рабочие программы
рабочая программа по алгебре (10 класс) на тему
Предварительный просмотр:
Муниципальное бюджетное общеобразовательное учреждение
Парабельская гимназия
Рабочая программа
по алгебре
10 класс
(102 ч.)
Составитель:
Нефедова Светлана Михайловна,
учитель математики
с. Парабель 2014г.
Пояснительная записка
Рабочая программа по математике разработана в соответствии с Примерной программой основного общего образования по математике, с учётом требований федерального компонента государственного стандарта общего образования, и основана на авторской программе линии Ш.А. Алимова.
Данная рабочая программа ориентирована на учащихся 10 - 11 классов и реализуется на основе следующих документов:
- Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 № ФЗ-273;
- Федерального компонента государственных образовательных стандартов основного среднего (полного) общего образования
- Санитарно-эпидемиологические правила и нормативы СанПиН 2.4.2.2821-10 (постановление главного государственного санитарного врача РФ от 29.12.2010 г. № 189, зарегистрировано в Минюсте России 03.03.2011 г., регистрационный номер 19993);
4. Программа для общеобразовательных учреждений: Алгебра и начало математического анализа для 10-11 классов, составитель Т.А. Бурмистрова, издательство Просвещение, 2009 г., учебник Ш.А. Алимов. Алгебра и начала математического анализа 10 - 11. / Алимов Ш.Ф., Колягин Ю.М., Сидоров Ю.В. и др- М.: Просвещение, 2012г./
Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познание, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения математики:
- формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углублённой математической подготовки;
- воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики.
На основании требований Государственного образовательного стандарта в содержании календарно-тематического планирования предлагается реализовать актуальные в настоящее время компетенгностный, личностно ориентированный, деятельный подходы, которые определяют задачи обучения:
- приобретение математических знаний и умений;
- овладение обобщенными способами мыслительной, творческой деятельностей;
- освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора.
Математическое образование в основной школе складывается из следующих содержательных компонентов: арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развивались на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
- развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
- изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
- развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
- получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- развить логическое мышление и речь - умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Цели обучения математике:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственные представления, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
В ходе преподавания математики в основной школе следует обратить внимание на овладение умениями общеучебного характера, разнообразными способами деятельности, приобретение опыта:
- планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
- решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска путей и способов решения;
- исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
- ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
- проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
- поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение алгебры и начал математического анализа отводится 210часов за 2 года обучения (по 3 часа в неделю в 10 и 11 классе).
При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: Алгебра, Функции, Уравнения и неравенства, Элементы комбинаторики, теории вероятностей, статистики и логики, вводится линия Начала математического анализа. В рамках указанных содержательных линий решаются следующие задачи:
- систематизация сведений о числах;
- изучение новых видов числовых выражений и формул;
- совершенствование практических навыков и вычислительной культуры,
- расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
- расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
- развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
- знакомство с основными идеями и методами математического анализа.
Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:
Общеучебные цели:
- создание условий для формирования умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки;
- создание условий для формирования умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи;
- формирование умения использовать различные языки математики: словесный, символический, графический;
- формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства;
- создание условий для плодотворного участия в работе в группе
- формирование умения самостоятельно и мотивированно организовывать свою деятельность;
- формирование умения применять приобретённые знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств при решении задач практического содержания, используя при необходимости справочники;
- создание условий для интегрирования в личный опыт новой, в том числе самостоятельно полученной информации.
Общепредметные цели:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин (не требующих углубленной математической подготовки), продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственные представления, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средстве моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии через знакомство с историей развития математики, эволюцией математических идей.
Общеучебные умения, навыки и способы деятельности
В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:
- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
- выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
- самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
- проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
- самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
На изучение предмета отводится 3 часа в неделю, итого 105 часов за учебный год в каждом классе. В ходе изучения материала планируется проведение в 10 классе 7 контрольных работ, а в 11 классе – 6 контрольных работ по основным темам и по одной итоговой контрольной работе в каждом классе.
Основная форма организации образовательного процесса – классно-урочная система.
Предусматривается применение следующих технологий обучения:
- традиционная классно-урочная
- лекции
- практические работы
- элементы проблемного обучения
- технологии уровневой дифференциации
- здоровье сберегающие технологии
- ИКТ
Виды и формы контроля: переводная аттестация, промежуточный, самостоятельные работы, контрольные работы, тесты.
Содержание курса в 10 классе (105 ч)
Повторение курса 7 -9 класса (3 ч)
Числовые и буквенные выражения. Упрощение выражений. Уравнения. Системы уравнений. Неравенства. Элементарные функции.
1..Действительные числа (11 ч)
Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с рациональным и действительным показателями.
Основные цели: формирование представлений о натуральных, целых числах, о признаках делимости, простых и составных числах, о рациональных числах, о периоде, о периодической дроби, о действительных числах, об иррациональных числах, о бесконечной десятичной периодической дроби, о модуле действительного числа; формирование умений определять бесконечно убывающую геометрическую прогрессию, вычислять по формуле сумму бесконечно убывающей геометрической прогрессии; овладение умением извлечения корня п-й степени и применение свойств арифметического корня натуральной степени; овладение навыками решения иррациональных уравнений, используя различные методы решения иррациональных уравнений и свойств степени с любым целочисленным показателем.
В результате изучения темы учащиеся должны:
знать: понятие рационального числа, бесконечной десятичной периодической дроби; определение корня п-й степени, его свойства; свойства степени с рациональным показателем;
уметь: приводить примеры, определять понятия, подбирать аргументы, формулировать выводы, приводить доказательства, развёрнуто обосновывать суждения; представлять бесконечную периодическую дробь в виде обыкновенной дроби; находить сумму бесконечно убывающей геометрической прогрессии; выполнять преобразования выражений, содержащих радикалы; решать простейшие уравнения, содержащие корни п-й степени; находить значения степени с рациональным показателем.
