по решению прототипов В10 (по материалам открытого банка)
презентация к уроку по алгебре (11 класс) по теме
Подготовлено по материалам открытого банка задач ЕГЭ по математике.
Скачать:
Вложение | Размер |
---|---|
b10.pptx | 383.98 КБ |
Предварительный просмотр:
Подписи к слайдам:
Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Вероятность есть число, характеризующее степень возможности появления события. Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой Р (A) = m / n , где m - число элементарных исходов, благоприятствующих A ; n - число всех возможных элементарных исходов испытания.
Определение: Два события А и В называются независимыми , если появление одного из них не изменяет вероятности появления другого. Определения : События А и В называются зависимыми , если появление одного из них изменяет вероятность появления другого. Условной вероятностью Р А (В) называется вероятность события В, вычисленная в предположении, что событие А уже произошло. Пример : Вероятность их появления при испытании- из урны наудачу вынут один шар, одинакова и равна 1/2. Рассмотрим событие: первым вынут белый шар, т.е. происходит событие А, его вероятность 1/2, затем возвращается в урну и вторым вынимают черный шар, т.е. происходит событие В. Найдем вероятность события В в такой ситуации : Р(В)=2/4=1/2. Итак, появление события А не изменило появление события В. Теперь изменим условия: вынутый первым белый шар не будем возвращать в урну, тогда вероятность события В будет равна Р(В)=2/3, сравнивая результаты 1/2 и 2/3 можно сделать вывод, что появление события А изменило вероятность появления события В. Такие события называются зависимыми , а вероятность события В, в данном случае называется условной вероятностью и обозначается Р А (В), т.е. вероятность события В при условии, что А произошло.
Вероятность суммы двух событий . Теорема1 : Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: Р(А+В)=Р(А)+Р(В) . Теорема2 : Вероятность суммы двух совместных событий А и В равна сумме их вероятностей без вероятности их совместного появления, т.е . Р(А+В)=Р(А)+Р(В)-Р(АВ) . Вероятность произведения двух событий. Теорема1 : Вероятность произведения двух зависимых событий А и В равна произведению вероятности одного из них на условную вероятность другого, в предположении, что первое уже произошло, т.е. Р(АВ)= Р(А)Р А (В). Теорема2 : Вероятность произведения двух независимых событий А и В равна произведению их вероятностей Р(АВ)=Р(А)Р(В).
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых. Решение. Игральные кости – это кубики с 6 гранями. На первом кубике может выпасть 1, 2, 3, 4, 5 или 6 очков. Каждому варианту выпадения очков соответствует 6 вариантов выпадения очков на втором кубике. Т.е. всего различных вариантов 6×6 = 36. Варианты (исходы эксперимента) будут такие: 1; 1 1; 2 1; 3 1; 4 1; 5 1; 6 2; 1 2; 2 2; 3 2; 4 2; 5 2; 6 и т.д. .............................. 6; 1 6; 2 6; 3 6; 4 6; 5 6; 6 Подсчитаем количество исходов (вариантов), в которых сумма очков двух кубиков равна 8 . 2 ; 6 3; 5; 4; 4 5; 3 6; 2. Всего 5 вариантов. Найдем вероятность: 5/36 = 0,138 ≈ 0,14. Ответ: 0,14. 283457
В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых. Решение. На первом кубике может выпасть 1, 2, 3, 4, 5 или 6 очков. Каждому варианту выпадения очков соответствует 6 вариантов выпадения очков на втором кубике и 6 вариантов выпадения очков на третьем кубике Т.е. всего различных вариантов 6х6×6 = 216 . Варианты (исходы эксперимента) будут такие: 1;1 ;1 1; 1; 2 1; 1; 3 1; 1; 4 1; 1; 5 1; 1; 6 и т.д. .............................. 6; 6; 1 6; 6; 2 6; 6; 3 6; 6; 4 6; 6; 5 6; 6; 6 Подсчитаем количество исходов (вариантов), в которых сумма очков трех кубиков равна 4. 2 ;1 ; 1 1 ; 2; 1 1 ; 1; 2 Всего 3 вариант а . Найдем вероятность: 3/216 = 0,01388 … ≈ 0, 01 . Ответ: 0, 01 . 283455
В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз. Решение. Всего 4 варианта: о; о о ; р р ; р р ; о . Благоприятных 2: о; р и р ; о . Вероятность равна 2/4 = 1/2 = 0,5 . 28 3469 Ответ: 0,5.
В случайном эксперименте симметричную монету бросают три жды . Найдите вероятность того, что орел не выпадет ни разу. Решение. Всего 8 вариантов: р ; р ; р р ; р ; о р ; о ; р о ; р ; р р ; о ; о о ; р ; о о ; о ; р о ; о ; о Благоприятных 1 : р ; р ; р Вероятность равна 1 / 8 = 0, 125 . 28 34 73 Ответ: 0, 125 .
