и  опыта  применения  методов,  технологий  и  форм  организации  проектной  и  учебно-исследовательской  деятельности для достижения практико-ориентированных результатов образования;
  • формирование  навыков  разработки,  реализации  и  общественной  презентации  обучающимися  результатов  исследования,  индивидуального  проекта,  направленного  на  решение научной, личностно и (или) социально значимой проблемы.
  1. Результаты обучения

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние две компоненты представлены отдельно по каждому из разделов, содержания.

  1. Очерченные стандартом рамки содержания и требований ориентированы на развитие учащихся и не должны препятствовать достижению более высоких уровней.

Требования к уровню подготовки выпускников

В результате изучения математики на базовом уровне в старшей школе  ученик должен

Знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач  и внутренних задач математики;
  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
  • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;
  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
  • вероятностных характер различных процессов и закономерностей окружающего мира.

  1. Числовые и буквенные выражения

Уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости  вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;
  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.
  1. Функции и графики

Уметь

  • определять значение функции по значению аргумента при различных способах задания функции;
  • строить графики изученных функций, выполнять преобразования графиков;
  • описывать по графику и по формуле поведение и свойства  функций;
  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания и исследования с помощью функций реальных зависимостей, представления их графически;
  • интерпретации графиков реальных процессов.
  1. Начала математического анализа

Уметь

  • находить сумму бесконечно убывающей геометрический прогрессии;
  • вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;  
  • исследовать функции и строить их графики с помощью производной,;
  • решать задачи с применением  уравнения касательной к графику функции;
  • решать задачи на нахождение наибольшего  и наименьшего значения функции на отрезке;
  • вычислять площадь криволинейной трапеции;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.

Элементы комбинаторики, статистики и теории вероятностей

Уметь

  • · решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;
  • · вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • · для анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.

  1. Уравнения и неравенства

Уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;
  • доказывать несложные неравенства;
  • решать текстовые задачи с помощью  составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;
  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
  • находить приближенные решения уравнений и их систем, используя графический метод;
  • решать уравнения, неравенства и системы с применением  графических представлений, свойств функций, производной;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей.
  1. Содержание курса

Повторение (6часов)

Преобразование  тригонометрических выражений. Тригонометрические уравнения. Производная.

Первообразная и интеграл (9 часов)

 Первообразная. Неопределенный интеграл. Определенный интеграл, его вычисление и свойства. Вычисление площадей плоских фигур.

Степени и корни. Степенные функции (20 часов)

Понятие корня n-й степени из действительного числа. Функции ,  их свойства и графики. Свойства   корня n-й степени. Преобразование выражений, содержащих радикалы. Обобщение понятия о показателе степени. Степенные функции, их  свойства и графики.

Показательная и логарифмическая функции (29 часов)

Показательная функция, ее свойства и график. Показательные уравнения и  неравенства. Понятие логарифма. Функция , ее свойства и график. Свойства логарифмов. Логарифмические уравнения и неравенства. Дифференцирование показательной и логарифмической функций.      

  1. Уравнения и неравенства. Системы уравнений и неравенств (20 часов)

  2.  Равносильность уравнений. Общие методы решения уравнений.  Уравнения с модулями. Решение рациональных неравенств с одной переменной. Системы уравнений. Уравнения и неравенства с параметрами.

Элементы комбинаторики, статистики и теории вероятностей (11 часов)

Статистическая обработка данных. Простейшие вероятностные задачи. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Случайные события и их вероятности.

  1. Повторение (6 часов) 

  2. Числовые функции. Преобразования тригонометрических выражений. Производная. Первообразная и интеграл. Показательные и логарифмические уравнения и неравенства.