2.Степенная функция (11 ч)
Степенная функция, её свойства и график. Равносильные уравнения и неравенства. Иррациональные уравнения.
Основные цели: формирование представлений о степенной функции, о монотонной функции; формирование умений выполнять преобразование данного уравнения в уравнение-следствие, расширения области определения, проверки корней; овладение умением решать иррациональные уравнения методом возведения в квадрат обеих частей уравнения, проверки корней уравнения; выполнять равносильные преобразования уравнения и определять неравносильные преобразования уравнения.
В результате изучения темы учащиеся должны:
знать: свойства функций; схему исследования функции; определение степенной функции; понятие иррационально уравнения;
уметь: строить графики степенных функций при различных значениях показателя; исследовать функцию по схеме (описывать свойства функции, находить наибольшие и наименьшие значения); решать простейшие уравнения и неравенства стандартными методами; изображать множество решений неравенств с одной переменной; приводить примеры, обосновывать суждения, подбирать аргументы, формулировать выводы; решать рациональные уравнения, применяя формулы сокращённого умножения при их упрощении; решать иррациональные уравнения; составлять математические модели реальных ситуаций; давать оценку информации, фактам, процесса, определять их актуальность.
3.Показательная функция (12 ч)
Показательная функция, её свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.
Основные цели: формирование понятий о показательной функции, о степени с произвольным действительным показателем, о свойствах показательной функции, о графике функции, о симметрии относительно оси ординат, об экспоненте; формирование умения решать показательные уравнения различными методами: уравниванием показателей, введением новой переменной; овладение умением решать показательные неравенства различными методами, используя свойства равносильности неравенств; овладение навыками решения систем показательных уравнений и неравенств методом замены переменных, методом подстановки.
В результате изучения темы учащиеся должны:
знать: определение показательной функции и её свойства; методы решения показательных уравнений и неравенств и их систем;
уметь: определять значения показательной функции по значению её аргумента при различных способах задания функции; строить график показательной функции; проводить описание свойств функции; использовать график показательной функции для решения уравнений и неравенств графическим методом; решать простейшие показательные уравнения и их системы; решать показательные уравнения, применяя комбинацию нескольких алгоритмов; решать простейшие показательные неравенства и их системы; решать показательные неравенства, применяя комбинацию нескольких алгоритмов; самостоятельно искать и отбирать необходимую для решения учебных задач информацию; предвидеть возможные последствия своих действий.
4.Логарифмическая функция (15 ч)
Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая функция, её свойства и график. Логарифмические уравнения. Логарифмические неравенства.
Основные цели: формирование представлений о логарифме, об основании логарифма, о логарифмировании, о десятичном логарифме, о натуральном логарифме, о формуле перехода от логарифма с одним основанием к логарифму с другим основанием; формирование умения применять свойства логарифмов: логарифм произведения, логарифм частного, логарифм степени, при упрощении выражений, содержащих логарифмы; овладение умением решать логарифмические уравнения; переходя к равносильному логарифмическому уравнению, метод потенцирования, метод введения новой переменной, овладение навыками решения логарифмических неравенств.
В результате изучения темы учащиеся должны:
знать: понятие логарифма, основное логарифмическое тождество и свойства логарифмов; формулу перехода; определение логарифмической функции и её свойства; понятие логарифмического уравнения и неравенства; методы решения логарифмических уравнений; алгоритм решения логарифмических неравенств;
уметь: устанавливать связь между степенью и логарифмом; вычислять логарифм числа по определению; применять свойства логарифмов; выражать данный логарифм через десятичный и натуральный; применять определение логарифмической функции, её свойства в зависимости от основания; определять значение функции по значению аргумента при различных способах задания функции; решать простейшие логарифмические уравнения, их системы; применять различные методы для решения логарифмических уравнений; решать простейшие логарифмические неравенства.
5. Тригонометрические формулы (23 ч)
Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и тангенса. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов α и α. Формулы сложения.. синус, косинус и тангенс двойного угла.. Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов.
Основные цели: формирование представлений о радианной мере угла, о переводе радианной меры в градусную и наоборот, градусной - в радианную; о числовой окружности на координатной плоскости; о синусе, косинусе, тангенсе, котангенсе, их свойствах; о четвертях окружности; формирование умений упрощать тригонометрические выражения одного аргумента; доказывать тождества; выполнять преобразование выражений посредством тождественных преобразований; овладение умением применять формулы синуса и косинуса суммы и разности, формулы двойного угла для упрощения выражений; овладение навыками использования формул приведения и формул преобразования суммы тригонометрических функций в произведение.
В результате изучения темы учащиеся должны:
знать: понятия синуса, косинуса, тангенса, котангенса произвольного угла; радианной меры угла; как определять знаки синуса, косинуса и тангенса простого аргумента по четвертям; основные тригонометрические тождества; доказательство основных тригонометрических тождеств; формулы синуса, косинуса суммы и разности двух углов; формулы двойного угла; вывод формул приведения;
уметь: выражать радианную меру угла в градусах и наоборот; вычислять синус, косинус, тангенс и котангенс угла; используя числовую окружность определять синус, косинус, тангенс, котангенс произвольного угла; определять знаки синуса, косинуса, тангенса, котангенса по четвертям; выполнять преобразование простых тригонометрических выражений; упрощать выражения с применением тригонометрических формул; объяснять изученные положения на самостоятельно подобранных конкретных примерах; работать с учебником, отбирать и структурировать материал; пользоваться энциклопедией, справочной литературой; предвидеть возможные последствия своих действий.
6. Тригонометрические уравнения (16 ч)
Уравнение cos x = a. Уравнение sin x = a. Уравнение tgx = a. Решение тригонометрических уравнений.
