рабочие программы
рабочая программа по алгебре (7 класс) на тему

Нефедова Светлана Михайловна

рабочая программа

Скачать:


Предварительный просмотр:


Муниципальное бюджетное общеобразовательное учреждение

Парабельская гимназия

Рабочая программа

по алгебре

7 класс

(102 ч.)

                                      Составитель:

Нефедова Светлана Михайловна,

учитель математики

с. Парабель 2014г.

Пояснительная записка

Данная рабочая программа ориентирована на учащихся 7 класса и реализуется на основе следующих документов:

  1. Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 № ФЗ-273;
  2. Федерального компонента государственных образовательных стандартов основного общего образования
  3. Санитарно-эпидемиологические правила и нормативы СанПиН 2.4.2.2821-10 (постановление главного государственного санитарного врача РФ от 29.12.2010 г. № 189, зарегистрировано в Минюсте России 03.03.2011 г., регистрационный номер 19993);
  4. Примерной программы общеобразовательных учреждений по алгебре 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 22-26)

Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

  1. Программа соответствует учебнику Алгебра. 7 класс : учебник для общеобразоват. учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова ; под ред. С. А. Теляковского. – М. : Просвещение, 2010.

На преподавание алгебры в 7 классе  отведено 3 часа в неделю, всего 102 часа в год, из них на контрольные работы -8 часов.

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

        Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

        В курсе алгебры 7 класса систематизируются и обобщаются сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной; учащиеся знакомятся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида, действиями над степенями с натуральными показателями, формулами сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители, со способами решения систем линейных уравнений с двумя переменными, вырабатывается умение решать системы уравнений и применять их при решении текстовых задач.

Изучение алгебры на ступени основного общего образования направлено на достижение следующих целей:

  • продолжить овладевать системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • продолжить формировать представление об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • продолжить воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

        

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

        Содержание тем учебного курса

Глава 1. Выражения, тождества, уравнения - 18 часов

        Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений.

Цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥ и ≤, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=b при различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Ознакомление обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.

Глава 2. Функции - 12 часов

        Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.

        Цель: ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке обучающихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у обучающихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу. Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у=кх, где к0, как зависит от значений к и b взаимное расположение графиков двух функций вида у=кх+b.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

Глава 3. Степень с натуральным показателем - 13 часов

        Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3 и их графики.

        Цель: выработать умение выполнять действия над степенями с натуральными показателями.

        В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с натуральным показателем: На примере доказательства свойств аm · аn = аm+n;  аm : аn = аm-n, где m > n; (аm)n = аm·n; (ab)m = ambm учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.

        Рассмотрение функций у=х2, у=х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции у=х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

        Умение строить графики функций у=х2 и у=х3 используется для ознакомления обучающихся с графическим способом решения уравнений.

Глава 4. Многочлены - 18 часов

        Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

        Цель: выработать умение выполнять сложе ние, вычитание, умножение многочленов и разложение многочленов на множители.  

        Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

Глава 5. Формулы сокращенного умножения - 18 часов

Формулы (а - b )(а + b ) = а2 - b 2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2 b + За b2 ± b3,  (а ± b) (а2  а b + b2) = а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.

Цель: выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b)(а + b) = а2 - b 2, (а ± b)2 = а2± 2а b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево». Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) (а2  а b + b2) = а3 ± b3. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

Глава 6. Системы линейных уравнений - 13 часов

Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

Цель: ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

Формируется умение строить график уравнения ах + bу=с, где а≠0 или b≠0, при различных значениях а, b, с. Введение графических образов даёт возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

 Повторение - 10 часов

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.

Учебно – тематический план

 

содержание учебного материала

Кол-во часов

по рабочей программе

1.

Выражения. Тождества. Уравнения  

18

2.

Функции   

12

3.

Степень с натуральным показателем 

13

4.

Многочлены   

18

5.

Формулы сокращенного умножения

18

6.

Системы линейных уравнений

13

5.

Повторение   

10

 

Итого:

 102

 

Требования к уровню подготовки обучающихся в 7 классе

        В ходе преподавания алгебры в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса алгебры 7 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • составлять буквенные выражения и формулы по условиям задач, осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с натуральным показателем, с многочленами; выполнять тождественные преобразования целых выражений; выполнять разложение многочленов на множители;
  • решать линейные уравнения и уравнения, сводящиеся к ним, системы двух линейных уравнений,
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой
  • определять координаты точки плоскости, строить точки с заданными координатами;
  • находить значение функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • описывать свойства изученных функций (y = kx + b, y = kx, y = x2, y = x3) и строить их графики.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчётов по формулам, составления формул, выражающих зависимость между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследование построенных моделей с использованием аппарата алгебры; описания зависимости между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами.

Формы и средства контроля.

  1. Для проведения контрольных работ  используется: «Рубежный контроль по математике 5-9 классы», - М. Чистые пруды, 2006. Библиотечка «Первого сентября», Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2011.

Промежуточная аттестация проводится в форме тестов, математических диктантов, проверочных и самостоятельных работ. Выявление итоговых результатов изучения темы завершается контрольной работой. Контрольные работы составляются с учетом обязательных результатов обучения.

Уровень обучения базовый

Тема контрольной работы

Дата

1.

Числовые выражения  

22.09

2.

Уравнения   

08.10

3.

Функции  

12.11

4.

Степень с натуральным показателем  

11.12

5.

Многочлены

16.02

6.

Формулы сокращенного умножения

13.04

7.

Системы линейных уравнений

04.05

8.

Итоговая   

26.05

Критерии и нормы оценивания знаний обучающихся по математике.

Для поддержания интереса к обучению и созданию благоприятных и комфортных условий для развития и восстановления эмоционально-личностной сферы обучающихся осуществляется контроль устных и письменных работ по учебным предметам по изменённой шкале оценивания.

Критерии и нормы оценки знаний, умений и навыков обучающихся:

Текущий контроль усвоения материала осуществляется путем устного/письменного опроса. Периодически знания и умения по пройденным темам проверяются письменными контрольными или тестовых заданиями.

 При тестировании все верные ответы берутся за 100%, тогда отметка выставляется в соответствии с таблицей: Процент выполнения задания/Отметка 
95% и более - отлично 
80-94%% - хорошо 
66-79%% - удовлетворительно  

 1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;
  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  •  допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
  • незнание наименований единиц измерения;
  • неумение выделить в ответе главное;
  • неумение применять знания, алгоритмы для решения задач;
  • неумение делать выводы и обобщения;
  • неумение читать и строить графики;
  • неумение пользоваться первоисточниками, учебником и справочниками;
  • потеря корня или сохранение постороннего корня;
  • отбрасывание без объяснений одного из них;
  • равнозначные им ошибки;
  • вычислительные ошибки, если они не являются опиской;
  • логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
  • неточность графика;
  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
  • нерациональные методы работы со справочной и другой литературой;
  • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  • нерациональные приемы вычислений и преобразований;
  • небрежное выполнение записей, чертежей, схем, графиков.

Примерное тематическое планирование по алгебре в 7 классе

3 часа в неделю, всего 102 часа

№ пункта

Содержание материала

Кол часов

Календ сроки

Приме чание

Глава 1

Выражения. Тождества. Уравнения.