Темы контрольных работ

Содержание

Тема

Дата

1

Контрольная работа №1

Первообразная и интеграл

2

Контрольная работа №2

Степени и корни. Свойства корня п-й степени

3

Контрольная работа №3

Степени и корни. Степенные функции

4

Контрольная работа №4

Показательные уравнения и неравенства

5

Контрольная работа №5

Логарифмические уравнения и неравенства

6

Контрольная работа №6

Уравнения и неравенства

7

Контрольная работа №7

Системы уравнений и неравенств

8

Контрольная работа №8

Элементы комбинаторики

Литература

  1. А.Г.Мордкович, П.В. Семенов. Алгебра и начала анализа – 10-11. Часть 1. Учебник.  М.: Мнемозина, 2004.
  2. А.Г.Мордкович, Е.Е.Тульчинская, Т.Н.Мишустина, П.В. Семенов. Алгебра и начала анализа – 10-11. Часть 2. Задачник. М.: Мнемозина, 2004.
  3. Л.А. Александрова. Алгебра и начала анализа – 10-11. Контрольные работы / Под   ред.  А.Г.Мордковича. М.: Мнемозина, 2006.
  4. Образовательный стандарт основного общего образования по  математике.
  5. Примерные программы, созданные на основе федерального компонента государственного образовательного стандарта, рекомендованные Министерством образования и науки РФ приказ № 03-1263 от 07.07.2005. Государственная программа для общеобразовательных школ, гимназий, лицеев. Математика. Составители: Г.М. Кузнецова, Н.Г. Миндюк. Рекомендовано Департаментом образовательных программ и стандартов общего образования Министерства образования Российской Федерации, 2002 год.
  6. Мордкович А.Г. Алгебра и начала анализа 10-11 кл.: Методическое пособие для учителя.- М.:Мнемозина,2004.



Предварительный просмотр:

Рассмотрено на заседании ШМО протокол №__ от «__»_____20__г.

Согласовано зам.директора по УВР

___________________

Утверждено приказом директора №___от «___»_______20___г.

Рабочая программа

по алгебре 9 класс

Составитель: учитель математики Дамбаа Альбина Викторовна


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

На основании требований Федерального государственного образовательного стандарта  в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно - ориентированный, деятельностный подходы, которые определяют задачи обучения:

  • сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
  •  изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
  • развить логическое мышление и речь — умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
  •  сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Общеучебные цели

  • Создание условия для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки.
  • Создание условия для умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи.
  • Формирование умения использовать различные языки математики:  словесный, символический, графический.
  • Формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства.
  • Создание условия для плодотворного участия в работе в группе; умения самостоятельно  и мотивированно организовывать свою деятельность.
  • Формирование умения использовать приобретенные знания и умения в практической деятельности и повседневной жизни для  исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств тел; вычисления площадей поверхностей пространственных тел при  решении практических задач, используя при  необходимости справочники и вычислительные устройства.
  • Создание условия для интегрирования в личный опыт новую, в том числе самостоятельно полученную информацию.

Общепредметные цели

  • Овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования.
  • Интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиция, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей.
  • Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
  • Воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Целью изучения курса алгебры в 9 классе  является развитие  вычислительных и формально-оперативных алгебраических умений  до уровня, позволяющего уверенно использовать их при решении задач математики и  смежных предметов (физика, химия, информатика и другие),  усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществления функциональной  подготовки школьников.

Место предмета в базисном учебном плане

Материалы для рабочей программы составлены на основе:

  • федерального компонента государственного стандарта общего образования;
  • примерной программы по математике основного общего образования;
  • федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях;
  • с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования;
  • тематического планирования учебного материала;
  • базисного учебного плана.

Согласно учебному плану на изучение математики в 9 классе отводится 102 часа из расчета: 3 часа, в том числе 7 часов на проведение контрольных работ. При этом в ней предусмотрен резерв свободного учебного времени в объеме 3 часов для использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий.

Основная форма организации образовательного процесса – классно-урочная система.

Виды и формы контроля - контрольные работы.