Основные цели: формирование представлений о решении тригонометрических уравнений на числовой окружности, об арккосинусе, арксинусе, арктангенсе, арккотангенсе числа; формирование умений решения простейших тригонометрических уравнений, однородных тригонометрических уравнений; овладение умением решать тригонометрические уравнения методом введения новой переменной, методом разложения на множители; расширение и обобщение сведений о видах тригонометрических уравнений.
В результате изучения темы учащиеся должны:
знать: определение арккосинуса, арксинуса, арктангенса и формулы для решения простейших тригонометрических уравнений; методы решения тригонометрических уравнений;
уметь: решать простейшие тригонометрические уравнения по формулам; решать квадратные уравнения относительно sin, cos, tg и ctg; определять однородные уравнения первой и второй степени и решать их по алгоритму, сводя к квадратным; применять метод введения новой переменной, метод разложения на множители при решении тригонометрических уравнений; аргументировано отвечать на поставленные вопросы; осмысливать ошибки и устранять их; самостоятельно искать и отбирать необходимую для решения учебных задач информацию.
7. Повторение курса алгебры 10 класса ( 11 ч)
Степенная, показательная и логарифмическая функции. Решение показательных, степенных и логарифмических уравнений. Решение показательных, степенных и логарифмических неравенств. Тригонометрические формулы. Тригонометрические тождества. Решение тригонометрических уравнений. Решение систем показательных и логарифмических уравнений. Текстовые задачи на проценты, движение.
Основные цели: обобщить и систематизировать курс алгебры и начала анализа за 10 класс, решая тестовые задания по сборникам тренировочных заданий по подготовке к ЕГЭ; создать условия для плодотворного участия в работе в группе; формировать умения самостоятельно и мотивированно организовывать свою деятельность.
Учебно – тематический план
№ | содержание учебного материала | Кол-во часов по рабочей программе |
1. | Повторение | 3 |
2. | Действительные числа | 11 |
3. | Степенная функция | 11 |
4. | Показательная функция | 12 |
5. | Логарифмическая функция | 15 |
6. | Тригонометрические формулы | 23 |
7. | Тригонометрические уравнения | 16 |
8. | Повторение | 11 |
| Итого: | 102 |
Требования к уровню подготовки выпускников
На ступени основной школы задачи учебных занятий определены как закрепление умений разделять процессы на этапы, звенья, выделять характерные причинно-следственные связи, определять структуру объекта познания, значимые функциональные связи и отношения между частями целого, сравнивать, сопоставлять, классифицировать, ранжировать объекты по одному или нескольким предложенным основаниям, критериям. Принципиальное значение в рамках курса приобретает умение различать факты, мнения, доказательства, гипотезы, аксиомы.
При выполнении творческих работ формируется умение определять адекватные способы решения учебной задачи на основе заданных алгоритмов, комбинировать известные алгоритмы деятельности в ситуациях, не предполагающих стандартного применения одного из них, мотивированно отказываться от образца деятельности, искать оригинальные решения.
Учащиеся должны приобрести умения по формированию собственного алгоритма решения познавательных задач, формулировать проблему и цели своей работы, определять адекватные способы и методы решения задачи, прогнозировать ожидаемый результат и сопоставлять его с собственными математическими знаниями. Учащиеся должны научиться представлять результаты индивидуальной и групповой познавательной деятельности в формах конспекта, реферата, рецензии.
Для решения познавательных и коммуникативных задач учащимся предлагается использовать различные источники информации, включая энциклопедии, словари, интернет-ресурсы и другие базы данных, в соответствии с коммуникативной задачей, сферой и ситуацией общения осознанно выбирать выразительные средства языка и знаковые системы (текст, таблица, схема, аудиовизуальный ряд и др.).
Учащиеся должны уметь развернуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного), объяснять изученные положения на самостоятельно подобранных конкретных примерах, владеть основными видами публичных выступлений (высказывания, монолог, дискуссия, полемика), следовать этическим нормам и правилам ведения диалога, диспута. Предполагается простейшее использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.
Стандарт ориентирован на воспитание школьника - гражданина и патриота России, развитие духовно-нравственного мира школьника, его национального самосознания. Эти положения нашли отражение в содержании уроков. В процессе обучения должно быть сформировано умение формулировать свои мировоззренческие взгляды и на этой основе осуществляться воспитание гражданственности и патриотизм.
В результате изучения математики на базовом уровне ученик должен
знать/понимать:
- значение математической науки для решения задач, возникающих в теории и на практике;
- широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- вероятностный характер различных процессов окружающего мира;
АЛГЕБРА
уметь
- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
- вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
ФУНКЦИИ И ГРАФИКИ
уметь
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
УРАВНЕНИЯ И НЕРАВЕНСТВА
уметь
- решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
- составлять уравнения и неравенства по условию задачи;
- использовать для приближенного решения уравнений и неравенств графический метод;
- изображать на координатной плоскости множества решений простейших уравнений и их систем;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- построения и исследования простейших математических моделей;
Формы и средства контроля.
Для проведения контрольных работ используется: «Дидактические материалы по алгебре и начале анализа для 10 класса.» - М.Просвещение, 2000. Составитель Б. М. Ивлев и др., для проведения самостоятельных и зачетных работ - «Контрольные и проверочные работы по алгебре для 10-11 класса.» - М. Дрофа 2001. Авторы: Л. И. Звавич. Л. Я. Шляпочник, «Поурочные разработки по алгебре 10 класс к учебному комплекту Ш. А. Алимова.» - М. Учитель 2004. Автор Г. И. Григорьева, «Дидактические материалы по алгебре 10 класс», М. Просвещение 2009. Автор Б. Г. Зив.
№ | Тема контрольной работы | Дата |
1. | Действительные числа | 01.10 |
2. | Степенная функция | 29.10 |
3. | Показательная функция | 03.12 |
4. | Логарифмическая функция | 14.01 |
5. | Основные тригонометрические формулы | 09.03 |
6. | Тригонометрические уравнения | 22.04 |
7. | Итоговая контрольная работа | 14.05 |
Критерии и нормы оценивания знаний обучающихся по математике.
