Работа над текстовыми задачами в начальной школе
статья

Костина Оксана Юрьевна

  В процессе решения текстовых задач реализуются образовательные, воспитательные и развивающие цели. Решение задач способствует формированию у детей полноценных знаний, определяемых программой. Задачи дают возможность связать теорию с практикой, обучение с жизнью. Решение задач позволяет углубить и расширить представления детей о жизни, формирует у них практические умения (подсчитать стоимость покупки, ремонта квартиры).

Скачать:

ВложениеРазмер
Файл kostina.docx22.59 КБ

Предварительный просмотр:

Работа над текстовыми задачами в начальной школе

Решение текстовых задач традиционно представляет собой трудность для учащихся, причем это касается не только начальной, но и средней и старшей школы.
Сложности при выполнении этого вида учебной деятельности для сегодняшних школьников становятся еще более серьезными и распространенными в связи с возросшими проблемами, касающимися  освоения навыков чтения, понимания и смыслового анализа  текста.

Даже та небольшая статистика, которая собиралась по этому вопросу, показывает, что у значительного процента школьников не сформировано умение читать и понимать текст одновременно. Понятно, что дефицит такого качества чтения делает весьма затруднительным выбор структурированной информации и поиск нужной стратегии при решении, сформулированной в  виде сюжетного смыслового текста учебной задачи.

Математику любят в основном те ученики, которые умеют решать задачи. Следовательно, научить детей владеть умением решения задачи, мы окажем существенное влияние на их интерес к предмету, на развитие мышления и речи.

Первоначальные математические знания усваиваются детьми в определенной, приспособленной к их пониманию. Первоначальные математические знания усваиваются детьми в определенной, приспособленной к их пониманию системе, в которой отдельные положения логически связаны одно с другим, вытекают одно из другого. При сознательном усвоении математических знаний учащиеся пользуются основными операциями мышления в доступном для них виде: анализом и синтезом, сравнением, абстрагированием и конкретизацией, обобщением; ученики делают индуктивные выводы, проводят дедуктивные рассуждения. Сознательное усвоение учащимися математических знаний развивает математическое мышление учащихся. Овладение мыслительными операциями в свою очередь помогает учащимся успешнее усваивать новые знания.

  В процессе решения текстовых задач реализуются образовательные, воспитательные и развивающие цели. Решение задач способствует формированию у детей полноценных знаний, определяемых программой. Задачи дают возможность связать теорию с практикой, обучение с жизнью. Решение задач позволяет углубить и расширить представления детей о жизни, формирует у них практические умения (подсчитать стоимость покупки, ремонта квартиры).

Через решение задач дети знакомятся с важными в познавательном и воспитательном отношении фактами. Содержание многих задач отражает труд детей и взрослых, достижения в области науки, техники, культуры.

Процесс решения задач оказывает положительное влияние на умственное развитие детей.

Поэтому важно, чтобы учитель имел глубокое представление о текстовой задаче, о ее структуре, умел решать задачи различными способами.

Начальный курс математики раскрывается на системе целесообразно подобранных задач. Значительное место занимает в этой системе текстовые задачи. Понятие задача относится к числу общенаучных. В начальном курсе математики понятие задача используется тогда, когда идет речь об арифметических задачах, сформулированных в виде текста. Такие задачи называются «текстовыми».

Текстовая задача — есть описание некоторой ситуации на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между её компонентами или определить вид этого отношения.

Решение задач — это работа несколько необычная, а именно умственная работа. А чтобы научиться какой-либо работе, нужно предварительно хорошо изучить тот материал, над которым придётся работать, те инструменты, с помощью которых выполняется эта работа.

Значит, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.

Каждая задача — это единство условия и цели. Если нет одного из этих компонентов, то нет и задачи. Это очень важно иметь в виду, чтобы проводить анализ текста задачи с соблюдением такого единства. Это означает, что анализ условия задачи необходимо соотносить с вопросом задачи и, наоборот, вопрос задачи анализировать направленно с условием. Их нельзя разрывать, так как они составляют одно целое.

Математическая задача — это связанный лаконический рассказ, в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ними определенными соотношениями, указанными в условии.

Любая текстовая задача состоит из двух частей: условия и требования (вопроса).

В условии соблюдаются сведения об объектах и некоторых величинах, характеризующих данные объекта, об известных и неизвестных значениях этих величин, об отношениях между ними.