Требования к уровню подготовки выпускников 9 классов:

В результате изучения математики учащиеся должны знать/ понимать:

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определённые функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • смысл идеализации, позволяющий решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Арифметика

Уметь:

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты -  в виде дроби и дробь – в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;
  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и избытком, выполнять оценку числовых выражений;
  • пользоваться основными единицами длины, массы, времени, скорости, площади, объёма; выражать более крупные единицы через более мелкие и наоборот;
  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных расчётных практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;
  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приёмов;
  • интерпретации результатов решения задач с учётом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

Алгебра

Уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним; системы двух линейных уравнений и несложные нелинейные системы;
  • решать линейные и квадратные неравенства с одной переменной и их системы;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по её графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами;

Элементы логики, комбинаторики, статистики и теории вероятностей

Уметь

  • проводить несложные доказательства, получать простейшие следствия из известных ранее или полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках, составлять таблицы, строить диаграммы и графики;
  • решать комбинаторные задачи путём систематического перебора возможных вариантов, а также с использованием правила умножения;
  • вычислять средние значения результатов измерений;
  • находить частоту события, используя собственные наблюдения и готовые статистические данные;
  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);
  • распознавания логически некорректных рассуждений;
  • записи математических утверждений, доказательств;
  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объёмов, времени, скорости;
  • решения учебных и практических задач, требующих систематического перебора вариантов;
  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
  • понимания статистических утверждений.

Содержание тем учебного курса

Рациональные неравенства и их системы (13 часов)  

   Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства. Элемент множества, подмножество данного множества, пустое множество. Пересечение и объединение множеств. Системы линейных неравенств, частное и общее решение системы неравенств.

Основная цель: формирование представлений о частном и общем решении рациональных неравенств и их систем, о неравенствах с модулями, о равносильности неравенств; овладение умением совершать равносильные преобразования, решать неравенства методом интервалов; расширение и обобщение сведений о рациональных неравенствах и способах их решения: метод интервалов, метод замены переменной.

Системы уравнений (15 часов) 

      Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные уравнения, равносильные преобразования. График уравнения, система уравнений с двумя переменными, решение системы уравнений с двумя переменными. Метод подстановки, метод алгебраического сложения, метод введения новых переменных, графический метод, равносильные системы уравнений.

Основная цель: формирование представлений о системе двух рациональных уравнений с двумя переменными, о рациональном  уравнении с двумя переменными; овладение умением совершать равносильные преобразования, решать уравнения и системы уравнений с двумя переменными; отработка навыков решения уравнения и системы уравнений различными методами: графическим, подстановкой, алгебраического сложения, введения новых переменных.

Числовые функции (23 часа)

     Функция, область определение и множество значений функции. Аналитический, графический, табличный, словесный способы задания функции. График функции. Монотонность (возрастание и убывание) функции, ограниченность функции снизу и сверху, наименьшее и наибольшее значения функции,  непрерывная функция, выпуклая вверх или вниз. Элементарные функции. Четная и нечетная функции и их графики. Степенные функции с натуральным показателем, их свойства и графики. Свойства и графики степенных функций с четным и нечетным показателями, с отрицательным целым показателем.

Основная цель: формирование представлений о таких фундаментальных понятиях математики, какими являются понятия функции, её области определения, области значения; о различных способах задания функции: аналитическом, графическом, табличном, словесном; овладение умением применения четности или нечетности, ограниченности, непрерывности, монотонности функций; формирование умений находить наибольшее и наименьшее значение на заданном промежутке, решая практические задачи; формирование понимания того, как свойства функций отражаются на поведении графиков функций.

Прогрессии (15 часов)

    Числовая последовательность. Способы задания числовой последовательности. Свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность. Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов конечной арифметической прогрессии,  характеристическое свойство арифметической прогрессии. Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия,  формула n-го члена геометрической прогрессии, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии.

Основная цель: формирование преставлений о понятии числовой последовательности, арифметической и геометрической прогрессиях как частных случаях числовых последовательностей; о трех способах задания последовательности: аналитическом, словесном и рекуррентном;  сформировать и обосновать ряд свойств арифметической и геометрической прогрессий, свести их в одну таблицу; овладение умением решать текстовые задачи, используя свойства арифметической и геометрической прогрессии.

События вероятности. Статистические обработки данных (16 часов)

      Методы решения простейших комбинаторных задач (перебор вариантов, построение дерева вариантов, правило умножения). Факториал. Общий ряд данных и ряд данных конкретного измерения, варианта ряда данных, её кратность, частота и процентная частота, сгруппированный ряд данных, многоугольники распределения. Объем, размах, мода, среднее значение. Случайные события: достоверное и невозможное события, несовместные события, событие, противоположное данному событию, сумма двух случайных событий. Классическая вероятностная схема. Классическое определение вероятности.