Для поддержания интереса к обучению и созданию благоприятных и комфортных условий для развития и восстановления эмоционально-личностной сферы обучающихся осуществляется контроль устных и письменных работ по учебным предметам по изменённой шкале оценивания.
Критерии и нормы оценки знаний, умений и навыков обучающихся: Текущий контроль усвоения материала осуществляется путем устного/письменного опроса. Периодически знания и умения по пройденным темам проверяются письменными контрольными или тестовых заданиями. При тестировании все верные ответы берутся за 100%, тогда отметка выставляется в соответствии с таблицей: Процент выполнения задания/Отметка |
1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
- работа выполнена полностью;
- в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
- допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
- допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
2. Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
- допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
3.1. Грубыми считаются ошибки:
- незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
- незнание наименований единиц измерения;
- неумение выделить в ответе главное;
- неумение применять знания, алгоритмы для решения задач;
- неумение делать выводы и обобщения;
- неумение читать и строить графики;
- неумение пользоваться первоисточниками, учебником и справочниками;
- потеря корня или сохранение постороннего корня;
- отбрасывание без объяснений одного из них;
- равнозначные им ошибки;
- вычислительные ошибки, если они не являются опиской;
- логические ошибки.
3.2. К негрубым ошибкам следует отнести:
- неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
- неточность графика;
- нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
- нерациональные методы работы со справочной и другой литературой;
- неумение решать задачи, выполнять задания в общем виде.
3.3. Недочетами являются:
- нерациональные приемы вычислений и преобразований;
- небрежное выполнение записей, чертежей, схем, графиков.
Календарно-тематическое планирование
алгебры и начала анализа 10 класса
Количество часов в неделю: 3 ч Годовое количество часов: 102ч
п/п | Наименование разделов и тем уроков | Всего часов | |
Дата проведения | |||
Повторение курса 7 -9 класса | 3 ч | ||
1 | Числовые и буквенные выражения. Упрощение выражений | 1 | 01.09 |
2 | Уравнения. Системы уравнений. Неравенства. | 1 | 03.09 |
3 | Входной контроль знаний | 1 | 04.09 |
Глава 1. Действительные числа | 11 ч | ||
1.1 | Целые и рациональные числа | 1 | 08.09 |
1.2 | Действительные числа | 1 | 10.09 |
1.3 | Бесконечно убывающая геометрическая прогрессия | 2 | 11.09-15.09 |
1.5 | Арифметический корень натуральной степени | 3 | 17.09-22.09 |
1.7 | Степень с рациональным показателем | 3 | 24.09-29.09 |
1.11 | Контрольная работа № 1 | 1 | 01.10 |
Глава 2. Степенная функция | 11 ч | ||
2.1 | Степенная функции, её свойства и график | 2 | 02.10-06.10 |
2.3 | Взаимно обратные функции | 1 | 08.10 |
2.4 | Равносильные уравнения | 2 | 09.10-13.10 |
2.6 | Иррациональные уравнения | 3 | 15.10-20.10 |
2.7 | Иррациональные неравенства | 3 | 22.10-27.10 |
2.11 | Контрольная работа № 2 | 1 | 29.10 |
Глава 3. Показательная функция | 12 ч | ||
3.1 | Показательная функция, её свойства и график | 2 | 30.10-10.11 |
3.3 | Показательные уравнения | 2 | 12.11-13.11 |
3.5 | Показательные неравенства | 3 | 17.11-20.11 |
3.8 | Решение систем показательных уравнений. | 4 | 24.11-01.12 |
3.12 | Контрольная работа № 3 | 1 | 03.12 |
Глава 4. Логарифмическая функция | 15 ч | ||
4.2 | Логарифмы | 2 | 04.12-08.12 |
4.3 | Свойства логарифмов | 2 | 10.12-11.12 |
4.5 | Десятичные и натуральные логарифмы | 2 | 15.12-17.12 |
4.7 | Логарифмическая функция, её свойства и график | 2 | 18.12-22.12 |
4.9 | Логарифмические уравнения | 3 | 24.12- |
4.11 | Логарифмические неравенства | 3 | |
4.15 | Контрольная работа № 4 | 1 | |
Глава 5. Тригонометрические формулы | 23ч | ||
5.1 | Радианная мера угла | 1 | |
5.2 | Поворот точки вокруг начала координат | 2 | |
5.4 | Определение синуса, косинуса и тангенса угла | 2 | |
5.6 | Знаки синуса, косинуса и тангенса угла. | 1 | |
5.7 | Зависимость между синусом, косинусом и тангенсом одного и того же угла | 2 | |
5.9 | Тригонометрические тождества. | 2 | |
5.11 | Синус, косинус и тангенс углов и . | 2 | |
5.13 | Формулы сложения | 2 | |
5.15 | Синус, косинус и тангенс двойного угла | 2 | |
5.17 | Синус, косинус и тангенс половинного угла | 1 | |
5.18 | Формулы привидения | 2 | |
5.21 | Сумма и разность косинусов. | 3 | |
5.23 | Контрольная работа № 5 | 1 | |
Глава 6. Тригонометрические уравнения | 16 ч | ||
6.2 | Решение уравнений вида х = а | 2 | |
6.4 | Решение уравнений вида х = а | 3 | |
6.7 | Решение уравнений вида х = а | 3 | |
6.9 | Решение тригонометрических уравнений. Уравнения, сводящиеся к квадратным. | 1 | |
6.10 | Решение тригонометрических уравнений. Уравнение a sin x + b cos x = c | 1 | |
6.11 | Решение тригонометрических уравнений. Уравнения, решаемые разложением левой части на множители. | 2 | |
6.13 | Примеры решения простейших тригонометрических неравенств | 3 | |
6.16 | Контрольная работа № 6 | 1 | |
Итоговое повторение курса алгебры и начала анализа 10 класса | 11 ч |
| |
7.1 | Степенная, показательная и логарифмическая функции. | 1 | |
7.2 | Решение показательных, степенных и логарифмических уравнений | 1 | |
7.3 | Решение показательных, степенных и логарифмических неравенств | 1 | |
7.4 | Итоговая контрольная работа № 7 | 1 | |
7.7 | Тригонометрические формулы. Тригонометрические тождества | 2 | |
7.8 | Решение тригонометрических уравнений. | 2 | |
7.9 | Решение систем показательных и логарифмических уравнений. | 1 | |
7.10 | Текстовые задачи на проценты, движение. | 1 | |
7.11 | Итоговый урок | 1 | |
Итого | 102 ч |
Литература и средства обучения:
1. Учебник: Алгебра и начала математического анализа, 10 11 классы: учеб. Для общеобразоват. учреждений /Ш.А. Алимов [и др.], - М.: Просвещение, 2012г.