18

1

Числовые выражения

1

01.09

2

Алгебраические выражения

1

03.09

3

Алгебраические равенства. Формулы.

2

04.09-08.09

4

Свойства арифметических действий

 2

10.09-11.09

5

Правила раскрытия скобок

3

15.09-18.09

Контрольная работа №1

1

22.09

6

Уравнения и его корни

1

24.09

7

Решение уравнений с одним неизвестным, сводящихся к линейным

2

25.09-29.09

8

Решения задач с помощью уравнений

2

30.09-01.10

9-11

Статистические характеристики

2

02.10-06.10

Контрольная работа № 2

1

08.10

Глава 2

Функции

12

12-13

Функция

2

09.10-13.10

14

График функции

2

15.10-16.10

15

Прямая пропорциональность

4

20.10-27.10

16-17

Линейная функция

3

29.10-10.11

Контрольная работа № 3

1

12.11

Глава 3

Степень с натуральным показателем

13

18

Определение степени с натуральным показателем

1

13.11

19

Умножение и деление степеней

2

17.11-19.11

20

Возведение в степень произведения и степени

2

20.11-24.11

21

Одночлен и его стандартный вид

2

26.11-27.11

22

Умножение одночленов

3

01.12-04.12

23-24

Функции у=х2 и у=х3 и их графики

2

08.12-10.12

Контрольная работа № 4

1

11.12

Глава 4

Многочлены

18

25

Многочлен и его стандартный вид

1

15.12

26

Сложение и вычитание многочленов

2

17.12-18.12

27

Умножение одночлена на многочлен

2

22.12-24.12

28

Вынесение общего множителя за скобки

2

25.12-

29

Умножение многочлена на многочлен

4

30

Разложение многочлена на множители способом группировки

4

31

Деление с остатком

2

Контрольная работа № 5

1

Глава 5

Формулы сокращенного умножения

18

32

Возведение в квадрат и в куб суммы и разности двух выражений

4

33

Квадрат суммы и квадрат разности

3

34

Умножение разности двух выражений на их сумму

2

35

Разложение разности квадратов на множители

2

36

Разложение на множители суммы и разности кубов

2

37-39

Преобразование  целых выражений

4

Контрольная работа № 6

1

Глава 6

Системы линейных уравнений

13

40

Линейное уравнение с двумя переменными

1

41

График линейного уравнения с двумя переменными

2

42

Системы линейных уравнений с двумя переменными

2

43

Способ подстановки

2

44

Способ сложения

2

45

Решение задач с помощью систем уравнений

2

46

Линейные неравенства с двумя переменными и их системы

1

Контрольная работа № 7

1

Итоговое повторение курса математики

7

Итоговая контрольная работа

1

Резерв

2

Литература и средства обучения:

  1. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000.
  2. Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2004 – 2011.
  3. Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..— М.: Просвещение, 2005—2011.
  4. Уроки алгебры в 7 классе: кн. для учите ля / В. И. Жохов, Л. Б. Крайнева. — М.: Просвещение,  2005— 2011.
  5. Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвеще ние, 2007—2011.
  6. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение, 2001 -2011г.

Дополнительная литература:

  1. Я иду на урок математики: 7 класс: Книга для учителя. – М.: Издательство «1 сентября», 2000;
  2. Алгебра. 7  класс: поурочные планы по учебнику Ю.Н. Макарычева и др. / авт.-сост. Л.А Топилина, Т.Л. Афанасьева. – Волгоград: Учитель, 2006;
  3. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;
  4. В.И.Жохов, Л.Б.Крайнева Уроки алгебры в 7 классе-  М.: «Вербум - М», 2000;
  5. Н.П.Кострикина Задачи повышенной трудности в курсе алгебры 7-9 классов -  М : Просвещение», 1991;
  6. Нестандартные уроки алгебры. 8 класс. Сост. Ким Н.А. – Волгоград: ИТД «Корифей», 2006;
  7. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл. / Л.В. Кузнецова, С.В. Суворова, Е.А. Бунимович и др. – М.: Просвещение, 2004;
  8. ЕГЭ Математика 9 класс. Экспериментальная экзаменационная работа. Типовые тестовые задания / Т.В. Колесникова, С.С. Минаева. – М.: Издательство «Экзамен», 2007;
  9. А.Г. Мордкович, П.В.Семенов События. Вероятности. Статистическая обработка данных. 7-9 классы. – М.: «Мнемозина»,2003;
  10. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2005.
  11. Сборник заданий для подготовки к итоговой аттестации в 9 классе/ Л.В.Кузнецова и др.– М.: Просвещение, 2006.

Используется учебно-методический комплект:

  1. Макарычев, Ю. Н. Алгебра. 7 класс : учебник для общеобразоват. учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова ; под ред. С. А. Теляковского. – М. : Просвещение, 2010.
  2. Жохов, В. И. Уроки алгебры в 7 классе : кн. для учителя / В. И. Жохов, Г. Д. Карташева. – М. : Просвещение, 2009.
  3. Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..— М.: Просвещение, 2005—2011.
  4. Уроки алгебры в 7 классе: кн. для учите ля / В. И. Жохов, Л. Б. Крайнева. — М.: Просвещение,  2005— 2011.
  5. Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2011.
  6. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 -2011.

Учебно-методический комплекс ученика:

  1. Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2004 – 2011.
  2. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 -2011.



Предварительный просмотр:


Муниципальное бюджетное общеобразовательное учреждение

Парабельская гимназия

Рабочая программа

по алгебре

7 класс

(102 ч.)

                                      Составитель:

Нефедова Светлана Михайловна,

учитель математики

с. Парабель 2014г.

Пояснительная записка

Данная рабочая программа ориентирована на учащихся 7 класса и реализуется на основе следующих документов:

  1. Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 № ФЗ-273;
  2. Федерального компонента государственных образовательных стандартов основного общего образования
  3. Санитарно-эпидемиологические правила и нормативы СанПиН 2.4.2.2821-10 (постановление главного государственного санитарного врача РФ от 29.12.2010 г. № 189, зарегистрировано в Минюсте России 03.03.2011 г., регистрационный номер 19993);

Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

  1. Программа соответствует учебнику Алгебра 7 класс : учебник для 7 класса / Э. Г. Гельфман, Л. Н. Демидова и др.  – М. : БИНОМ. Лаборатория знаний, 2013.

На преподавание алгебры в 7 классе  отведено 3 часа в неделю, всего 102 часа в год, из них на контрольные работы – 11 часов.

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

        Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

        В курсе алгебры 7 класса систематизируются и обобщаются сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной; действиями над степенями с натуральными показателями, формулами сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители, со способами решения систем линейных уравнений с двумя переменными, вырабатывается умение решать системы уравнений и применять их при решении текстовых задач.

Изучение алгебры на ступени основного общего образования направлено на достижение следующих целей:

  • продолжить овладевать системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • продолжить формировать представление об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • продолжить воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

        

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно-ориентированное обучение, обучение с применением опорных схем, ИКТ.

        Содержание тем учебного курса

Глава 1. От арифметики к алгебре -  8 часов

        Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений.

Цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥ и ≤, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=b при различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Ознакомление обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.

Глава 2. Степени с натуральным показателем - 6 часов

        Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3 и их графики.

        Цель: выработать умение выполнять действия над степенями с натуральными показателями.