Основная цель: формирование преставлений о  всевозможных комбинациях, о методах статистической обработки результатов измерений, полученных при проведении эксперимента, о числовых характеристиках информации; овладеть умением решения простейших комбинаторных и вероятностных задач.

Элементы теории тригонометрических функций (17 часов)

Числовая окружность. Отыскание на числовой окружности точек, соответствующих заданным числам, решение обратной задачи. Числовая окружность в координатной плоскости: отыскание координат точек числовой окружности, отыскание чисел, которым на числовой окружности соответствуют точки с заданной абсциссой или ординатой.

Определение синуса и косинуса, их основные значения, знаки по четвертям. Решение простейших уравнений с помощью числовой окружности. Свойства синуса и косинуса, выводимые с помощью числовой окружности.

Определение тангенса и котангенса, их основные значения, знаки по четвертям.

Тригонометрические функции числового аргумента. Функции их свойства и графики, преобразования графиков. Тригонометрические функции углового аргумента. Градусное и радианное измерение углов. Соотношения между сторонами и углами в прямоугольном треугольнике.

Основные тригонометрические тождества, связывающие функции одного и того же аргумента, и их применение для вычисления значений тригонометрических функций некоторого аргумента по известному значению одной из тригонометрических функций того же аргумента.

Основная цель: формирование преставлений о новой математической модели – числовой окружности, о тригонометрических функциях числового аргумента; формирование преставлений о понятиях синуса, косинуса, тангенса, котангенса, о соотношении между градусной и радианной
мерами угла; овладение умением исследовать свойства функций и  строить графики функций; формирование умения вывода основных формул тригонометрических функций. овладение умением применять тригонометрические формулы при упрощении  тригонометрических выражений.

Повторение (3 часа)

Основная цель: обобщение и систематизация знаний по основным темам курса алгебры за 9 класс; формирование понимания возможности использования приобретенных знаний и умений в практической деятельности и повседневной жизни.

Темы контрольных работ

Содержание

Тема

Дата

1

Контрольная работа №1

Рациональные неравенства и их системы

2

Контрольная работа №2

Системы уравнений

3

Контрольная работа №3

Числовые функции. Свойства функций

4

Контрольная работа №4

Числовые функции. Построение графиков функций

5

Контрольная работа №5

Прогрессии

6

Контрольная работа №6

События вероятности

7

Контрольная работа №7

Тригонометрические функции

Литература

  1. А.Г.Мордкович, П.В. Семенов. Алгебра – 9. Часть 1. Учебник.  М.: Мнемозина, 2008.
  2. А.Г.Мордкович, Е.Е.Тульчинская, Т.Н.Мишустина, П.В. Семенов. Алгебра – 9. Часть 2. Задачник. М.: Мнемозина, 2008.
  3. Л.А. Александрова. Алгебра - 9. Контрольные работы / Под   ред.  А.Г.Мордковича. М.: Мнемозина, 2008.
  4. Образовательный стандарт основного общего образования по  математике.
  5. Примерные программы, созданные на основе федерального компонента государственного образовательного стандарта, рекомендованные Министерством образования и науки РФ приказ № 03-1263 от 07.07.2005. Государственная программа для общеобразовательных школ, гимназий, лицеев. Математика. Составители: Г.М. Кузнецова, Н.Г. Миндюк. Рекомендовано Департаментом образовательных программ и стандартов общего образования Министерства образования Российской Федерации, 2002 год.
  6. Мордкович А.Г. Алгебра 7-9 кл.: Методическое пособие для учителя.- М.:Мнемозина,2004.
  7. Сборник заданий для проведения письменного экзамена по математике за курс основной школы, издание «Дрофа», 2001.



Предварительный просмотр:

Рассмотрено на заседании ШМО протокол №__ от «__»_____20__г.

Согласовано зам.директора по УВР

___________________

Утверждено приказом директора №___от «___»_______20___г.