2. алгебра и начала анализа 10-11, тематические тесты: учеб.пособие./В.К.Шарапова. – Ростов н/Д.: Феникс, 2007.
3. Контрольно-измерительные материалы. Алгебра и начала анализа: 10 класс / сост. А.Н. Рурукин. – М.: ВАКО, 2011
4. Контрольно-измерительные материалы. Алгебра и начала анализа: 11 класс / сост. А.Н. Рурукин. – М.: ВАКО, 2011
Дополнительная литература:
1.Примерные программы по математике . Сборник нормативных документов. Математика / сост. Э.Д. Днепров, А.Г. Аркадьев. М.: Дрофа, 2009
2.Алгебра и начала математического анализа. 7 -11 классы: развёрнутое тематическое планирование. Линия Ш.А. Алимова / авт.-сост. Н.А.Ким. Волгоград: Учитель,2010
3. Дидактические материалы по алгебре и началам анализа для 10 и 11 класса /Б.И. Ивлев, С.И.Саакян, С.И.Шварцбург. М.: Просвещение ,2005
4.Устные упражнения по алгебре и началам анализа / Р.Д.Лукин, Т.К. Лукина, И.С. Якунина. М.: Просвещение, 1989
5.Контрольные и проверочные работы по алгебре. 10 11 кл.: Методическое пособие / Звавич Л.И., Шляпочник Л.Я. М.: Дрофа, 1997
6.Алгебра и начала анализа. Тесты. 10 11 классы: учебно-метод. Пособие. М.: Дрофа, 2010
7.Математика. 10- 11 классы. Развитие комбинаторно-логического мышления. Задачи, алгоритмы решений / авт.-сост. Т.Г. Попова. Волгоград: Учитель, 2009
8.Алгебра и начала анализа: сборник задач для подготовки и проведения итоговой аттестации за курс средней школы / И.Р. Высоцкий, Л.И. Звавич, Б.П. Пигарев и др.; под ред. С.А. Шестакова. М.: Внешсигма-М, 2008
9.Математика. 10- 11 классы: технология подготовки учащихся к ЕГЭ / авт.-сост. Н.А. Ким. Волгоград: Учитель, 2010
10.Математика. ЕГЭ. Практикум. 2010 г. ( авт. Л.Д. Лаппо, М.А. Попов)
11. Математика. Подготовка к ЕГЭ – 2012: учебно – методическое пособие /под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов – на – Дону: Легион – М, 2011
12. Решение сложных задач ЕГЭ по математике: 9 – 11 классы. – М.: ВАКО, 2011 (авт. С.И. Колесникова).
Контрольные работы по алгебре и началам анализа в 10 классе
Входной срез.
Вариант 1.
- Решите систему уравнений
- Решите неравенство
- Представьте выражение в виде степени с основанием a.
- Постройте график функции Укажите, при каких значениях x функция принимает положительные значения.
- Упростите выражение
Вариант 2.
- Решите систему уравнений
- Решите неравенство
- Представьте выражение в виде степени с основанием y.
- Постройте график функции Укажите, при каких значениях x функция принимает отрицательные значения.
- Упростите выражение
Вводная контрольная работа по алгебре
Вариант 1
Часть 1
1. Найдите область определения функции
1) х ≥ 5; 2) х ≥ -5; 3) х ≥ 0; 4) х ≤ 5.
2. Разложите квадратный трёхчлен 5х2 – 6х + 1 на множители
1) 5(х – 1)(5х – 1); 2) (х – 1)(5х – 1); 3) (х – 1)(х – 0,2); 4) (5х – 1)(х – 0,2).
3. Найдите координаты вершины параболы, заданной формулой у = 2х2 – 8х + 6
1) (2; -2); 2) (-2; 30); 3) (2; 18); 4) (4; 6).
4. Решите неравенство 3х2 – 4х – 7 < 0
1) 2) (-∞; +∞); 3) ; 4) .
5. Ордината вершины параболы у = -(х + 6)2 + 5 равна
1) -5; 2) 5; 3) -6; 4) 6.
6. Решением системы является пара чисел
1) (-5; -3); 2) (1; 3) и (-2; 0); 3) (1; -3); 4) (2; 0).
7. Найдите разность арифметической прогрессии 5; 8; 11…
1) -3; 2) 3; 3) 13; 4) 1,6.
8. Шестой член арифметической прогрессии 1; -2; -5… равен
1) -14; 2) 12; 3) -15; 4) 16.
9. Знаменатель геометрической прогрессии 4; 12; 36… равен
1) 48; 2) 3; 3) -8; 4) 8.
10. Пятый член геометрической прогрессии 2; -6; 18… равен
1) -54; 2) 162; 3) -162; 4) 16.
11. Найдите значение разности
1) -63; 2) 3; 3) -135; 4) -3.
