Равносильность уравнений на множествах.
тест по алгебре (11 класс) на тему
Тематические тесты составлены в соответствии с учебником “Алгебра и начала анализа. 11 класс” С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин в двух вариантах одного уровня сложности. Предложенные тестовые задания развивают мышление обучаемых, так как от них требуется не только выбрать правильный ответ, но и серьезно проанализировать их. Тестовые задания могут быть использованы учителями для подготовки учащихся к ЕГЭ.
Скачать:
Вложение | Размер |
---|---|
test_11.doc | 279.5 КБ |
Предварительный просмотр:
Равносильность уравнений на множествах.
Предложенные тестовые задания развивают мышление обучаемых, так как от них требуется не только выбрать правильный ответ, но и серьезно проанализировать их.
Учащийся за определенное время определяет истинность или ложность заданных утверждений, составляя таблицу из «+» и «–» соответственно. Результаты тестирования могут сигнализировать учащемуся о пробелах в знаниях, о формальном усвоении данной темы, иногда о неумении оперативно распоряжаться известной информацией.
Такого рода тесты всегда вызывают повышенный интерес школьников. При составлении таких тестов обязательно используются типичные ошибки учащихся. Тесты этого типа кроме контролирующей функции, носят также и обучающий характер. Весьма полезно также поручать создание таких тестов самим учащимся, разумеется, после того, как они получат и оценят некоторый опыт по их выполнению.
Тест 1. Уравнения-следствия.
Поставьте знак « + », если утверждение верно, и знак « – », если оно неверно.
Вариант 1.
- Все корни исходного уравнения являются корнями его уравнения-следствия.
- Возведение в четную степень может привести к появлению корней, посторонних для исходного уравнения.
- Следствием уравнения является уравнение
- Следствием уравнения является уравнение
- Следствием уравнения является уравнение .
- Следствием уравнения 1 является уравнение .
- Следствием уравнения является уравнение =0.
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
Вариант 2.
- Уравнение-следствие может иметь корень, не являющийся корнем исходного уравнения.
- Если первое уравнение не имеет корней, то любое второе уравнение является его следствием.
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение.
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
- Следствием уравнения является уравнение .
Тест 2. Равносильность уравнений на множествах.
Поставьте знак «+», если утверждение верно, и знак «–», если оно неверно.
Вариант 1.
- На множестве всех действительных чисел можно переносить члены уравнения (с противоположными знаками) из одной части уравнения в другую.
- Применение правил умножения многочленов и формул сокращенного умножения многочленов приводит к уравнению, равносильному исходному на множестве всех действительных чисел.
- Потенцирование уравнения приводит к уравнению, равносильному исходному на множестве всех действительных чисел.
- Возведение уравнения в четную степень приводит к уравнению, равносильному исходному на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны при .
- Уравнения и равносильны при .
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны при .
- Уравнения и равносильны при .
- Уравнения и равносильны при
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны при .
Вариант 2.
- На множестве всех действительных чисел обе части уравнения можно умножать и делить на не равное нулю число.
- Возведение уравнения в нечетную степень приводит к уравнению, равносильному исходному на множестве всех действительных чисел.
- Логарифмирование уравнения приводит к уравнению, равносильному исходному на множестве всех действительных чисел.
- Приведение подобных членов приводит к уравнению, равносильному исходному на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны при
- Уравнения и равносильны при .
- Уравнения и равносильны при .
- Уравнения и равносильны при .
- Уравнения и равносильны при .
- Уравнения и равносильны на множестве всех действительных чисел.
- Уравнения и равносильны при .
По теме: методические разработки, презентации и конспекты
Урок + презентация "Равносильность уравнений" 11класс.
Урок, объяснение нового материала, составлен для учащихся 11 класса профильного уровня....
Конспект лекции для 10-11 классов по теме "Равносильность уравнений"
Старшим классам трудно освоить лекционную систему проведения занятий, поэтому в помощь учащимся составлен краткий конспект теоретического материала по теме "Равносильность уравнений"...
мастер-класс по математике в 11 классе по теме: «Равносильность уравнений и неравенств системам»
Мастер- класс в 11 классе по математике. предложенный на аттестацию на высшую категорию...
"Равносильность уравнений" в 11 классе
Урок по алгебре и началам анализа в 11 классе по теме " Равносильность уравнений".....
конспект урока "Равносильность уравнений (Логарифмические уравнения)"
урок с использованием ИКТ, в рамках подготовки к ЕГЭ по математике...
Уравнения и системы уравнений. Рациональные, иррациональные, показательные и тригонометрические уравнения и системы. Равносильность уравнений, неравенств, систем.
Уравнения и системы уравнений. Рациональные, иррациональные, показательные и тригонометрические уравнения и системы. Равносильность уравнений, неравенств, систем....