Рабочая программа

по алгебре 8 класс

Составитель: учитель математики Дамбаа Альбина Викторовна


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная рабочая программа по алгебре ориентирована на учащихся 8 классов и реализуется на основе следующих документов:

- федерального компонента государственного стандарта основного общего образования (базовый уровень);

- программы общеобразовательных учреждений по алгебре 7 - 9 классы под ред. А.Г. Мордковича. М. изд-во «Мнемозина». 2010 г.;

      Рабочая программа по алгебре в 8 классе рассчитана на 102 часа, из расчёта 3 часа в неделю. Для обучения алгебре в 7 – 9 классах выбрана содержательная линия А.Г. Мордковича, рассчитанная на 3 года обучения. В восьмом классе реализуется второй год обучения алгебре. Данное количество часов полностью соответствует авторской программе.

Общая характеристика учебного предмета

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Алгебра как содержательный компонент математического образования в основной школе нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Задачей основного общего образования является создание условий для воспитания, становления и формирования личности обучающегося, для развития его склонностей, интересов и способности к социальному самоопределению. Основное общее образование является базой для получения среднего (полного) общего образования, начального и среднего профессионального образования.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Целью изучения курса алгебры в 8 классе является:

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, информатика),
  • усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач,
  • осуществление функциональной подготовки школьников.

Курс характеризуется повышением теоретического уровня обучения, постепенным усилением роли теоретических обобщений и дедуктивных заключений. Прикладная направленность курса обеспечивается систематическим обращением к примерам, раскрывающим возможности применения математики к изучению действительности и решению практических задач.

Задачей курса является:

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
  • решать линейные и квадратные неравенства с одной переменной и их системы,
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • описывать свойства изученных функций, строить их графики;
  • на большом количестве примеров и упражнений познакомить учащихся с начальными понятиями, идеями и методами комбинаторики, теории вероятности и статистики.

В результате изучения курса алгебры 8 класса обучающиеся должны:

знать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени;
  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия с многочленами и алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные выражения рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним системы двух линейных уравнений и несложные нелинейные уравнения;
  • решать линейные и квадратные неравенства с одной переменной и их системы;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученные результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значения аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций, строить их графики;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами.

Общеучебные умения, навыки и способы деятельности

В ходе преподавания алгебры в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Для оценки учебных достижений обучающихся используется:

  • текущий контроль в виде проверочных работ и тестов;
  • тематический контроль в виде  контрольных работ;
  • итоговый контроль в виде контрольной работы и теста.

                                   Содержание тем учебного курса

Повторение курса 7  класса ( 4часа).

АЛГЕБРАИЧЕСКИЕ ДРОБИ (18 ЧАСОВ)

Основное свойство дроби, сокращение дробей. Сложение и вычитание алгебраических дробей. Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Преобразование рациональных выражений. Первые представления о решении рациональных уравнений. Степень с отрицательным целым показателем.

КВАДРАТИЧНАЯ ФУНКЦИЯ. ФУНКЦИЯ  (14 ЧАСОВ)

Функция , ее график, свойства. Функция , ее свойства, график. Гипербола. Асимптота. Построение графиков функций  , , ,    по известному графику функции .

Квадратный трехчлен. Квадратичная функция, ее свойства и график. Понятие ограниченной функции. Построение и чтение графиков кусочных функций, составленных из функций , , , , , . Графическое решение квадратных уравнений.

ФУНКЦИЯ . СВОЙСТВА КВАДРАТНОГО КОРНЯ (12 ЧАСОВ)

Функция , ее свойства и график. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня.  Алгоритм извлечения квадратного корня.

КВАДРАТНЫЕ УРАВНЕНИЯ (22 ЧАСА)

Квадратное уравнение. Приведенное (не приведенное) квадратное уравнение. Полное (неполное) квадратное уравнение. Корень квадратного уравнения. Решение квадратного уравнения методом разложения на множители, методом выделения полного квадрата.

Дискриминант. Формулы корней квадратного уравнения. Параметр. Уравнение с параметром (начальные представления). Алгоритм решения рационального уравнения. Биквадратное уравнение. Метод введения новой переменной. Рациональные уравнения как математические модели реальных ситуаций. Частные случаи формулы корней квадратного уравнения. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Иррациональное уравнение. Метод возведения в квадрат.