Часть 2
1. Решите уравнение х4 – 13х2 + 36 = 0
2. Решите неравенство 3х2 + 2х – 1 ≥ 0
3. Решите систему
4. Сумма трёх чисел, составляющих арифметическую прогрессию, равна 12, а произведение первого и второго – 8. Найдите эти числа.
Вариант 2
Часть 1
1. Найдите область определения функции
1) х ≥ 4; 2) х ≥ -4; 3) х ≥ 0; 4) х ≤ 4.
2. Разложите квадратный трёхчлен 2х2 + 5х – 3 на множители
1) 2(х – 3)(х – 0,5); 2) 2(х – 3)(х + 0,5); 3) (х + 3)(х – 0,5); 4) (х + 3)(2х – 1).
3. Найдите координаты вершины параболы, заданной формулой у = 3х2 – 6х + 2
1) (2; 2); 2) (-1; 11); 3) (1; -1); 4) (4; 6).
4. Решите неравенство 4х2 – 3х – 1 < 0
1) 2) (-∞; +∞); 3) ; 4) .
5. Ордината вершины параболы у = -(х - 5)2 + 6 равна
1) -5; 2) 5; 3) -6; 4) 6.
6. Решением системы является пара чисел
1) (-5; -8); 2) (2; -1) и (-1; -4); 3) (2; 1); 4) (-2; 1).
7. Найдите разность арифметической прогрессии 6; 10; 14…
1) -4; 2) 4; 3) 16; 4) 0,6.
8. Шестой член арифметической прогрессии 2; -3; -8… равен
1) -23; 2) 12; 3) -18; 4) 16.
9. Знаменатель геометрической прогрессии 2; 6; 18… равен
1) 48; 2) 3; 3) -8; 4) 8.
10. Пятый член геометрической прогрессии -2; -6; -18… равен
1) -54; 2) 162; 3) -162; 4) 16.
11. Найдите значение разности
1) 561; 2) 3; 3) 1; 4) -3.
Часть 2
1. Решите уравнение х4 – 65х2 + 64 = 0
2. Решите неравенство 3х2 – 5х – 2 ≤ 0
3. Решите систему
4. Сумма трёх чисел, составляющих арифметическую прогрессию, равна произведению первого и второго чисел и равна 15. Найдите эти числа.
Контрольная работа № 1
по теме «Действительные числа»
- Вычислить: 1) ; 2) .
- Известно, что 12х = 3. Найти 122х – 1 .
- Выполнить действия (а > 0, b > 0): 1) ; 2) - .
- Сравнить числа: 1) ; 2) .
- Записать бесконечную периодическую десятичную дробь 0,2(7) в виде обыкновенной.
- Упростить
- Вычислить 1) ; 2) .
- Известно, что 8х = 5. Найти 8 - х + 2 .
- Выполнить действия (а > 0, b > 0): 1) ; 2) - .
- Сравнить числа: 1) ; 2) .
- Записать бесконечную периодическую десятичную дробь 0,3(1) в виде обыкновенной.
- Упростить
по теме «Степенная функция»
- Найти область определения функции .
- Изобразить эскиз графика функции у = х – 5.
- Выяснить, на каких промежутках функция убывает
- Сравнить числа: а) ; б) (3,2)- 5 и .
- Решить уравнение: 1) 2) ; 3)
4)
4. Найти функцию, обратную к функции у = (х - 8) – 1, указать её область определения и множество значений.
5. Решить неравенство
Вариант 2
- Найти область определения функции у = .
- Изобразить эскиз графика функции у = х – 6.
- Выяснить, на каких промежутках функция возрастает.
- Сравнить числа: а) ; б) (4,2)- 6 и .
- Решить уравнение: 1) 2) ; 3)
4)
4. Найти функцию, обратную к функции у = 2(х + 6) – 1, указать её область определения и множество значений
5. Решить неравенство
по теме «Показательная функция»
Вариант 1
- Решить уравнение: 1) 2) 4х + 2х - 20 = 0.
- Решить неравенство
- Решить систему уравнений
- Решить неравенство: 1) 2)
- Решить уравнение 7х + 1 + 3∙7х = 2х + 5+ 3 ∙ 2х.
Вариант 2
- Решить уравнение: 1) 2) 9х - 7 ∙ 3х - 18 = 0.
- Решить неравенство
- Решить систему уравнений
- Решить неравенство: 1) 2)
- Решить уравнение3х + 3 + 3х = 5∙2х + 4 - 17 ∙ 2х.
по теме «Логарифмическая функция»
Вариант 1
- Вычислить: 1) 16; 2) ; 3)
- В одной системе координат схематически построить графики функций y=, y=.
- Сравнить числа и .
- Решить уравнение (2x – 1) = 2.
- Решить неравенство
- Решить уравнение x = 3.
- Решить уравнение x +
- Решить неравенство
Вариант 2
- Вычислить: 1) ; 2) ; 3)
- В одной системе координат схематически построить графики функций y = , y = .
- Сравнить числа и .
- Решить уравнение(2x + 3) = 3.
- Решить неравенство
- Решить уравнениеx = 2.
- Решить уравнениеx +
- Решить неравенство
по теме «Основные тригонометрические формулы»
Вариант 1
- Вычислить: 1) ; 2) .
- Вычислить , если
- Упростить выражение: 1) ; 2) .
- Решить уравнение .
- Доказать тождество.
Вариант 2
- Вычислить 1) ; 2) .
- Вычислить, если
- Упростить выражение 1) ; 2)
- Решить уравнение .
5. Доказать тождество .
по теме «Тригонометрические уравнения»
Вариант 1
- Решить уравнение: 1) 2)
- Найти решение уравнения на отрезке [0; З].
- Решить уравнение 1) 3
2) 6 sin 2x – sin x = 1; 3) 4 sin x + 5 cos x = 4; 4) sin4x + cos4x = cos22x + 0,25.