        В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с натуральным показателем: На примере доказательства свойств аm · аn = аm+n;  аm : аn = аm-n, где m > n; (аm)n = аm·n; (ab)m = ambm учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.

        Рассмотрение функций у=х2, у=х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции у=х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

        Умение строить графики функций у=х2 и у=х3 используется для ознакомления обучающихся с графическим способом решения уравнений.

Глава 3. Одночлены -  6 часов

        Одночлен. Сложение, вычитание и умножение одночленов.

        Цель: выработать умение выполнять сложе ние, вычитание, умножение одночленов.  

        Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий одночлена, стандартного вида одночлена, степени одночлена. Основное место в этой теме занимают алгоритмы действий с одночленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение одночленов всегда можно представить в виде одночлена. Действия сложения, вычитания и умножения одночленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

Глава 4. Многочлены - 10 часов

        Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

        Цель: выработать умение выполнять сложе ние, вычитание, умножение многочленов и разложение многочленов на множители.  

        Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

Глава 5. Формулы сокращенного умножения - 10 часов

Формулы (а - b )(а + b ) = а2 - b 2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2 b + За b2 ± b3,  (а ± b) (а2  а b + b2) = а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.

Цель: выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b)(а + b) = а2 - b 2, (а ± b)2 = а2± 2а b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево». Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) (а2  а b + b2) = а3 ± b3. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

Глава 6. Деление многочленов - 6 часов

Многочлен. Деление многочленов.

        Цель: выработать умение выполнять деление.  

        Данная тема играет важную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — деление. Действие деление многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений.

Глава 7. Тождества, уравнения - 8 часов

Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений.

Цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥ и ≤, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=b при различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Ознакомление обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.

Глава 8. Алгебраические дроби - 10 часов

Понятие алгебраической дроби (алгебраическая дробь как частное числителя и знаменателя). Основное свойство обыкновенной дроби. Сокращение дробей и приведение их к новому знаменателю. Правило умножения алгебраических дробей. Особые случаи умножения рациональных чисел. Переместительный и сочетательный законы умножения на множестве рациональных чисел. Правило деления алгебраических дробей. Особые случаи деления рациональных чисел.

Сложение и вычитание алгебраических дробей с одинаковыми и разными знаменателями. Различные случаи сложения рациональных чисел. Распределительный закон умножения относительно сложения на множестве рациональных чисел.

Глава 9. Операции с алгебраическими дробями - 8 часов

Правило умножения алгебраических дробей. Особые случаи умножения рациональных чисел. Переместительный и сочетательный законы умножения на множестве рациональных чисел. Правило деления алгебраических дробей. Особые случаи деления рациональных чисел.

Сложение и вычитание алгебраических дробей с одинаковыми и разными знаменателями. Различные случаи сложения рациональных чисел. Распределительный закон умножения относительно сложения на множестве рациональных чисел.

Глава 10. Степени с целым показателем - 6 часов

Степень с целыым показателем и ее свойства.

Цель: выработать умение выполнять действия над степенями с целыми показателями.

В данной теме дается определение степени с целым показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с целым показателем: На примере доказательства свойств аm · аn = аm+n;  аm : аn = аm-n, где m > n; (аm)n = аm·n; (ab)m = ambm учащиеся знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с целым показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.

Глава 11. Рациональные алгебраические выражения - 8 часов

Правило умножения алгебраических дробей. Особые случаи умножения рациональных чисел. Переместительный и сочетательный законы умножения на множестве рациональных чисел. Правило деления алгебраических дробей. Особые случаи деления рациональных чисел.

Сложение и вычитание алгебраических дробей с одинаковыми и разными знаменателями. Различные случаи сложения рациональных чисел. Распределительный закон умножения относительно сложения на множестве рациональных чисел.

Глава 12. Знакомство с теорией вероятностей и комбинаторикой - 6 часов

Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочерёдный и одновременны выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев: вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применение вероятностных методов. Случайные величины. Центральные тенденции. Меры разброса. Решение практических задач по теме «Статистика».

 Цель: формирование представлений о научных, логических, комбинаторных методах решения математических задач; формирование умения анализировать, находить различные способы решения одной и той же задачи, делать выводы; развитие комбинаторно-логического мышления; формирование представления о теории вероятности, о понятиях: вероятность, испытание, событие (невозможное и достоверное), вероятность событий, объединение и пересечение событий, следствие события, независимость событий;  формирование умения вычислять вероятность событий, определять несовместные и противоположные события; овладение умением выполнения основных операций над событиями; овладение навыками решения практических задач с применением вероятностных методов;

 Повторение - 10 часов

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.

Учебно – тематический план

 

содержание учебного материала

Кол-во часов

по рабочей программе

1.

От арифметики к алгебре  

8

2.

Степени с натуральным показателем  

6

3.

Одночлены  

6

4.

Многочлены   

10

5.

Формулы сокращенного умножения

10

6.

Деление многочленов

6

7.

Тождества, уравнения

8

8.

Алгебраические дроби

10

9.

Операции с алгебраическими дробями

8

10.

Степени с целым показателем

6

11.

Рациональные алгебраические выражения

8

12.

Знакомство с теорией вероятностей и комбинаторикой

6

13.

Повторение   

10

 

Итого:

 102

 

Требования к уровню подготовки обучающихся в 7 классе

        В ходе преподавания алгебры в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса алгебры 7 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • составлять буквенные выражения и формулы по условиям задач, осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с натуральным показателем, с многочленами; выполнять тождественные преобразования целых выражений; выполнять разложение многочленов на множители;
  • решать линейные уравнения и уравнения, сводящиеся к ним, системы двух линейных уравнений,
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой
  • определять координаты точки плоскости, строить точки с заданными координатами;
  • находить значение функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • описывать свойства изученных функций (y = kx + b, y = kx, y = x2, y = x3) и строить их графики.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчётов по формулам, составления формул, выражающих зависимость между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследование построенных моделей с использованием аппарата алгебры; описания зависимости между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами.

Формы и средства контроля.

  1. Для проведения контрольных работ  используется: «Рубежный контроль по математике 5-9 классы», - М. Чистые пруды, 2006. Библиотечка «Первого сентября», Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2011.

Промежуточная аттестация проводится в форме тестов, математических диктантов, проверочных и самостоятельных работ. Выявление итоговых результатов изучения темы завершается контрольной работой. Контрольные работы составляются с учетом обязательных результатов обучения.

Уровень обучения базовый

Тема контрольной работы

Дата

1.

Алгебраические операции  

2.

Одночлены

3.

Многочлены  

4.

Формулы сокращенного умножения  

5.

Тождества. Уравнения.

6.

Алгебраические дроби

7.

Действия с алгебраическими дробями

8.

Степени с целыми показателями

9.

Рациональные выражения

10.

Теория вероятности

11.

Итоговая   

26.05

Критерии и нормы оценивания знаний обучающихся по математике.

Для поддержания интереса к обучению и созданию благоприятных и комфортных условий для развития и восстановления эмоционально-личностной сферы обучающихся осуществляется контроль устных и письменных работ по учебным предметам по изменённой шкале оценивания.

Критерии и нормы оценки знаний, умений и навыков обучающихся:

Текущий контроль усвоения материала осуществляется путем устного/письменного опроса. Периодически знания и умения по пройденным темам проверяются письменными контрольными или тестовых заданиями.

