олимпиадные задания 5 класс
олимпиадные задания по алгебре (5 класс) по теме

Андреева Римма Борисовна

олимпиадные задания 5 класс

Скачать:

ВложениеРазмер
Файл olimpiada.docx19.84 КБ

Предварительный просмотр:

адача 1:

В пещере старый пират разложил свои сокровища в 3 цветных сундука, стоящих вдоль стены: в один - драгоценные камни, а в другой - золотые монеты, а в третий - оружие. Он помнит, что :
- красный сундук правее, чем драгоценные камни 
- оружие правее, чем красный сундук.

В сундуке какого цвета лежит оружие, если зелёный сундук стоит левее, чем синий?


Задача 2 :

Девять осликов за 3 дня съедают 27 мешков корма.
Сколько корма надо пяти осликам на 5 дней?

Задача 3 :

Кенгуру мама прыгает за 1 секунду на 3 метра, а её маленький сынишка прыгает на 1 метр за 0,5 секунды.
Они одновременно стартовали от бассейна к эвкалипту по прямой.
Сколько секунд мама будет ждать сына под деревом, если расстояние от бассейна до дерева 240 метров



Задача 4 :
На скотном дворе гуляли гуси и поросята.
Мальчик сосчитал количество голов, их оказалось 30, а затем он сосчитал количество ног, их оказалось 84.
сколько гусей и сколько поросят было на школьном дворе?

Задача 1 :

Стороны четырёхугольника ABCD равняются: AB = 11, BC = 7, CD = 9, AD = 3, а углы A и C – прямые.
Чему равна площадь четырёхугольника?




Задача 2 :

Коробку размером 30 х 30 х 50 нужно наполнить одинаковыми кубиками.
Какое минимальное количество кубиков позволит это сделать?


Задача 3 :

Восемь карточек, занумерованных числами от 1 до 8, положили в коробки А и В так,
что суммы чисел в коробках равны.
Если известно, что в коробке А всего 3 карточки, то можно быть уверенным, что:
А : три карточки в коробке В с нечётными номерами; 
Б : 4 карточки в В имеют чётные номера;
В : карточка с номером 1 не в коробке В;
Г : карточка с номером 2 в коробке В;
Д : число 5 в коробке В 

Задача 4:

Комнаты отеля пронумерованы тремя цифрами. Первая цифра обозначает этаж, а следующие две – номер комнаты. Например, 125 означает 25 ю комнату на первом этаже.
В отеле 5 этажей, они пронумерованы от 1 до 5, с 35 комнатами, пронумерованными от 101 до 135 на первом этаже и аналогичным образом – на остальных.
Сколько раз при нумерации комнат использовали цифру 2?
А : 60; Б : 65; В : 95; Г : 100; Д : 105 

Решение задач :

Задача 1 :

Четырёхугольник разбивается ABCD диагональю BD на два прямоугольных треугольника, для каждого из которых вычисляется площадь как полупроизведение катетов. Итого искомая площадь составит - 48
Ответ В : 48. 

Задача 2 :

Сторона кубика должна быть наибольшим общим делителем чисел 30 и 50. НОД (30;50) = 10, значит, кубиков в коробку войдёт 45
Ответ В : 45. 

Задача 3 :

Сумма всех чисел на карточках равна 36, следовательно, на трёх карточках из А сумма 18.
Такую сумму можно получить тремя способами: 18 = 8 + 4 + 6 = 8 + 7 + 3 = 7 + 6 + 5.
Значит, у нас есть три варианта для карточек в коробке В: 1, 2, 3, 5, 7 или 1, 2, 4, 5, 6 или 1, 2, 3, 4, 8.
Убеждаемся, что из всех утверждений только утверждение Г всегда будет верным.
Ответ Г : карточка с номером 2 в коробке В. 

Задача 4 :

На каждом этаже двойка четырежды использовалась для нумерации единиц, и десять раз – в десятках.
К тому же, номера второго этажа дают ещё 35 двоек.
Всего их будет 14 х 5 + 35 = 105
Ответ Д : 105.



Задача 5

Ваня, Коля и Антон могут одинаково быстро вскопать землю лопатой.
Если любые два из этих мальчиков будут работать вместе, то справятся с земельным участком за полтора часа.
За какое время ребята вскопают тот же участок, если будут работать все трое вмест.

Решение:
Любые две мальчика справляются с уборкой за полтора часа (90 минут). Каждый из этих мальчиков вскопает одну вторую часть земельного участка. Если двое мальчиков за 90 мин копают участок, то по отдельности они вскопают в 2 раза дольше: 
90 x 2 = 180 минут
.Нам надо узнать, за какое время они вместе втроем справятся с заданием. Вместе им придется вскопать каждому одну треть земельного участка, то есть выполнить задание в 3 раза быстрее
180 : 3 = 60 минут.
Ответ:
Втроем ребята перекопают земельный участок за 1 час.

