Брейн-ринг по математике для учащихся 8 класса (урок закрепление)
методическая разработка по алгебре (8 класс) по теме

Сидоренко Ирина Владимировна

Данный «Брейн-ринг» способствует, развитию познавательной активности учащихся, логического мышления, внимания, повышению интереса к изучению математики, углублению знаний по математике, расширению кругозора , помогает привлекать большее число учащихся к интересному  общению. 

Скачать:

ВложениеРазмер
Файл matematika.rar2.53 МБ

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №3 ГОРОДА ГЕОРГИЕВСКА

БРЕЙН-РИНГ

 по математике для учащихся 8 классов

                                                             

Подготовила: Сидоренко И.В.

                           учитель математики

                                                  МОУ СОШ № 3 города Георгиевска

                                2013-2014  учебный год

Назначение: Данный «Брейн-ринг» способствует, развитию познавательной активности учащихся, логического мышления, внимания, повышению интереса к изучению математики, углублению знаний по математике, расширению кругозора , помогает привлекать большее число учащихся к интересному  общению.

Цель мероприятия: Развить познавательную активности учащихся, , повысить интерес к изучению математики, расширить кругозор, логическое мышление, привлечь большее число учащихся к интересному отдыху и общению.

Анализ мероприятия:

При планировании данного мероприятия были поставлены следующие цели и задачи:

  1. Повышение интереса к изучению математики.
  2. Развитие познавательной активности учащихся.
  3. Развитие логического мышления, внимания, наблюдательности.
  4. Расширение кругозора.
  5. Углубление знаний по математике.
  6. Привлечение большего числа учащихся к интересному отдыху и общению.
  7. Развитие творческого потенциала учащихся.

Мероприятие проводится в форме «Брейн-ринга»  между двумя командами 8-х классов.

В игре участвуют команды по 4- 6 человек. Игра состоит из 7 туров.

1 тур «Эрудит».

       От каждой команды выходят по 2 человека и получают карточку с заданиями и карточки с ответами. Решив первое задание, игроки по сигналу ведущего показывают карточки с ответом. Если все ответы верные, то команда получает 5 «ключей», если 4 верных ответа – 4 «ключа», 3 ответа – 3 «ключа» и т.д.

Вопросы для первой  команды.

  1. Какое число делится без остатка на любое целое число, отличное от нуля? (0)
  2. Найдите число, 1\3 и 1\4 которого в сумме составляют 21. (36)
  3. Каждое из трех натуральных чисел разделили на их сумму; полученные числа сложили. Что получилось в итоге? (1)
  4. Стоимость книги 25 рублей и еще половина стоимости. Сколько стоит книга? (50)
  5.  Подряд выписаны 99 натуральных чисел:1,2,…99. Сколько раз в записи встречается цифра 5? (20)

Карточки с ответами: 19, 3, 20, 1, 36, 0; 50

Вопросы для второй команды.

1.  К однозначному числу приписали такую же цифру. Во сколько раз увеличилось это число? (11)

2. 60 листов бумаги имеют толщину 1 см. Какова толщина книги, если в ней 240 страниц? (2)

3. Три курицы за 3 дня снесли три яйца. Сколько яиц снесут 12 кур за 12 дней? (48)

  1. Чему равно частное, когда делимое и делитель равны между собой? (1)

5. Пять землекопов за 5 часов выкапывают 5 м канавы. Сколько землекопов за 100 ч выкопают 100 м канавы? (5)

Карточки с ответами: 4, 12, 100. 11, 2, 48. 50, 5

Вопросы для третьей команды.

  1. Бревно длиной 5 м нужно распилить на метровые чурки. Каждый распил занимает 1,5 мин. За сколько минут распилят бревно? (6)
  2. Двое очистили 400 картофелин: один чистил 3 штуки в минуту, второй-2; второй работал на 25 минут больше. Сколько времени работал каждый? (70), (95)
  3.  Изделие весит 89,4 г. Сколько тонн весит миллион таких вещей? (89,4)
  4.  Трое играли в шашки. Всего сыграно три партии. Сколько партий сыграл каждый? (2)
  5.  Число, равное отношению длины окружности к длине ее диаметра?(π)

   Карточки с ответами: 8940; 3; 6; 89,4; 2; 70; 95; π

 

Дополнительные вопросы:

  1. Первая женщина-математик. ( Гипатия)
  2.  Математик, проживший всего 20 лет, но обессмертивший свое имя. (Галуа)
  3.  Немецкий ученый, философ и лингвист, историк и биолог, дипломат и политик, математик и изобретатель. (Лейбниц)
  4.  Русский ученый, 19 лет был ректором Казанского университета, создатель неевклидовой геометрии. (Лобачевский)
  5.  Английский математик, больше известный своими физическими законами. (Ньютон)

Карточки с ответами: Понтрягин; Декарт; Галуа; Лейбниц; Лобачевский; Ньютон; Гипатия

2 тур «Наборщики»

Команды должны составить как можно больше слов из букв слова АРИФМЕТИКА. Оцениваются три первые команды. Команда, составившая большее количество слов, получает 3 «ключа», другая – 2«ключа», третья – 1 «ключ».

3 тур « С полуслова»

Участвуют по 1 человеку от команды. Они получают текст с определениями, теоремами, формулировки которых нужно закончить.