 При тестировании все верные ответы берутся за 100%, тогда отметка выставляется в соответствии с таблицей: Процент выполнения задания/Отметка 
95% и более - отлично 
80-94%% - хорошо 
66-79%% - удовлетворительно  

 1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;
  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  •  допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
  • незнание наименований единиц измерения;
  • неумение выделить в ответе главное;
  • неумение применять знания, алгоритмы для решения задач;
  • неумение делать выводы и обобщения;
  • неумение читать и строить графики;
  • неумение пользоваться первоисточниками, учебником и справочниками;
  • потеря корня или сохранение постороннего корня;
  • отбрасывание без объяснений одного из них;
  • равнозначные им ошибки;
  • вычислительные ошибки, если они не являются опиской;
  • логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
  • неточность графика;
  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
  • нерациональные методы работы со справочной и другой литературой;
  • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  • нерациональные приемы вычислений и преобразований;
  • небрежное выполнение записей, чертежей, схем, графиков.

Примерное тематическое планирование по алгебре в 7 классе

3 часа в неделю, всего 102 часа

№ пункта

Содержание материала

Кол часов

Календ сроки

Приме чание

Глава 1

От арифметики к алгебре

8

1

Решаем задачи с помощью алгебры

3

01.09-04.09

2

Знакомимся с алгебраическим языком

1

08.09

3

Составляем алгебраические выражения

4

10.09-17.09

Глава 2

Степени с натуральным показателем

6

4-5

Знакомимся со степенями

1

18.09

6

Операции со степенями

4

22.09-29.09

Контрольная работа № 1

1

01.10

Глава 3

Одночлены

6

7

Знакомство с одночленами

1

02.10

8

Умножаем одночлены

4

06.10-13.10

Контрольная работа № 2

1

15.10

Глава 4

Многочлены

10

9-10

Знакомимся с многочленами

1

16.10

11

Скложение и вычитание многочленов

2

20.10-22.10

12

Умножение многочленов

2

23.10-27.10

13

Разложение многочленов на множители

3

29.10-03.11

14

Целые алгебраические выражения

1

12.11

Контрольная работа №3

1

13.11

Глава 5

Формулы сокращенного умножения

10

15

Формулы квадрата суммы и квадрата разности

1

17.11

16

Формула полного квадрата

2

19.11-20.11

17

Формулы куба суммы и куба разности

1

24.11

18

Формула произведения суммы двух выражений и их разности

2

26.11-27.11

19

Формула разности квадрата

1

01.12

20

Формулы суммы кубов и разности кубов

1

03.12

21-22

Разложение многочленов на множители

1

04.12

Контрольная работа № 4

1

08.12

Глава 6

Деление многочленов

6

23

Деление многочленов

1

10.12

24

Деление одночлена на одночлен

1

11.12

25

Деление многочлена на одночлен

1

15.12

26

Деление многочлена на многочлен

2

17.12-18.12

Контрольная работа № 5

1

22.12

Глава 7

Тождества. Уравнения.

8

27

Доказательство тождеств

1

24.12

28

Уравнения

2

25.12-

29

Линейные уравнения

2

30

Решение задач с помощью уравнений

2

Контрольная работа № 6

1

Глава 8

Алгебраические дроби

10

31-32

Алгебраические дроби

1

33

Свойства алгебраических дробей

2

34

Преобразование алгебраические дроби

6

Глава 9

Операции с алгебраическими дробями

8

35

Сложение и вычитание алгебраических дробей

4

36

Умножение и деление алгебраических дробей

4

Контрольная работа № 7

1

Глава 10

Степени с целым показателем

6

37

Знакомство со степенями

2

38

Действия со степенями

3

Контрольная работа № 8

1

Глава 11

Рациональные алгебраические выражения

6

39

Рациональные выражения

2

40

Упрощение рациональных выражений

3

Контрольная работа № 9

1

Глава 12

Знакомство с теорией вероятностей и комбинаторикой

6

41

Эксперимент  

1

42

Случайные события

1

43-44

Вероятность случайного события

1

45

Определение вероятности случайного события

1

46

Элементы комбинаторики

1

Контрольная работа № 10

1

Итоговое повторение курса математики

9

Итоговая контрольная работа

1

Литература и средства обучения:

  1. Федеральный компонент государственных образовательных стандартов  основного общего  образования (приказ Минобрнауки от 05.03.2004г. № 1089).
  2. Временные требования к минимуму содержания основного общего образования (утверждены приказом МО РФ от 19.05.98 № 1236).
  3. Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263)
  4. Примерная программа общеобразовательных учреждений по алгебре 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 22-26)
  5. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000.
  6. Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2004 – 2011.
  7. Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..— М.: Просвещение, 2005—2011.
  8. Уроки алгебры в 7 классе: кн. для учите ля / В. И. Жохов, Л. Б. Крайнева. — М.: Просвещение,  2005— 2011.
  9. Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвеще ние, 2007—2011.
  10. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение, 2001 -2011г.

Дополнительная литература:

  1. Я иду на урок математики: 7 класс: Книга для учителя. – М.: Издательство «1 сентября», 2000;
  2. Алгебра. 7  класс: поурочные планы по учебнику Ю.Н. Макарычева и др. / авт.-сост. Л.А Топилина, Т.Л. Афанасьева. – Волгоград: Учитель, 2006;
  3. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;
  4. В.И.Жохов, Л.Б.Крайнева Уроки алгебры в 7 классе-  М.: «Вербум - М», 2000;
  5. Н.П.Кострикина Задачи повышенной трудности в курсе алгебры 7-9 классов -  М : Просвещение», 1991;
  6. Нестандартные уроки алгебры. 8 класс. Сост. Ким Н.А. – Волгоград: ИТД «Корифей», 2006;
  7. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл. / Л.В. Кузнецова, С.В. Суворова, Е.А. Бунимович и др. – М.: Просвещение, 2004;
  8. ЕГЭ Математика 9 класс. Экспериментальная экзаменационная работа. Типовые тестовые задания / Т.В. Колесникова, С.С. Минаева. – М.: Издательство «Экзамен», 2007;
  9. А.Г. Мордкович, П.В.Семенов События. Вероятности. Статистическая обработка данных. 7-9 классы. – М.: «Мнемозина»,2003;
  10. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2005.
  11. Сборник заданий для подготовки к итоговой аттестации в 9 классе/ Л.В.Кузнецова и др.– М.: Просвещение, 2006.

Используется учебно-методический комплект:

  1. Макарычев, Ю. Н. Алгебра. 7 класс : учебник для общеобразоват. учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова ; под ред. С. А. Теляковского. – М. : Просвещение, 2010.
  2. Миндюк, М. Б. Алгебра : рабочая тетрадь для 7 класса / М. Б. Миндюк, Н. Г. Миндюк. – М. : Издательский дом «Генжер», 2009.
  3. Жохов, В. И. Уроки алгебры в 7 классе : кн. для учителя / В. И. Жохов, Г. Д. Карташева. – М. : Просвещение, 2009.
  4. Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..— М.: Просвещение, 2005—2011.
  5. Уроки алгебры в 7 классе: кн. для учите ля / В. И. Жохов, Л. Б. Крайнева. — М.: Просвещение,  2005— 2011.
  6. Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2011.
  7. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 -2011.