Задача 6

Задания для школьной олимпиады: примеры и выражения. В записи (88888888) нужно поставить знаки сложения таким образом, чтобы получилась сумма, которая будет равна 1000. 

Решение:
Способ 1: 88+8+8+8+888=1000 
Способ 2: 8+8+888+88+8=1000.



Задача 7

В детском магазине продают трехколесные и двухколесные велосипеды,
причем и тех и других поровну.
Сколько колес может быть у всех этих велосипедов вместе: 1) 16 2) 24 3) 25 4) 28 5) 33 ?


Решение:
Надо сложить между собой количество колес двух видов велосипедов, так как нужно сравнивать кратность общего числа колес велосипедов к количеству суммы колес двух видов:
3 + 2 = 5
3 - это количество колес трехколесного велосипеда, 2 - это количество колес двухколесного велосипеда. 
Далее рассуждаем так: если количество велосипедов одинаковое (и 2-х и 3-х колесных), то общее число колес должно делится на 5 обязательно без остатка. 
- при варианте 1) 16 : 5 = 3 (остаток 1).
- при варианте 2) 24 : 5 = 4 (остаток 4) – то есть опять остались лишние колеса.
- при варианте 3) 25 : 5 = 5 . Без остатка – значит вариант подходит, 
- при варианте 4) 28 : 5 = 5.(в остатке 3 колеса) – не подходит, 
- при варианте 5) 33 : 5 = 6 (остаток 3).
Ответ: 
Правильный вариант ответа 3), так как 25 делится на 5 без остатка (25 : 5 = 5).


Задача 1 :

На книжной полке можно разместить либо 25 одинаковых толстых книг, либо 45 тонких книг.
Можно ли разместить на этой полке 20 толстых книг и 9 тонких книг?

Решение : 
1 шаг. Заметим, что и 25 и 45 делятся на 5 
25: 5 = 5(к) толстых
45 : 5 = 9 (к) тонких
2 шаг обратить внимание на то, что 5 толстых книг занимает столько же места сколько 9 тонких
3 шаг вывод на 20 толстых книг и 9 тонких - места хватит. 

Задача 2 :

Имеются двое песочных часов: на 3 минуты и на 7 минут.
Яйцо варится 11 минут. Как отмерить это время при помощи имеющихся часов?

Решение :

Перевернуть обои часы. Когда пройдёт 3 минуты в семиминутных часах останется 4 минуты.
Поставьте яйца в это время вариться.
Когда 4 минуты закончатся, перевернуть семиминутные часы обратно 4 + 7 + 11 мин. 

Задача 3 :

В ящике лежат шары: 5 красных, 7 синих и 1 зелёный.
Сколько шаров надо вынуть, чтобы достать два шара одного цвета?

Решение : 

подумайте сколько всего шаров различных цветов можно достать не повторяясь 
Ответ: надо вынуть 4 шара. 

Задача 4 :
Известно, что P - 2 = Q + 2 = X - 3 = Y + 4 = Z - 5.
Найти самое маленькое из них.

Решение :
В каждом случае Р уменьшили на 2, чтобы сравнять с остальными числами и т.д. В ходе дальнейших рассуждений видим, что Y увеличили на 4, т.е. оно было самым маленьким. 

Задача 5 :
Двум парам молодоженов нужно переправиться на другой берег.
Для этого имеется двуместная лодка, но сложность состоит в том, что молодые жены отказались оставаться в обществе незнакомого мужчины без своего мужа.
Как осуществить переправу всех четверых, соблюдая это условие?

Решение : 

М1 М2
М1
Ж1 Ж2
Ж1
М1 Ж1
Ответ: за 5 переездов.

Задачи олимпиад по математике 5 класс.


По теме: методические разработки, презентации и конспекты

Олимпиадные задания для учащихся 5-6-х классов

Задания типичные для районного и городского туров Всероссийской олимпиады. Даны ключи. Распечатайте и используйте этот материал для школьного тура, чтобы лучше подготовить своих учеников к олимпиадам ...

Олимпиадные задания для 5 класса

Предлагаю олимпиадные задания в 5 класса для школьного этапа Всероссийской олимпиады школьников...

Олимпиадные задания, задания для Недели русского языка

Интересные,увлекательные задания для любителей русского слова...

Олимпиадные задания, тесты и практические задания

Тестовые, практические задания к олимпиадам по технологии с ответами...

Олимпиадные задания по химии для учащихся 8 класса (школьный этап). Задания и ответы.

Олимпиадные задания по химии для учащихся 8 класса (школьный этап). Задания и ответы....

Олимпиадные задания по химии для учащихся 9 класса (школьный этап). Задания и ответы.

Олимпиадные задания по химии для учащихся 9 класса (школьный этап). Задания и ответы....