  1. В прямоугольнике диагонали …
  2. Арифметическим квадратным корнем из числа а называется …

  1. Трапеция-это четырехугольник, у которого …
  2. Квадратное уравнение называется приведенным, если …

 

  1. Трапеция-это четырехугольник, у которого …
  2.  Квадратное уравнение называется приведенным, если …

  1. В ромбе диагонали …
  2.  Решением неравенства с одной переменной называется …

  1. В прямоугольном треугольнике квадрат …
  2.  Корень из произведения равен …  

 

  1. Средней линией трапеции называется …
  2.  Стандартным видом числа а называют запись в виде …

 

  1. Параллелограмм- это четырехугольник, у которого …
  2.  Корень из дроби равен …

 

  1. Окружностью называется фигура, которая …
  2.  Множество рациональных чисел состоит из …

 

  1. У параллелограмма противолежащие …
  2.  Дискриминантом квадратного уравнения называется выражение …

  1. Преобразование одной фигуры в другую называется движением, если …
  2.  Сумма корней приведенного квадратного уравнения равна …, а произведение корней …

4 тур «Расшифруйте анаграмму»

Команда, расшифровавшая первой 4 данных слова, получает «ключ».

РЬБОД

КОЕТРНИЬУЛГ

ЛИЧОС

МАНЕДАИ

5 тур «Аукцион»

Команды по очереди называют математические термины, содержащие букву «п». Команда, которая не смогла назвать слово, проигрывает. Победившая команда получает «ключ».

6 тур «Да или нет»

Участвуют по одному представителю от команды. Ведущий поочередно задает вопросы в форме «Верно ли, что …». Представителям команд, которые отвечают на них «да», если согласны, и «нет», если не согласен.

Вопросы по геометрии:

1. Если четырехугольник – параллелограмм, то его противоположные стороны равны. (да)

2. Если диагонали четырехугольника точкой пересечения делятся пополам, то это параллелограмм. (да)

3. Если в параллелограмме один из углов равен 60°, то другой равен 130°. (нет)

4. Если средняя линия треугольника равна 4 см, то параллельная ей сторона равна 2 см. (нет)

5. Углы при основании равнобокой трапеции равны. (да)

6. Диагонали параллелограмма равны. (нет)

7. Катет, лежащий против угла 45°, равен половине гипотенузы. (нет)

8. Если четырехугольник-ромб, то его противоположные углы равны. (да)

9. Окружность называется описанной, если она касается всех его сторон. (нет)

Вопросы по алгебре:

1. Алгебра-это наука, занимающаяся изучением свойств чисел и их буквенными законами. (да)

2. Целые и дробные числа называются натуральными. (нет)

3. Значение буквы, при котором уравнение обращается в верное числовое  равенство, называется корнем уравнения. (да)

4. Решением системы неравенств с одной переменной называется значение переменной, при которой верно хотя бы одно из неравенств системы. (нет)

5. Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число, то получится верное неравенство. (нет)

6. Неравенства, имеющие одни и те же решения, называются равносильными. (да)

7. Если дискриминант меньше нуля, то квадратное уравнение имеет два корня. (нет)

8. Тождеством называется равенство, верное при всех допустимых значениях входящих в него переменных. (да)

9. Обратной пропорциональностью называется функция, которую можно задать формулой вида y=k \ x, где х - переменная, k – любое число. (нет)

7 тур «Разгадай ребусы»

Каждой команде предлагается решить ребус, за верно выполненное задание команда получает «ключ».

8 тур «Веселые нотки»

Каждой команде предлагается спеть песню, в которой есть числительные.        Команда, спевшая песню, получает «ключ»

В конце игры подводятся итоги, команда, набравшая большее количество «ключей» является победителем.


По теме: методические разработки, презентации и конспекты

Внеклассное мероприятие по истории. Брейн-ринг "Политическая раздробленность на Руси" 6 класс

Внеклассное мероприятие по истории. Брейн-ринг "Политическая раздробленность на Руси" 6 класс. Мероприятие подготовлено к предметной неделе. Участвуют команды параллели 6-х  классов....

Брейн-ринг по русскому языку для учащихся 5-6 классов.

Брейн-ринг по русскому языку "Держи нос по ветру, чтобы всё из рук не валилось". Методическая разработка опубликована в журнале "Игровая библиотека" № 3 / 2010....

Брейн –ринг по теме «Повелительное наклонение глагола» (Командный урок-объяснение нового материала в 6 классе)

Нетрадиционный урок изучения нового материала, проводится в виде игры брейн-ринг....

Брейн-ринг « В мире математики»

Внеклассное мероприятие по математике для учащихся 6 класса. Цель мероприятия: повысить интерес учащихся к математике, расширить их кругозор, развивать внимательность, память, логическое машление....

Брейн - ринг по музыкальной литературе для учащихся VI класса ДШИ: «Прогулки по России под музыку русских классиков»

Викторина по музыкальной литературе включает в себя список вопросов для двух команд,подборку фото и видео - материала для игры....

Методическая разработка внеклассного мероприятия по математике игра «Брейн- ринг» «Решение занимательных задач» для учащихся 5-6 класса

Игра «Брейн- ринг» по теме «Решение занимательных задач», представленная в данной методической  разработке, предназначена для учащихся 5-6 классов. Эту игру можно провести...

Обобщение опыта работы методического объединения по проведению литературного брейн-ринга как способа проверки знаний учащихся

На основе материалов Жирновой С. Ю., Чигиренкова В. А., Хаеровой Н. В., Стребличенко Е. А. Обобщение: Бусс Н. И....