Учебно-методический комплекс ученика:

  1. Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2004 – 2011.
  2. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 -2011.



Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

Парабельская гимназия

Рабочая программа (для обучающихся с ОВЗ)

по алгебре

7 класс

(68 ч.)

                                      Составитель:

Нефедова Светлана Михайловна,

учитель математики

с. Парабель 2014г.

Пояснительная записка

Данная рабочая программа по математике для 7 класса разработана на основе следующих документов:

  1. Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 № ФЗ-273;
  2. Федерального компонента государственных образовательных стандартов основного общего образования
  3. Санитарно-эпидемиологические правила и нормативы СанПиН 2.4.2.2821-10 (постановление главного государственного санитарного врача РФ от 29.12.2010 г. № 189, зарегистрировано в Минюсте России 03.03.2011 г., регистрационный номер 19993);

Программа ориентирована на учебники:

  1. Алгебра. 7 класс : учебник для общеобразоват. учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова ; под ред. С. А. Теляковского. – М. : Просвещение, 2010.

Адаптированная рабочая программа составлена для обучающихся с ОВЗ. Учащиеся получают цензовое образование, сопоставимое по уровню их академического компонента с образованием здоровых сверстников, находясь в их среде и в те же календарные сроки. Обязательным условием освоения первого варианта стандарта является систематическая специальная психолого-педагогическая поддержка - создание адекватных условий для реализации особых образовательных потребностей, включая помощь в формировании полноценной жизненной компетенции.

Выбор примерной программы мотивирован тем, что она

- соответствует стандарту основного общего образования по математике, социальному заказу родителей;

- построена с учетом принципов системности, научности и доступности, а также преемственности и перспективности между различными разделами курса;

- обеспечивает условия для реализации практической направленности, учитывает возрастную психологию учащегося;

- сохраняя единое образовательное пространство, предоставляет широкие возможности для реализации.

В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.

Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Учащиеся овладевают приемами аналитико-синтетической деятельности при решении задач. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения.

Цель и задачи обучения предмету

Изучение математики в 7 классе направлено на достижение следующих целей:

1. в направлении личностного развития:

• формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

• развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

• формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

• воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

• формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

2. В метапредметном направлении:

• развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

• формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

3. В предметном направлении:

• овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Преобразование геометрических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Образовательные и воспитательные задачи обучения математики должны решаться комплексно с учетом возрастных особенностей учащихся, специфики математики как учебного

предмета, определяющего её роль и место в общей системе школьного обучения и воспитания.

Ценностные ориентиры содержания учебного материала

Математическое образование играет важную роль как в практической, так и духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная – с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира:

пространственные формы и количественные отношения - от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических

измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является

непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И, наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач – основной учебной деятельности на уроках математики – развиваются творческая

и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, отбирать наиболее подходящие языковые (в том числе символические и графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения прикладных задач.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как о части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Педагогические технологии, средства обучения (в том числе электронные), используемые в работе для достижения требуемых результатов обучения:

• традиционное обучение;

• активное обучение (сотрудничество, элементы контекстного подхода, индивидуализация обучения);

• уровневая дифференциация;

• здоровьесберегающие технологии;

Методы и формы обучения: проблемные задания, упражнения, практикумы, работа с алгоритмами, работа с таблицей, проверочные, контрольные работы, работа с учебником, работа с опорным материалом, работа со справочной литературой, тест.

Формы контроля:

• срезовые работы: входной контроль, промежуточный контроль, итоговый контроль;

• текущий контроль (письменные опросы): контрольные работы, тесты, самостоятельные работы;

Виды контроля:

• самоконтроль;

• контроль учителя.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 – 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде административной

контрольной работы.

Контрольные работы направлены на проверку уровня базовой подготовки учащихся.

Место учебного предмета «Алгебра» в учебном плане

Федеральный базисный учебный план на изучение математики в 7 классе отводит 2 учебных часа в неделю, всего 68 уроков. В связи с этим уменьшено количество часов на следующие темы: «Алгебраические выражения», «Одночлены и многочлены», «Разложение многочленов на множители».

Реализация программы достигается за счет уплотнения содержания материала каждого урока, что находит свое отражение в календарно-тематическом планировании, а также за счет тщательно отобранных форм, методов, приемов обучения.

Процесс обучения носит индивидуальный характер, что позволяет учащимся осваивать материал в нужном для них темпе и варьируемом объеме.

Срок реализации рабочей учебной программы – один учебный год.

Содержание тем учебного курса

Глава 1. Выражения, тождества, уравнения - 10 часов

        Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений.

Цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥ и ≤, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=b при различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Ознакомление обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.

Глава 2. Функции - 10 часов

        Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.

        Цель: ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке обучающихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у обучающихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу. Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у=кх, где к0, как зависит от значений к и b взаимное расположение графиков двух функций вида у=кх+b.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

Глава 3. Степень с натуральным показателем - 10 часов

        Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3 и их графики.

        Цель: выработать умение выполнять действия над степенями с натуральными показателями.

        В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с натуральным показателем: На примере доказательства свойств аm · аn = аm+n;  аm : аn = аm-n, где m > n; (аm)n = аm·n; (ab)m = ambm учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.

        Рассмотрение функций у=х2, у=х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции у=х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

        Умение строить графики функций у=х2 и у=х3 используется для ознакомления обучающихся с графическим способом решения уравнений.

Глава 4. Многочлены - 10 часов

        Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

        Цель: выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.  

        Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

Глава 5. Формулы сокращенного умножения - 10 часов

Формулы (а - b )(а + b ) = а2 - b 2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2 b + За b2 ± b3,  (а ± b) (а2  а b + b2) = а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.

Цель: выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b)(а + b) = а2 - b 2, (а ± b)2 = а2± 2а b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево». Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) (а2  а b + b2) = а3 ± b3. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

Глава 6. Системы линейных уравнений - 7 часов

Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

Цель: ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

Формируется умение строить график уравнения ах + bу=с, где а≠0 или b≠0, при различных значениях а, b, с. Введение графических образов даёт возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

 Повторение - 7 часов

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.

Учебный план

содержание учебного материала

Кол-во часов

по рабочей программе

1.

Выражения. Тождества. Уравнения  

10

2.

Функции   

10

3.

Степень с натуральным показателем 

10

4.

Многочлены   

10

5.

Формулы сокращенного умножения

10

6.

Системы линейных уравнений

7

5.

Повторение   

7

 

Итого:

 68

Требования к результатам обучения и освоению содержания курса

Изучение математики в 7 классе дает возможность учащимся достичь следующих результатов развития

в личностном направлении:

• умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, приводить примеры;

• умение распознавать логически некорректные высказывания;

• представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

• инициатива, находчивость, активность при решении математических задач;

• умение контролировать процесс и результат учебной математической деятельности;

• способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

в метапредметном направлении:

• первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

• умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации;

• понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

• умение ставить цели, выбирать алгоритмы для решения учебных математических проблем;

в предметном направлении:

использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

• натуральных, целых, рациональных числах;

• степени с натуральным показателем и ее свойствах;

• одночленах и правилах действий с ними;

• многочленах и правилах действий с ними;

• формулах сокращенного умножения;

• линейных уравнений с одним неизвестным и методах их решений;

• системах двух линейных уравнений с двумя неизвестными и методах их решения;

• алгебраической дроби; основном свойстве дроби;

• правилах действий с алгебраическими дробями;

• функциях,  их свойствах и графиках;

Выполнять действия с одночленами и многочленами;

узнавать в выражениях формулы сокращённого умножения и применять их;

раскладывать многочлены на множители;

выполнять тождественные преобразования целых алгебраических выражений;

доказывать простейшие тождества;

решать

• линейные уравнения с одной неизвестной;

• системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;

• текстовые задачи с помощью линейных уравнений и систем;

Сокращать алгебраические дроби;

выполнять арифметические действия с алгебраическими дробями;

строить графики функций, и использовать их свойства при решении задач;

находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

Предмет математика включает две математических дисциплины: алгебру и геометрию. Программа предполагает синхронно-параллельное изучение разделов.

