Олимпиада по математике, 3 класс
олимпиадные задания по математике (3 класс) на тему
В документе предложены материалы (задания и ответы) олимпиадных задания для учащихся 3 класса.
Скачать:
Вложение | Размер |
---|---|
olimpiada_3_klass.docx | 106.95 КБ |
Предварительный просмотр:
ОЛИМПИАДА ПО МАТЕМАТИКЕ, 3 класс
1. В каком числе столько же единиц, сколько букв? ________________________
2. Серёжа любил подсчитывать сумму цифр на табло электронных часов. Например, если часы показывают 21:17, Серёжа получает число 11. Какую наибольшую сумму он может получить?_______________________________________
3. В трёхзначном нечетном числе сумма цифр равна 3. Известно, что все три цифры различные. Найди это число. ___________________________________________
4. Сколько всего можно составить четырёхзначных чисел, сумма цифр которых равна 3? Перечисли эти числа. ________________________________________________
__________________________________________________________________________
5. Девочка начертила две прямые линии. На одной она отметила 2 точки, а на другой 3. Всего получилось 4 точки. Как так получилось? Начерти.
6. Муха-Цокотуха нашла денежку и на нее купила самовар, крендельки и конфеты. Самовар и крендельки стоят 48 чуков. За крендельки и конфеты Муха уплатила 3 чука. Причем конфеты дороже крендельков. Сколько чуков составляет денежка, которую нашла Муха? ______________________________________________
7. Расшифруй комбинацию кодового замка, если:
а) третья цифра на 3 больше, чем первая;
б) вторая - на 2 больше, чем четвёртая;
в) в сумме все цифры дают 17;
г) вторая цифра 3. __________________________
8. Поставь между цифрами знаки «+» и «-» так, чтобы получились верные равенства:
1 2 3 4 5 = 5;
1 2 3 4 5 = 41;
1 2 3 4 5 = 54;
1 2 3 4 5 = 168.
9. В семье четверо детей: им 5, 8, 13 и 15 лет, а зовут их: Таня, Юра, Света, Лена. Сколько лет каждому из них, если одна девочка ходит в детский сад, Таня старше, чем Юра, а сумма лет Тани и Светы делится на 3?
Тане - _______ , Юре - _______ , Свете - _______ , Лене - ______.
10. Шесть городов соединены автобусными маршрутами. Стоимость проезда между этими городами указана на схеме. За какую наименьшую сумму можно проехать из города А в город В?
___________________________
11. На двух деревьях сидело 36 снегирей. Когда с первого улетело 8 снегирей, а затем со второго дерева на первое перелетели 3 снегиря, снегирей стало одинаковое количество на каждом дереве. Сколько снегирей было на каждом дереве первоначально?__________________________________________________________________________________________________________________________________________________________________________________________________________________________________
12. Прямоугольник разрезали на 9 неодинаковых квадратов. Длина стороны одного из квадратов указана, а сторона черного квадрата равна 1. Покажи на рисунке длины сторон остальных квадратов.
13. Коля поймал за 5 дней 512 мух. Каждый день он отлавливал столько мух, сколько во все предыдущие дни вместе. Сколько мух поймал он в каждый из этих дней?
________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
14. В магазин привезли 36 коробок вермишели по 16 кг каждая. Всю вермишель положили в одинаковые пакеты, в каждый из которых умещалось в 4 раза меньше вермишели, чем в коробку. Сколько пакетов с вермишелью получилось?
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
15. Сколько треугольников изображено на рисунке?
_______________________
ОЛИМПИАДА ПО МАТЕМАТИКЕ, 3 класс
(школьный тур, 2014 – 2015 учебный год)
ОТВЕТЫ
1. В каком числе столько же единиц, сколько букв? 3 (три), 100 (сто)
2. Серёжа любил подсчитывать сумму цифр на табло электронных часов. Например, если часы показывают 21 : 17, Серёжа получает число 11. Какую наибольшую сумму он может получить? (19)
3. В трёхзначном нечетном числе сумма цифр равна 3. Известно, что все три цифры различные. Найди это число. (201)
4. Сколько всего можно составить четырёхзначных чисел, сумма цифр которых равна 3? Перечисли эти числа. (1110, 1101, 1011, 1200, 1020, 1002, 2001, 2010, 2100, 3000)
5. Девочка начертила две прямые линии. На одной она отметила 2 точки, а на другой 3. Всего получилось 4 точки. Как так получилось? Начерти.