Действительные числа (7 часов)

Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел. Модуль действительного числа. Функция .

НЕРАВЕНСТВА (13 часов)

 Свойства числовых неравенств. Неравенство с переменной. Решение неравенств с переменной. Линейное неравенство. Равносильные неравенства. Равносильное преобразование неравенства. Квадратное неравенство. Алгоритм решения квадратного неравенства. Возрастающая функция. Убывающая функция. Исследование функций на монотонность (с использованием свойств числовых неравенств). Приближенные значения действительных чисел, погрешность приближения, приближение по недостатку и избытку. Стандартный вид числа.

Статистические характеристики (4 часа)

Представление данных в виде таблиц, диаграмм, графиков. Средние данные результатов измерений. Понятие о статистическом выводе на основе выборки.

Вероятность случайного события. Сравнение шансов наступления случайных событий. Оценка вероятности  случайного события в практических ситуациях.

ОБОБЩАЮЩЕЕ ПОВТОРЕНИЕ КУРСА АЛГЕБРЫ ЗА 8 КЛАСС ( 6 ЧАСОВ)

Литература:

  • Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учебник для общеобразоват. учреждений. -  10-е изд. –М.: Мнемозина, 2008.
  • Мордкович А.Г. и др. Алгебра. 8 кл.: В двух частях. Ч.2: Задачник для общеобразоват. Учреждений/А.Г.Мордкович, Т.Н.Мишустина, Е.Е. Тульчинчкая. -10-е изд.,испр. –М.: Мнемозина, 2008.
  • Мордкович А.Г., Тульчинская Е.Е. Алгебра: Тесты для 7- 9 кл. общеобразоват. учреждений. –- М.: Мнемозина, 2008.
  • Мордкович А.Г. Алгебра.7-9 кл.: Методическое пособие для учителя. -М.: Мнемозина, 2008
  • Дудницын Ю.П., Тульчинская Е.Е.Алгебра. 8 кл.: Контрольные работы/Под ред. А.Г. МордковичаМ.: Мнемозина, 2009.


По теме: методические разработки, презентации и конспекты

ПМ 01, 02, 03, 04, 05 Рабочая программа по бух-учету, по налогам, для специальности 080110 и рабочие программы по налогам и бух-учету для специальности 080114 и программа экзаменов для ПМ 01 и 02

Рабочие программы:ПМ 01 -Документирование хозяйственных операций и ведение бухгвалтерского учета имущества организацииПМ 02-Ведение бухучета источников формирования имущества, выполнения работ по инве...

Рабочая программа курса химии 8 класс, разработанная на основе Примерной программы основного общего образования по химии (авторская рабочая программа)

Рабочая программа курса химии 8 класс,разработанная на основеПримерной программы основного общего образования по химии,Программы курса химии для 8-9 классовобщеобразовательных учреждений (а...

Рабочая программа по литературе для 6 класса (по программе В. Коровиной) Рабочая программа по литературе для 10 класса (по программе ]В. Коровиной)

Рабочая программа содержит пояснительную записку, тематическое планирование., описание планируемых результатов, форм и методов, которые использую на уроках. Даётся необходимый список литературы...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

Рабочая программа по русскому языку 5 класс Разумовская, рабочая программа по литературе 5 класс Меркин, рабочая программа по русскому языку 6 класс разумовская

рабочая программа по русскому языку по учебнику Разумовской, Львова. пояснительная записка, календарно-тематическое планирование; рабочая программа по литературе 5 класс автор Меркин. рабочая программ...

Рабочая программа по Биологии за 7 класс (УМК Сонина), Рабочая программа по Биологии для реализации детского технопарка Школьный кванториум, 5-9 классы, Рабочая программа по Биохимии.

Рабочая программа по биологии составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по биологи...

Рабочая программа по биологии 5-9 класс, Рабочая программа по внеурочной деятельности с использованием оборудования центра "Точка роста" 5 класс, Рабочая программа по химии, Рабочая программа по географии

Рабочая программа по биологии 5-9 класс, Рабочая программа по внеурочной деятельности с использованием оборудования центра "Точка роста" 5 класс, Рабочая программа по химии, Рабочая программ...