Формы и средства контроля.

Для проведения контрольных работ  используется: «Рубежный контроль по математике 5-9 классы», - М. Чистые пруды, 2006. Библиотечка «Первого сентября», Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2011.

Промежуточная аттестация проводится в форме тестов, математических диктантов, проверочных и самостоятельных работ. Выявление итоговых результатов изучения темы завершается контрольной работой. Контрольные работы составляются с учетом обязательных результатов обучения.

Уровень обучения базовый

Тема контрольной работы

Дата

1.

Уравнения   

04.10

2.

Функции  

17.11

3.

Степень с натуральным показателем  

22.12

4.

Многочлены

09.02

5.

Формулы сокращенного умножения

16.03

6.

Системы линейных уравнений

20.04

7.

Итоговая   

23.05

Критерии и нормы оценивания знаний обучающихся по алгебре

Для поддержания интереса к обучению и созданию благоприятных и комфортных условий для развития и восстановления эмоционально-личностной сферы обучающихся осуществляется контроль устных и письменных работ по учебным предметам по изменённой шкале оценивания. Так в вышеуказанных документах, применительно к классам СКК 7 вида, рекомендуется не применять при оценивании знаний обучающихся отметку «2», так как это влияет на мотивацию в изучении данного предмета, а так же является преодолением негативных особенностей эмоционально-личностной сферы, совершенствование  учебной деятельности обучающихся с задержкой психического развития, повышением их работоспособности, активизацией познавательной деятельности.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  •  допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
  • незнание наименований единиц измерения;
  • неумение выделить в ответе главное;
  • неумение применять знания, алгоритмы для решения задач;
  • неумение делать выводы и обобщения;
  • неумение читать и строить графики;
  • неумение пользоваться первоисточниками, учебником и справочниками;
  • потеря корня или сохранение постороннего корня;
  • отбрасывание без объяснений одного из них;
  • равнозначные им ошибки;
  • вычислительные ошибки, если они не являются опиской;
  • логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
  • неточность графика;
  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
  • нерациональные методы работы со справочной и другой литературой;
  • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  • нерациональные приемы вычислений и преобразований;
  • небрежное выполнение записей, чертежей, схем, графиков.

Примерное тематическое планирование по алгебре в 7 классе

2 часа в неделю, всего 68 часа

№ пункта

Содержание материала

Кол часов

Календ сроки

Приме чание

Глава 1

Выражения. Тождества. Уравнения.

10

1

Числовые выражения

1

01.09

2

Алгебраические выражения

1

06.09

3

Алгебраические равенства. Формулы.

1

08.09

5

Правила раскрытия скобок

2

13.09-15.09

6

Уравнения и его корни

1

20.09

7

Решение уравнений с одним неизвестным, сводящихся к линейным

1

22.09

8

Решения задач с помощью уравнений

2

27.09-29.09

Контрольная работа № 1

1

04.10

Глава 2

Функции

10

12-13

Функция

1

06.10

14

График функции

2

11.10-13.10

15

Прямая пропорциональность

3

18.10-25.10

16-17

Линейная функция

3

27.10-15.11

Контрольная работа № 2

1

17.11

Глава 3

Степень с натуральным показателем

10

18

Определение степени с натуральным показателем

1

22.11

19

Умножение и деление степеней

1

24.11

20

Возведение в степень произведения и степени

1

29.11

21

Одночлен и его стандартный вид

1

01.12

22

Умножение одночленов

3

06.12-13.12

23-24

Функции у=х2 и у=х3 и их графики

2

15.12-20.12

Контрольная работа № 3

1

22.12

Глава 4

Многочлены

10

25

Многочлен и его стандартный вид

1

27.12

26

Сложение и вычитание многочленов

2

27

Умножение одночлена на многочлен

2

28

Вынесение общего множителя за скобки

2

29

Умножение многочлена на многочлен

2

Контрольная работа № 4

1

Глава 5

Формулы сокращенного умножения

10

32

Возведение в квадрат и в куб суммы и разности двух выражений

3

33

Квадрат суммы и квадрат разности

2

34

Умножение разности двух выражений на их сумму

1

35

Разложение разности квадратов на множители

1

36

Разложение на множители суммы и разности кубов

1

37-39

Преобразование  целых выражений

1

Контрольная работа № 5

1

Глава 6

Системы линейных уравнений

7

40

Линейное уравнение с двумя переменными

1

41

График линейного уравнения с двумя переменными

1

42

Системы линейных уравнений с двумя переменными

1

43

Способ подстановки

1

44

Способ сложения

1

45

Решение задач с помощью систем уравнений

1

Контрольная работа № 6

1

Итоговое повторение курса математики

7

Итоговая контрольная работа

1

Литература и средства обучения:

1. Примерные программы по учебным предметам. «Стандарты второго поколения. Математика 5 – 9 класс» – М.: Просвещение, 2011 г.

2. Программы общеобразовательных учреждений. Алгебра 7 – 9 классы Составитель: Бурмистрова Т. А. - М.: Просвещение, 2011

3. Алгебра. 7 класс : учебник для общеобразоват. учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова ; под ред. С. А. Теляковского. – М. : Просвещение, 2010.

4. Ткачева М. В. Элементы статистики и вероятность: учеб. Пособие для 7-9 кл./ М. В. Ткачева, Н. Е. Федорова. – М.: Просвещение, 2011

5. Алгебра.7 класс. Рабочая тетрадь в 2-х частях./ Ю.М. Колягин, М. В. Ткачёва, Н. Е.

Фёдорова, М. И. Шабунин – М.: Просвещение, 2011.

Методические пособия:

1.  Алгебра. 7 класс. Тематические тесты. Промежуточная аттестация / Под редакцией Ф. Ф. Лысенко, С. Ю. Кулабухова. – Ростов-на-Дону: Легион-М,2011.

2. Звавич Л.И. Дидактические материалы по алгебре 7 класса/ Л. И. Звавич, Л. В. Кузнецова, С.Б. Суворова - М.: Просвещение,2009.



Предварительный просмотр:


Муниципальное бюджетное общеобразовательное учреждение

Парабельская гимназия

Адаптированная рабочая программа

по алгебре

7 класс

(102 ч.)

                                      Составитель:

Нефедова Светлана Михайловна,

учитель математики

с. Парабель 2014г.