Требования задачи — это указание того, что нужно найти. Оно может быть выражено предложением в повелительной или вопросительной форме («Найти площадь треугольника; или «Чему равна площадь прямоугольника?»).

Иногда задачи формируются таким образом, что часть условия или всё условие включено в одно предложение с требованием задачи.

В реальной жизни довольно часто возникают самые разнообразные задачные ситуации. Сформулированные на их основе задачи могут содержать избыточную информацию, то есть такую, которая не нужна для выполнения требования задачи.

На основе возникающих в жизни задачных ситуаций могут быть сформулированы и задачи, в которых недостаточно информации для выполнения требований. Так в задаче: «Найти длину и ширину участка прямоугольной формы, если известно, что длина больше ширины на 3 метра» — недостаточно данных для ответа на её вопрос. Чтобы выполнить эту задачу, необходимо её дополнить недостающими данными.

Одна и та же задача может рассматриваться как задача с достаточным числом данных в зависимости от имеющихся и решающих значений.

Рассматривая задачу в узком смысле этого понятия, в ней можно выделить следующие составные элементы:

  1. Словесное изложение сюжета, в котором явно или в завуалированной форме указана функциональная зависимость между величинами, числовые значения которых входят в задачу.
  2. Числовые значения величин или числовые данные, о которых говорится в тексте задачи.
  3. Задание, обычно сформулированное в виде вопроса, в котором предлагается узнать неизвестные значения одной или нескольких величин. Эти значения называют искомыми.

Задачи и решение их занимают в обучении школьников весьма существенное место и по времени, и по их влиянию на умственное развитие ребенка.

Понимая роль задачи и её место в обучении и воспитании ученика, учитель должен подходить к подбору задачи и выбору способов решения обоснованно и чётко знать, что должна дать ученику работа при решении данной им задачи.

Все арифметические задачи по числу действий, выполняемых для их решения, делятся на простые и составные. Задача, для решения которой надо выполнить один раз арифметическое действие, называется простой. Задача, для решения которой надо выполнить несколько действий называется составной.

Простые задачи в системе обучения математике играют чрезвычайно важную роль. С помощью решения простых задач формируется одно из центральных понятий начального курса математики — понятие об арифметических действиях и ряд других понятий. Умение решать простые задачи является подготовительной ступенью овладения учащимися умением решать составные задачи, так как решение составной задачи сводится к решению ряда простых задач. При решении простых задач происходит первое знакомство с задачей и её составными частями.

В связи с решением простых задач дети овладевают основными приемами работы над задачей.

На первом этапе знакомства детей с простой задачей перед учителем возникает одновременно несколько довольно сложных проблем:

  1. Нужно, чтобы в сознание детей вошли и укрепились вторичные сигналы к определенным понятиям, связанным с задачей;
  2. Выработать умение видеть в задаче данные числа и искомое число;
  3. Научить сознательно выбирать действия и определять компоненты этих действий. Разрешение указанных проблем нельзя расположить в определенной последовательности. В занятиях с детьми довольно часто приходится добиваться результатов не одного за другим, а идти к достижению нескольких целей одновременно, постепенно развивая и расширяя достигнутые успехи в нескольких направлениях.

При знакомстве с задачами и их решением нельзя избежать специфических терминов, но дети должны их понимать, чтобы осознавать смысл задачи. Работа с детьми по усвоению ими терминологии начинается с первых дней занятий в школе и ведётся систематически на протяжении всех лет обучения.

Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению её на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.

В решении составной задачи появилось существенно новое сравнительно с решением простой задачи: здесь устанавливается не одна связь, а несколько, в соответствии с которым вырабатываются арифметические действия. Поэтому проводится специальная работа по ознакомлению детей с составной задачей, а также по формированию у них умений решать составные задачи.

Общепризнанно, что для выработки у учащихся умения решать задачи, важна всесторонняя работа над одной задачей, в частности, и решение её различными способами.

Следует отметить, что решение задач различными способами позволяет убедиться в правильности решения задачи даёт возможность глубже раскрыть зависимости между величинами, рассмотренными в задаче.

Возможность решения некоторых задач разными способами основана на различных свойствах действий или вытекающих из них правил.