Вариант 2
- Решить уравнение: 1) 2)
- Найти решение уравнения на отрезке [0; 4].
- Решить уравнение 1)
2) 10 cos 2x + 3 cos x = 1; 3) 5 sin x + cos x = 5; 4) sin4x + cos4x = sin22x - 0,5.
Итоговая контрольная работа № 7
Вариант 1
- Решите неравенство х2(2х + 1)(х - 3) 0.
- Решите уравнение:
а) б) 4х - 3∙ 4х – 2 = 52; в)
- Сколько корней имеет уравнение 2cos2x – sin (x - ) + tg x tg(x + ) = 0 на промежутке (0; 2π)? Укажите их.
- Найдите целые решения системы неравенств:
Вариант 2
- Решите неравенство
- Решите уравнение:
а) б) 5х - 7∙ 5х – 2 = 90; в)
- Сколько корней имеет уравнение sin2x + cos22x + cos2 ( ) cos x tgx = 1 на промежутке (0; 2π)? Укажите их.
- Найдите целые решения системы неравенств:
Контрольные работы по алгебре и началам анализа в 11 классе
Контрольная работа № 1
по теме «Тригонометрические функции»
Вариант 1
- Найдите область определения и множество значений функции у = 2 cos x.
- Выясните, является ли функция у = sin x – tg x четной или нечетной.
- Изобразите схематически график функции у = sin x + 1 на отрезке .
- Найдите наибольшее и наименьшее значения функции у = 3sin x ∙cos x + 1.
- Постройте график функции у = 0,5 cos x – 2. При каких значениях х функция возрастает? Убывает?
Вариант 2
- Найдите область определения и множество значений функции у = 0,5 cos x.
- Выясните, является ли функция у = cos x – x2 четной или нечетной.
- Изобразите схематически график функции у = cos x - 1 на отрезке .
- Найдите наибольшее и наименьшее значения функции у = + 1.
- Постройте график функции у = 2 sin x + 1. При каких значениях х функция возрастает? Убывает?
Контрольная работа № 2
по теме «Производная и ее геометрический смысл»
Вариант 1
- Найдите производную функции: а) 3х2 - б) в) г)
- Найдите значение производной функции f(x) = в точке х0 = 8.
- Запишите уравнение касательной к графику функции f(x) = sin x – 3x + 2 в точке х0 = 0.
- Найдите значения х, при которых значения производной функции f(x) = положительны.
- Найдите точки графика функции f(x)= х3 – 3х2, в которых касательная к нему параллельна оси абсцисс.
- Найдите производную функции f(x) = .
Вариант 2
- Найдите производную функции: а) 2х3 - б) в) г)
- Найдите значение производной функции f(x) = в точке х0 = .
- Запишите уравнение касательной к графику функции f(x) = 4x - sin x + 1 в точке х0 = 0.
- Найдите значения х, при которых значения производной функции f(x) = отрицательны.
- Найдите точки графика функции f(x)= х3 + 3х2, в которых касательная к нему параллельна оси абсцисс.
- Найдите производную функции f(x) = cos .
Контрольная работа № 3
по теме «Применение производной к исследованию функций»
Вариант 1
- Найдите стационарные точки функции f(x) = х3- 2х2 +х +3.
- Найдите экстремумы функции: а) f(x) =х3 – 2х2 + х + 3; б) f(x) =.
- Найдите интервалы возрастания и убывания функции f(x) = х3- 2х2 +х +3.
- Постройте график функции f(x) = х3- 2х2 +х +3 на отрезке .
- Найдите наибольшее и наименьшее значения функции f(x) = х3- 2х2 +х +3 на отрезке .
- Среди прямоугольников, сумма длин трех сторон которых равна 20, найдите прямоугольник наибольшей площади.
Вариант 2
- Найдите стационарные точки функции f(x) = х3- х2 - х +2.
- Найдите экстремумы функции: а) f(x) = х3- х2 - х +2; б) f(x) =.
- Найдите интервалы возрастания и убывания функции f(x) = х3- х2 - х +2.
- Постройте график функции f(x) = х3- х2 - х +2 на отрезке .
- Найдите наибольшее и наименьшее значения функции f(x) = х3- х2 - х +2 на отрезке .
- Найдите ромб с наибольшей площадью, если известно, что сумма длин его диагоналей равна 10.
Контрольная работа № 4
по теме «Интеграл»
Вариант 1
- Докажите, что функция F(x) = 3х + sin x – e2xявляется первообразной функции f (x) = 3 + cos x – 2e2x на всей числовой оси.
- Найдите первообразную F функции f (x) = 2, график которой проходит через точку А(0; ).
- Вычислите площадь фигуры, изображенной на рисунке.
- Вычислить интеграл: а) dx; б) .
- Найдите площадь фигуры, ограниченной прямой у = 1 – 2х и графиком функции у = х2 – 5х – 3.
Вариант 2
- Докажите, что функция F(x) = х + cos x + e3xявляется первообразной функции f (x) = 1 - sin x + 3e3x на всей числовой оси.
- Найдите первообразную F функции f (x) = - 3, график которой проходит через точку А(0; ).
- Вычислите площадь фигуры, изображенной на рисунке.
- Вычислить интеграл: а) dx; б) .
- Найдите площадь фигуры, ограниченной прямой у = 3 – 2х и графиком функции у = х2 + 3х – 3.
Тест
для проверки обязательных результатов обучения
за курс алгебры и начал анализа
- Вычислить .
а) 8; б) ±8; в) 4; г) ±4.
- Вычислить ∙
а) 8; б) ±8; в) 16; г) ±64.
- Вычислить
а) ; б) ; в) ; г) ±1
- Найти , если а 0.
а) а20; б) а6; в) ± а20; г) ±а6.
- Упростить , если а0.
a) б); в) - ; г) .
