Программа элективного курса. математические модели решения текстовых задач
элективный курс по алгебре (9 класс) по теме

Семесько Светлана Александровна

Программа элективного курса.

Скачать:


Предварительный просмотр:

Департамент образования и науки Кемеровской области

ГБУ ОШИ «Губернаторская женская гимназия-интернат»

«СОГЛАСОВАНО»

 Методист кафедры

естественнонаучных и

 математических дисциплин

 КРИПКиПРО

____________________

               Т.П. Трушкина

РАБОЧАЯ ПРОГРАММА

ПО ЭЛЕКТИВНОМУ КУРСУ

 

«Математические модели решения текстовых задач»

Для воспитанниц 10 классов

ГОУ «Губернаторская женская гимназия-интернат»

Составитель:

                    С.А.Семесько, учитель математики

ГБУ ОШИ «Губернаторская   женская    гимназия-интернат»

 Программа рассмотрена и утверждена

              на заседании педагогического совета

ГБУ ОШИ «Губернаторская женская

гимназия-интернат»

«___» _____________ 2011г.

Кемерово, 2011


Программа элективного курса "Математические модели решения текстовых задач"  

Пояснительная записка.

     Программа курса “Математические модели решения текстовых задач” предназначена для углубления знаний по математике и ознакомления с разными способами решения текстовых задач учащихся 10-х классов.

     Цель курса “Математические модели решения текстовых задач” – восполнить недостаток программы по математике за курс средней школы, ознакомить учащихся с геометрическим методом решения задач, выработать у них умения и навыки решать задачи алгебраическим методом.

Для реализации этой цели необходимо:

  • пополнить теоретические знания учащихся о текстовой задаче;
  • совершенствовать у обучающихся умения и навыки решать задачи, используя алгебраический метод;
  • сформировать навыки решения задач, используя геометрический метод;
  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для построения и исследования простейших математических моделей в курсе изучения физики, химии.

     Программа курса предполагает дальнейшее формирование ключевых компетенций– готовности учащихся использовать усвоенные знания, умения и способы деятельности в реальной жизни для решения практических задач. Исходя из задач преподавания курса “Математические модели решения текстовых задач” программа предусматривает формирование следующих умений и навыков:

  • выполнять анализ текстовых задач;
  • научиться применять различные способы решения задач
  • пользоваться справочной литературой

     Курс “Математические модели решения текстовых задач” составлен в соответствии с федеральным и национально-региональным компонентами государственного стандарта средней ступени.

     Курс “ Математические модели решения текстовых задач” связан как с математикой, так и с химией, физикой. Курс рассчитан на 34 часа. Изучение курса поможет учащимся получить представление о математике как универсальном языке науки, средстве моделирования явлений и процессов, а также овладение математическими знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин.

Учебно-тематический план курса

№ п/п

Раздел
Тема занятия

Количество
часов

Форма проведения

Образовательный продукт

лекция

практикум

1.

Текстовая задача и процесс ее решения

2

2

Конспект

2.

Алгебраический метод:

21

3

18

зачетная работа по решению задач

2.1

Задачи на движение

6

1

5

2.2

Задачи на работу

4

1

3

2.3

Задачи на концентрацию и процентное содержание

4

1

3

2.4

Задачи на проценты

4

4

2.5

Задачи на пропорциональное деление

2

2

2.6

Задачи с целочисленными неизвестными

1

1

3

Некоторые специальные виды задач

4

4

 

3.1

Задачи с альтернативным условием

1

1

 

3.2

Задачи, математические модели которых содержат неравенства

2

2

 

3.3

Задачи, в которых число неизвестных превышает число уравнений системы

1

1

 

4.

Геометрический метод

4

1

3

 

5.