Пояснительная записка

Данная рабочая программа ориентирована на учащихся 7 класса и реализуется на основе следующих документов:

  1. Федеральный государственный образовательный стандарт основного общего образования.
  2. Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 № ФЗ-273;
  3. Санитарно-эпидемиологические правила и нормативы СанПиН 2.4.2.2821-10 (постановление главного государственного санитарного врача РФ от 29.12.2010 г. № 189, зарегистрировано в Минюсте России 03.03.2011 г., регистрационный номер 19993);

Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

  1. Программа соответствует учебнику Алгебра. 7 класс : учебник для общеобразоват. учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова ; под ред. С. А. Теляковского. – М. : Просвещение, 2010.

На преподавание алгебры в 7 классе  отведено 3 часа в неделю, всего 102 часа в год, из них на контрольные работы -8 часов.

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

        Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

        В курсе алгебры 7 класса систематизируются и обобщаются сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной; учащиеся знакомятся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида, действиями над степенями с натуральными показателями, формулами сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители, со способами решения систем линейных уравнений с двумя переменными, вырабатывается умение решать системы уравнений и применять их при решении текстовых задач.

Изучение алгебры на ступени основного общего образования направлено на достижение следующих целей:

  • продолжить овладевать системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • продолжить формировать представление об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • продолжить воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

        

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

Данная программа адаптирована под обучающихся 7 вида. Уменьшено количество часов на темы: «Степень с натуральным показателем», так как не изучаются функции у=х2 и у=х3; «Формулы сокращенного умножения», так как необходимо отработать умение пользоваться формулами и не обязательно знать формулы наизусть (допускается использование справочного материала). Количество сокращенных часов идёт на повторение ранее изученных тем.

Важнейшей особенностью содержания курса алгебры является его практическая направленность, обеспечивающая доступность и прочность усвоения основ математических знаний учащихся. При этом некоторые математические понятия вводятся ознакомительно в процессе решения конкретных практических задач. Это относится к темам: «Формулы», «Доказательство тождеств», «Линейное уравнение с двумя неизвестными». В результате появляется возможность добавить время на изучение сложных тем: «Решение уравнений», «Решение задач с помощью уравнений».

        Содержание тем учебного курса

Глава 1. Выражения, тождества, уравнения - 18 часов

        Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений.

Цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥ и ≤, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=b при различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Ознакомление обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.

Глава 2. Функции - 12 часов

        Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.

        Цель: ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке обучающихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у обучающихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу. Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у=кх, где к0, как зависит от значений к и b взаимное расположение графиков двух функций вида у=кх+b.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

Глава 3. Степень с натуральным показателем – 8+5 часов

        Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3 и их графики.

        Цель: выработать умение выполнять действия над степенями с натуральными показателями.

        В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с натуральным показателем: На примере доказательства свойств аm · аn = аm+n;  аm : аn = аm-n, где m > n; (аm)n = аm·n; (ab)m = ambm учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.

        Рассмотрение функций у=х2, у=х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции у=х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

        Умение строить графики функций у=х2 и у=х3 используется для ознакомления обучающихся с графическим способом решения уравнений.

Глава 4. Многочлены - 18 часов

        Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

        Цель: выработать умение выполнять сложе ние, вычитание, умножение многочленов и разложение многочленов на множители.  

        Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

Глава 5. Формулы сокращенного умножения – 10+8 часов

Формулы (а - b )(а + b ) = а2 - b 2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2 b + За b2 ± b3,  (а ± b) (а2  а b + b2) = а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.

Цель: выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b)(а + b) = а2 - b 2, (а ± b)2 = а2± 2а b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево». Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) (а2  а b + b2) = а3 ± b3. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

Глава 6. Системы линейных уравнений – 10+3 часов

Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

Цель: ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

Формируется умение строить график уравнения ах + bу=с, где а≠0 или b≠0, при различных значениях а, b, с. Введение графических образов даёт возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

 Повторение - 10 часов

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.

Учебно – тематический план

 

содержание учебного материала

Кол-во часов

по рабочей программе

1.

Выражения. Тождества. Уравнения  

18

2.

Функции   

12

3.

Степень с натуральным показателем 

8+5

4.

Многочлены   

18

5.

Формулы сокращенного умножения

10+8

6.

Системы линейных уравнений

10+3

5.

Повторение   

10

 

Итого:

 102

 

Требования к уровню подготовки обучающихся в 7 классе

        В ходе преподавания алгебры в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • осуществления алгоритмической деятельности;
  • решения разнообразных классов задач из различных разделов курса;
  • ясного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), перехода с одного языка на другой для иллюстрации.

В результате изучения курса алгебры 7 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами;

уметь

  • составлять буквенные выражения и формулы по условиям задач, осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с натуральным показателем, с многочленами; выполнять тождественные преобразования целых выражений; выполнять разложение многочленов на множители;
  • решать линейные уравнения и уравнения, сводящиеся к ним;
  • решать текстовые задачи алгебраическим методом;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами;
  • находить значение функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • описывать свойства изученных функций (y = kx + b, y = kx) и строить их графики.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчётов по формулам, составления формул, выражающих зависимость между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций; описания зависимости между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами.

Формы и средства контроля.

  1. Для проведения контрольных работ  используется: «Самостоятельные и контрольные работы», - М. ИЛЕКСА, 2013. Авторы А. П. Ершова, В. В. Голобородько и др.

Промежуточная аттестация проводится в форме тестов, математических диктантов, проверочных и самостоятельных работ. Выявление итоговых результатов изучения темы завершается контрольной работой. Контрольные работы составляются с учетом обязательных результатов обучения.

Тема контрольной работы

Дата

1.

Числовые выражения  

22.09

2.

Уравнения   

08.10

3.

Функции  

12.11

4.

Степень с натуральным показателем  

11.12

5.

Многочлены

16.02

6.

Формулы сокращенного умножения

13.04

7.

Системы линейных уравнений

04.05

8.

Итоговая   

26.05

Критерии и нормы оценивания знаний обучающихся по математике.

Для поддержания интереса к обучению и созданию благоприятных и комфортных условий для развития и восстановления эмоционально-личностной сферы обучающихся осуществляется контроль устных и письменных работ по учебным предметам по изменённой шкале оценивания.

Критерии и нормы оценки знаний, умений и навыков обучающихся:

Текущий контроль усвоения материала осуществляется путем устного/письменного опроса. Периодически знания и умения по пройденным темам проверяются письменными контрольными или тестовых заданиями.

 При тестировании все верные ответы берутся за 100%, тогда отметка выставляется в соответствии с таблицей: Процент выполнения задания/Отметка 
75% и более - отлично 
55-74%% - хорошо 
40-54%% - удовлетворительно  

 1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;
  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  •  допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
  • незнание наименований единиц измерения;
  • неумение применять знания, алгоритмы для решения задач;
  • неумение читать и строить графики;
  • неумение пользоваться первоисточниками, учебником и справочниками;
  • потеря корня или сохранение постороннего корня;
  • отбрасывание без объяснений одного из них;
  • равнозначные им ошибки;
  • вычислительные ошибки, если они не являются опиской;
  • логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
  • неточность графика;
  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
  • нерациональные методы работы со справочной и другой литературой;
  • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  • нерациональные приемы вычислений и преобразований;
  • небрежное выполнение записей, чертежей, схем, графиков.