При решении задач различными способами ученик привлекает дополнительную информацию, поскольку он непроизвольно выполняет в большем числе выборы суждений, хода мысли из нескольких возможных; рассматривается один и тот же вопрос с разных точек зрения. При этом полнее используется активность учащихся, прочнее и сознательнее запоминается материал. Как правило, различными способами решается те из задач, где этого требует вопрос, поэтому такая работа носит эпизодический характер.

В качестве основных в математике различают арифметический и алгебраический способы решения задач. При арифметическом способе ответ на вопрос задачи находится в результате выполнения арифметических действий над числами. Арифметические способы решения задач отличаются друг от друга одним или несколькими действиями или количеством действий, также отношениями между данными, данными и искомым, данными и неизвестным, положенными в основу выбора арифметических действий, или последовательностью использования этих отношений при выборе действий.

При алгебраическом способе ответ на вопрос задачи находится в результате составления и решения уравнения.

В зависимости от выбора неизвестного для обозначения буквой, от хода рассуждений можно составить различные уравнения по одной и той же задаче. В этом случае можно говорить о различных алгебраических решениях этой задачи.

Но надо отметить, что в начальных классах алгебраический способ не применяется для решения задач.

Опираясь только на чертёж, легко можно дать ответ на вопрос задачи. Такой способ решения называется графическим.

До настоящего времени вопрос о графическом способе решения арифметических задач не нашёл должного применения в школьной практике.

Графический способ даёт возможность более тесно установить связь между арифметическим и геометрическим материалами, развить функциональное мышление детей.

Следует отметить, что благодаря применению графического способа в начальной школе можно сократить сроки, в течение которых ученик научится решать различные задачи. В то же время умение графически решать задачу — это важное политехническое умение.

Графический способ даёт иногда возможность ответить на вопрос такой задачи, которую дети ещё не могут решить арифметическим способом и которую можно предлагать во внеклассной работе.

Решение задач различными способами — дело непростое, требующее глубоких математических знаний, умения отыскивать наиболее рациональные решения.

Научить детей решать задачи – значит научить их устанавливать связи между данными и искомым и в соответствии с этим выбрать, а затем и выполнить арифметические действия.

В начальных классах ведется работа над группами задач, решение которых основывается на одних и тех же связях между данными и искомым, а отличаются они конкретным содержанием и числовыми данными. Группы таких задач называются задачами одного вида.

Систематическое использование на уроках математики и внеурочных занятиях специальных задач, направленных на развитие логического мышления, расширяет математический кругозор младших школьников и позволяет более уверенно ориентироваться в простейших закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни.

Задачи выполняют очень важную функцию в начальном курсе математики — они являются полезным средством развития у детей логического мышления, умения проводить анализ и синтез, обобщать, абстрагировать и конкретизировать, раскрывать связи, существующие между рассматриваемыми явлениями.

Решение задач - упражнения, развивающие мышление. Мало того, решение задач способствует воспитанию терпения, настойчивости, воли, способствует пробуждению интереса к самому процессу поиска решения, дает возможность испытать глубокое удовлетворение, связанное с удачным решением.

 Нельзя забывать, что решение задач воспитывает у детей многие положительные качества характера и развивает их эстетически.


По теме: методические разработки, презентации и конспекты

Работа над текстовой задачей в начальной школе

Материал содержит рекомендации для начинающих учителей....

работа над текстовыми задачами в начальной школе

Обучение решению текстовых задач...

"Подход к решению текстовых задач в начальной школе" Мастер-класс.

Мастер-класс для учитетей  по теме "Подход к решению задач в начальной школе". Решение текстовых задач -  актуальная проблема  для группы учащихся.Статья сопровождается презентацией опы...

Работа над текстовой задачей в начальной школе

Эффективные методы и формы работы над текстовой задачей в начальной школе...

Работа над текстовыми задачами в начальной школе

Этот теоретический материал может использовать учитель начальных классов в методической работе над текстовыми задачами на уроках математики....

«Работа над текстовыми задачами в начальной школе. Графическое моделирование»

В своей деятельности стремлюсь к сотворчеству учителя и ребенка, направленное на развитие познавательной активности, творческого потенциала, раскрытие и реализацию индивидуальных возможностей....

Работа над текстовыми задачами в начальной школе

В настоящее время большинство учителей мало уделяют внимание решению задач. Учащиеся нередко не умеют выделить искомые и данные, установить связь между величинами, входящими в задачу; составить план р...