Логические и практические методы

2

2

 

 

Обобщение

1

1

 

Презентация

 

ИТОГО

34

7

27

 

Содержание

     В разделе “Текстовая задача и процесс ее решения” вводится понятие “текстовой задачи”, рассматриваются классификация задач и методы решения. Особое внимание уделяется рассмотрению вопросов, раскрывающих этапы решения задачи и приемам их выполнения, а также моделированию в процессе решения текстовых задач.

     В разделе “Алгебраический метод” рассматриваются следующие виды задач: задачи на движение (на встречное движение, движение в одном направлении, движение в противоположных направлениях, движение по замкнутой траектории), задачи на работу, задачи на смеси и проценты, задачи на пропорциональное деление, задачи с целочисленными неизвестными. Решение задач алгебраическим методом не подчиняется какой-либо единой, достаточно универсальной схеме. Поэтому всякое указание, относящееся ко всем задачам, носит самый общий характер. Задачи, которые возникают при решении практических и теоретических вопросов, имеют свои индивидуальные особенности. Поэтому их исследование и решение носят самый разнообразный характер.

     В разделе “Некоторые специальные виды задач” рассматриваются задачи, в которых по условию невозможно однозначно построить математическую модель и приходится рассматривать все возможные случаи – это задачи с альтернативным условием; задачи, математические модели которых содержат неравенства, задачи, в которых число неизвестных превышает число уравнений системы.

     В разделе “Геометрический метод” рассматриваются текстовые задачи, которые можно решить, применив геометрический метод, математическая модель задачи в этом случае представляет собой либо диаграмму, либо график. Решение задач геометрическим методом осуществляется двумя приемами: конструктивным (графическим) и вычислительным (графико-вычислительным)

     В разделе “Логические и практические методы” рассматриваются задачи, которые можно решить либо используя строгие математические рассуждения, либо выполнив практические действия с предметами или их копиями, моделями.

Литература

  1. Демидова, Т.Е. Теория и практика решения текстовых задач. / Т.Е. Демидова, А.П.

Тонких. – М.: Просвещение, 2004.

  1. Бобровская, А.В. Текстовые задачи курса алгебры средней школы. / А.В. Бобровская. – М.: Илекса, 2002.
  2. Сканави, М.И. Сборник задач по математике для поступающих во втузы. Учебное пособие / М.И. Сканави.- М.: Просвещение, 1998.


По теме: методические разработки, презентации и конспекты

Элективный курс по математике "Решение текстовых задач"

данный элективный курс предназначен для учащихся 9 классов...

ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ «РЕШЕНИЕ ТЕКСТОВЫХ ЗАДАЧ»

Этот элективный курс позволяет сгладить противоречия, которые возникают при изучении данной темы в школе и в предлагаемых вариантах ЕГЭ. Он предназначен для предпрофильной подготовки учащихся 9-х кла...

Программа элективного курса "Математические методы решения физических задач"

Элективный курс "Математические методы решения физических задач" поможет в подготовке к ЕГЭ по физике и предназначен для учеников 11 класса....

Рабочая программа элективного курса по теме: «Решение текстовых задач».

Программа курса может быть эффективно использована в 8-9 классах с любой степенью подготовленности, способствовать развитию познавательных интересов, мышления учащихся, предоставить возможность оценит...

Элективный курс по теме "Решение текстовых задач" 10 класс

Данный курс состоит из занятий, включающих в себя задания из разделов математики и геометрии. В связи с изменением содержания ЕГЭ по математике в сторону практического применения математических знаний...

Рабочая программа Элективного курса «Практикум по решению текстовых задач» в 9 классе

Данный курс имеет общеобразовательный, межпредметный характер, освещает роль и место математики в современном мире. Всего на проведение занятий отводится 17 часов. На изучение методов решения типовых ...

Программа учебного курса «Практикум по решению текстовых задач» для 11 класса

Математика в наши дни проникает во все сферы жизни. Овладение практически любой профессией требует тех или иных знаний по математике. Особое значение в этом смысле имеет умение смоделировать математич...