- Вынести множитель из-под знака корня:
а) 2; б) 3; в) 18; г) 5
7. Извлечь корень:
а); б)2 - ; в) 1 - ; г) 1 - .
8. Найти значение выражения 50 + .
а) ; б) ; в) ; г) - 3
9. Найти значение выражения .
а) ; б) ; в) ; г) 25
10. Представить выражение где ав виде степени.
а); б) ;; в) а9; г) а20.
11. Выполнить деление: :.
а) 1; б) 2; в) 42; г) .
- Возвести в степень: .
а) ; б) ; в); г)
- Сравнить числа (0,35)π и (0,35)3.
а) (0,35)π < (0,35)3; б) (0,35)π = (0,35)3; в) (0,35)π >(0,35)3
- Упростить выражение
а) ; б); в) а + b; г) а-b.
- Решить уравнение = х.
а) х = -3; б) х1 = -3, х2 = 3; в) х =; г) нет корней.
- Решить уравнение 2х = -4.
а) х = -2; б) х = - 0,5; в) х = 2; г) нет корней.
- Решить неравенство > 25.
а) х<-2; б) х>-2; в) х<2; г) х = 2.
- Указать уравнение, корнем которого является логарифм числа 5 по основанию 3.
а) 5х = 3; б) х5 = 3; в) 3х = 5; г) х3 = 5.
- Найти log0,5 8.
а) 3; б) -3; в) 4; г) -4.
- Вычислить .
а) 7; б) 8; в) 12; г) 256.
- Упростить разность log6 72-log62.
a)log670; б) в) 2; г) 6.
- Найти lg a3, если lg а = m.
а); б) 3 + m; в) 3т; г) т3.
- Выразить log5 e через натуральный логарифм.
а) ; б) ; в) ; г)
- Решить уравнение log5x = -2.
а) х = -2; б) х = 0,1; в) х = 0,04; г) нет корней.
- Решить неравенство log0,3x>l.
а) х>1; б) х> 0,3; в) х<0,3; г) 0<х<0,3.
- Найти радианную меру угла 240°.
а) π; б) π; в) ; г)
27. Найти значение выражения
a) ; б) ; ; в ;; г) ;
28. Найти sin а, если cosa = b
а) ; б) ; в) ; г) -
29. Найти tga, если ctga= 0,4
а) ; б) ; в) ; г) -
30. Найти sin2а, если sina=, cosa = - .
а) - ; б) ; в) ; г) -
31. Найти cos 2a, если sin a = - , cosa = -
а)1; б) ; в) ; г)
32. Записать cos 580° с помощью наименьшего положительного угла.
а) sin50°; б) -sin50°; в) -cos40°; г) cos40°.
33. Упростить выражение
a) cos a sin a-tga; 6) cos2 a + tga; в) cos2 a-ctg a; r) - sin2 a + ctg a
34. Указать выражение, которое не имеет смысла.
а) arccos; б) arcsin 1; в) arctg 15; г) arccos/
35. Решить уравнение cosx = -l (в ответах kZ)
a) x = π + πk; б) x = π + 2πk; в) x=+2πk; г) х = - +2πk
36. Решить уравнение sinx = 0 (в ответах kZ)
a) x = + πk; б) x = + 2πk; в) x=πk; г) х =2πk
37. Найти arcsin
a) π ; б) π ; в) - ; г) - .
38. Найти arccos
a) π ; б) π ; в) - ; г) - .
39. Найти производную функции , где х>0
а); б) ;; в) ; г) x5.
40. Найти производную функции 3cosx + 5
a) 3sinx; б) -3sinx; в) 2cosx + 4; г) -3sinx + 5
41. Найти производную функции xlog2x
а) 1 + ; б) ; в) x + ; г) x + .
42. Найти точку (точки) экстремума функции у = 2х3-3х2.
а) ; б) x1 = 0, х2 =; в) x1= 0, х2=1; г) y1 = 0, у2 = - 1
43. Найти промежуток убывания функции у = -х2 + 4х- 3.
а) [2; + ∞); б) (-∞; 2]; в) [1; + ∞); г) (-∞; 1]
44. Найти все первообразные функции у = х6.
а) 6х5 + С; б) ; в) г)
45. Найти первообразную функции f(x) = sinx, если F
По теме: методические разработки, презентации и конспекты
ПМ 01, 02, 03, 04, 05 Рабочая программа по бух-учету, по налогам, для специальности 080110 и рабочие программы по налогам и бух-учету для специальности 080114 и программа экзаменов для ПМ 01 и 02
Рабочие программы:ПМ 01 -Документирование хозяйственных операций и ведение бухгвалтерского учета имущества организацииПМ 02-Ведение бухучета источников формирования имущества, выполнения работ по инве...
Рабочая программа курса химии 8 класс, разработанная на основе Примерной программы основного общего образования по химии (авторская рабочая программа)
Рабочая программа курса химии 8 класс,разработанная на основеПримерной программы основного общего образования по химии,Программы курса химии для 8-9 классовобщеобразовательных учреждений (а...
Рабочая программа по литературе для 6 класса (по программе В. Коровиной) Рабочая программа по литературе для 10 класса (по программе ]В. Коровиной)
Рабочая программа содержит пояснительную записку, тематическое планирование., описание планируемых результатов, форм и методов, которые использую на уроках. Даётся необходимый список литературы...
Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.
Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
Рабочая программа по русскому языку 5 класс Разумовская, рабочая программа по литературе 5 класс Меркин, рабочая программа по русскому языку 6 класс разумовская
рабочая программа по русскому языку по учебнику Разумовской, Львова. пояснительная записка, календарно-тематическое планирование; рабочая программа по литературе 5 класс автор Меркин. рабочая программ...
Рабочая программа по Биологии за 7 класс (УМК Сонина), Рабочая программа по Биологии для реализации детского технопарка Школьный кванториум, 5-9 классы, Рабочая программа по Биохимии.
Рабочая программа по биологии составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по биологи...