В случайном эксперименте симметричную монету бросают три жды . Найдите вероятность того, что орел не выпадет ни разу. Другой способ : Условие можно толковать так: какова вероятность, что все 3 раза выпадет решка. Вероятность того, что решка выпадет 1 раз равна 1/2, 2 раза равна 1/2⋅1/2=1/4, 3 раза равна 1/2⋅1/2⋅1/2=1/8, (1/2) 3 =1/8= 0,125 . 28 34 73 Ответ: 0, 125 .
В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные − из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая. Решение. Всего участвует 20 спортсменок, из которых 20 – 8 – 7 = 5 спортсменок из Китая. Вероятность того, что спортсменка, выступающая первой, окажется из Китая, равна 5/20 = 1/4 = 0,25. Ответ: 0,25. 282855
В среднем из 2 000 садовых насосов, поступивших в продажу, 20 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает. Решение: 2 000 – 20 = 1980 – насосов не подтекают. Вероятность того, что один случайно выбранный для контроля насос не подтекает, равна 1980 / 2 000 = 0,99. Ответ: 0,99. 28 3585
Решение: 1 20 + 9 = 1 29 – сумок всего (качественных и со скрытыми дефектами). Вероятность того, что купленная сумка окажется качественной, равна 1 20 /1 29 = 0, 93023… ≈ 0,93. Фабрика выпускает сумки. В среднем на 12 0 качественных сумок приходится 9 сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. Ответ: 0,93. 28 3633
В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 − из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции. Ответ: 0,36. 282858 Решение: Всего участвует 4 + 7 + 9 + 5 = 25 спортсменов. Вероятность того, что спортсмен, который выступает последним, окажется из Швеции, равна 9/25 = 36/100 = 0,36.
Научная конференция проводится в 5 дней. Всего запланировано 75 докладов − первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции? Ответ: 0,16. 285922 Решение: В последний день конференции запланировано (75 – 17 × 3) : 2 = 12 докладов. Вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 12/75 = 4/25 = 0,16.
Конкурс исполнителей проводится в 3 дня . Всего заявлено 40 выступлений − по одному от каждой страны. В первый день 18 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса? Ответ: 0,275 . 28603 9 Решение: В третий день конкурса запланировано (40 – 18 ) : 2 = 11 выступлений. Вероятность того, что выступление представителя России состоится в третий день конкурса, равна 11/40 = 0,275 .
На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России. Ответ: 0,3. 285924 Решение: Всего участвует 3 + 3 + 4 = 10 ученых. Вероятность того, что восьмым окажется доклад ученого из России, равна 3/10 = 0,3.
Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России? Ответ: 0,36. 285925 Решение: Нужно учесть, что Руслан Орлов должен играть с каким-либо бадминтонистом из России. И сам Руслан Орлов тоже из России. Вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна (10-1)/(26-1)= 9/25 = 36/100 = 0,36.
В сборнике билетов по хим ии всего 35 билетов, в 7 из них встречается вопрос по кислотам . Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопрос по кислотам . Ответ: 0,8. 286317 Решение: Вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопрос по ботанике, равна (35-7)/35 = 28/35 =4/5 = 0,8.
На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать прыгун из Парагвая. Ответ: 0,36. 285928 Решение: Всего участвует 25 спортсменов. Вероятность того, что шестым будет выступать прыгун из Парагвая, равна 9/25 = 36/100 = 0,36.
Используемые материалы ЕГЭ 2012. Математика. Задача В10. Теория вероятностей. Рабочая тетрадь / Под ред. А.Л. Семенова и И.В. Ященко.− М.: МЦНМО, 2012. − 48 с. http://mathege.ru/or/ege/Main.html − Материалы открытого банка заданий по математике 2013 года
По теме: методические разработки, презентации и конспекты
Контрольная работа по геометрии для 10 класса по материалам открытого банка ЕГЭ
Работа составлена в трех вариантах одинаковой сложности, каждый из которых включает 9 заданий из открытого банка ЕГЭ 2012 года по теме "Многогранники" (учебник Атанасяна). Данную работу можно использо...
Степень ( по материалам открытого банка ФИПИ)
Для подготовки к ОГЭ по математике в 9 классе можно ввести зачетную систему для проверки знаний по темам. Задания "Степень" - одна из таких тем....
Степень ( по материалам открытого банка ФИПИ)
Для подготовки к ОГЭ по математике в 9 классе можно ввести зачетную систему для проверки знаний по темам. Задания "Степень" - одна из таких тем....
Системы уравнений и неравенств ( по материалам открытого банка ФИПИ)
Материал для закрепления темы, а также для текущего и итогового повторения....
Упростить и найти значение выражения ( по материалам открытого банка ФИПИ)
Материал для повторения при подготовке к итоговой аттестации....
Презентация "Решение уравнений (задание №21 по материалам открытого банка задач ОГЭ по математике)"
Презентационный материал по теме "Решение уравнений" для обучающихся 9 классов. Может быть полезен на уроке при объяснении способов решения уравнений, систематизации знаний учащихся по...