Примерное тематическое планирование по алгебре в 7 классе

3 часа в неделю, всего 102 часа

№ пункта

Содержание материала

Кол часов

Календ сроки

Приме чание

Глава 1

Выражения. Тождества. Уравнения.

18

1

Числовые выражения

1

01.09

2

Алгебраические выражения

1

03.09

3

Алгебраические равенства. Формулы.

2

04.09-08.09

4

Свойства арифметических действий

 2

10.09-11.09

5

Правила раскрытия скобок

3

15.09-18.09

Контрольная работа №1

1

22.09

6

Уравнения и его корни

1

24.09

7

Решение уравнений с одним неизвестным, сводящихся к линейным

2

25.09-29.09

8

Решения задач с помощью уравнений

2

30.09-01.10

9-11

Статистические характеристики

2

02.10-06.10

Контрольная работа № 2

1

08.10

Глава 2

Функции

12

12-13

Функция

2

09.10-13.10

14

График функции

2

15.10-16.10

15

Прямая пропорциональность

4

20.10-27.10

16-17

Линейная функция

3

29.10-10.11

Контрольная работа № 3

1

12.11

Глава 3

Степень с натуральным показателем

8+5

18

Определение степени с натуральным показателем

1

13.11

19

Умножение и деление степеней

2

17.11-19.11

20

Возведение в степень произведения и степени

2

20.11-24.11

21

Одночлен и его стандартный вид

2

26.11-27.11

22

Умножение одночленов

5

01.12-10.12

Контрольная работа № 4

1

11.12

Глава 4

Многочлены

18

25

Многочлен и его стандартный вид

1

15.12

26

Сложение и вычитание многочленов

2

17.12-18.12

27

Умножение одночлена на многочлен

2

22.12-24.12

28

Вынесение общего множителя за скобки

2

25.12-

29

Умножение многочлена на многочлен

4

30

Разложение многочлена на множители способом группировки

4

31

Деление с остатком

2

Контрольная работа № 5

1

Глава 5

Формулы сокращенного умножения

10+8

32

Возведение в квадрат и в куб суммы и разности двух выражений

4

33

Квадрат суммы и квадрат разности

3

34

Умножение разности двух выражений на их сумму

2

35

Разложение разности квадратов на множители

2

36

Разложение на множители суммы и разности кубов

2

37-39

Преобразование  целых выражений

4

Контрольная работа № 6

1

Глава 6

Системы линейных уравнений

10+3

40

Линейное уравнение с двумя переменными

1

41

График линейного уравнения с двумя переменными

2

42

Системы линейных уравнений с двумя переменными

2

43

Способ подстановки

2

44

Способ сложения

2

45

Решение задач с помощью систем уравнений

2

46

Линейные неравенства с двумя переменными и их системы

1

Контрольная работа № 7

1

Итоговое повторение курса математики

7

Итоговая контрольная работа

1

Резерв

2

 

Литература и средства обучения:

  1. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000.
  2. Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2004 – 2011.
  3. Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..— М.: Просвещение, 2005—2011.
  4. Уроки алгебры в 7 классе: кн. для учите ля / В. И. Жохов, Л. Б. Крайнева. — М.: Просвещение,  2005— 2011.
  5. Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвеще ние, 2007—2011.
  6. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение, 2001 -2011г.

Дополнительная литература:

  1. Я иду на урок математики: 7 класс: Книга для учителя. – М.: Издательство «1 сентября», 2000;
  2. Алгебра. 7  класс: поурочные планы по учебнику Ю.Н. Макарычева и др. / авт.-сост. Л.А Топилина, Т.Л. Афанасьева. – Волгоград: Учитель, 2006;
  3. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;
  4. В.И.Жохов, Л.Б.Крайнева Уроки алгебры в 7 классе-  М.: «Вербум - М», 2000;
  5. Н.П.Кострикина Задачи повышенной трудности в курсе алгебры 7-9 классов -  М : Просвещение», 1991;
  6. Нестандартные уроки алгебры. 8 класс. Сост. Ким Н.А. – Волгоград: ИТД «Корифей», 2006;
  7. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл. / Л.В. Кузнецова, С.В. Суворова, Е.А. Бунимович и др. – М.: Просвещение, 2004;
  8. ЕГЭ Математика 9 класс. Экспериментальная экзаменационная работа. Типовые тестовые задания / Т.В. Колесникова, С.С. Минаева. – М.: Издательство «Экзамен», 2007;
  9. А.Г. Мордкович, П.В.Семенов События. Вероятности. Статистическая обработка данных. 7-9 классы. – М.: «Мнемозина»,2003;
  10. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2005.
  11. Сборник заданий для подготовки к итоговой аттестации в 9 классе/ Л.В.Кузнецова и др.– М.: Просвещение, 2006.

Используется учебно-методический комплект:

  • Макарычев, Ю. Н. Алгебра. 7 класс : учебник для общеобразоват. учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова ; под ред. С. А. Теляковского. – М. : Просвещение, 2010.
  • Миндюк, М. Б. Алгебра : рабочая тетрадь для 7 класса / М. Б. Миндюк, Н. Г. Миндюк. – М. : Издательский дом «Генжер», 2009.
  • Жохов, В. И. Уроки алгебры в 7 классе : кн. для учителя / В. И. Жохов, Г. Д. Карташева. – М. : Просвещение, 2009.
  • Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..— М.: Просвещение, 2005—2011.
  • Уроки алгебры в 7 классе: кн. для учите ля / В. И. Жохов, Л. Б. Крайнева. — М.: Просвещение,  2005— 2011.
  • Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2011.
  • Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 -2011.

Учебно-методический комплекс ученика:

  1. Алгебра-7:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2004 – 2011.
  2. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 -2011.


По теме: методические разработки, презентации и конспекты

ПМ 01, 02, 03, 04, 05 Рабочая программа по бух-учету, по налогам, для специальности 080110 и рабочие программы по налогам и бух-учету для специальности 080114 и программа экзаменов для ПМ 01 и 02

Рабочие программы:ПМ 01 -Документирование хозяйственных операций и ведение бухгвалтерского учета имущества организацииПМ 02-Ведение бухучета источников формирования имущества, выполнения работ по инве...

Рабочая программа курса химии 8 класс, разработанная на основе Примерной программы основного общего образования по химии (авторская рабочая программа)

Рабочая программа курса химии 8 класс,разработанная на основеПримерной программы основного общего образования по химии,Программы курса химии для 8-9 классовобщеобразовательных учреждений (а...

Рабочая программа по литературе для 6 класса (по программе В. Коровиной) Рабочая программа по литературе для 10 класса (по программе ]В. Коровиной)

Рабочая программа содержит пояснительную записку, тематическое планирование., описание планируемых результатов, форм и методов, которые использую на уроках. Даётся необходимый список литературы...

Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.

Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

Рабочая программа по русскому языку 5 класс Разумовская, рабочая программа по литературе 5 класс Меркин, рабочая программа по русскому языку 6 класс разумовская

рабочая программа по русскому языку по учебнику Разумовской, Львова. пояснительная записка, календарно-тематическое планирование; рабочая программа по литературе 5 класс автор Меркин. рабочая программ...

Рабочая программа по Биологии за 7 класс (УМК Сонина), Рабочая программа по Биологии для реализации детского технопарка Школьный кванториум, 5-9 классы, Рабочая программа по Биохимии.

Рабочая программа по биологии составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по биологи...