6. Муха-Цокотуха нашла денежку и на нее купила самовар, крендельки и конфеты. Самовар и крендельки стоят 48 чуков. За крендельки и конфеты Муха уплатила 3 чука. Причем конфеты дороже крендельков. Сколько чуков составляет денежка, которую нашла Муха? (50 чуков)
7. Расшифруй комбинацию кодового замка, если:
а) третья цифра на 3 больше, чем первая;
б) вторая - на 2 больше, чем четвёртая;
в) в сумме все цифры дают 17;
г) вторая цифра 3. (5381)
8. Поставь между цифрами знаки «+» и «-» так, чтобы получились верные равенства: 1 + 2 + 3 + 4 – 5 = 5
12 – 3 + 45 = 54
12 + 34 – 5 = 41
123 + 45 = 168
9. В семье четверо детей: им 5, 8, 13 и 15 лет, а зовут их: Таня, Юра, Света, Лена. Сколько лет каждому из них, если одна девочка ходит в детский сад, Таня старше, чем Юра, а сумма лет Тани и Светы делится на 3?
Тане – 13 лет, Юре – 8 лет, Свете – 5 лет, Лене – 15 лет.
10. Шесть городов соединены автобусными маршрутами. Стоимость проезда между этими городами указана на схеме. За какую наименьшую сумму можно проехать из города А в город В?
(90)
11. На двух деревьях сидело 36 снегирей. Когда с первого улетело 8 снегирей, а затем со второго дерева на первое перелетели 3 снегиря, снегирей стало одинаковое количество на каждом дереве. Сколько снегирей было на каждом дереве первоначально? (19 и 17)
12. Прямоугольник разрезали на 9 неодинаковых квадратов. Длина стороны одного из квадратов указана, а сторона черного квадрата равна 1. Покажи на рисунке длины сторон остальных квадратов.
(1, 4, 7, 9, 10, 14, 15, 18 )
13. Коля поймал за 5 дней 512 мух. Каждый день он отлавливал столько мух, сколько во все предыдущие дни вместе. Сколько мух поймал он в каждый из этих дней?
(1 день- 32, 2 день – 32, 3 день - 64, 4 день - 128,5 день – 256.)
14. В магазин привезли 36 коробок вермишели по 16 кг каждая. Всю вермишель положили в одинаковые пакеты, в каждый из которых умещалось в 4 раза меньше вермишели, чем в коробку. Сколько пакетов с вермишелью получилось?
(144 пакета)
15. Сколько треугольников изображено на рисунке?
(14)
По теме: методические разработки, презентации и конспекты
Олимпиады по математике, русскому языку, окружающему миру. Протокол олимпиады.
Материалы олимпиад для 3 класса. Готовый шаблон протокола олимпиад....
Диплом победителя VII онлайн-олимпиады по математике "Олимпиада "Плюс"", декабрь 2017
Диплом победителя VII онлайн-олимпиады по математике "Олимпиада "Плюс"", декабрь 2017...
Диплом победителя VII онлайн-олимпиады по математике "Олимпиада "Плюс"", апрель 2018
Диплом победителя VII онлайн-олимпиады по математике "Олимпиада "Плюс"", апрель 2018...
Диплом победителя VIII онлайн-олимпиады по математике "Олимпиада "Плюс"", апрель 2018
Диплом победителя VIII онлайн-олимпиады по математике "Олимпиада "Плюс"", апрель 2018...
Диплом победителя VIII онлайн-олимпиады по математике "Олимпиада "Плюс"", 2, апрель 2018
Диплом победителя VIII онлайн-олимпиады по математике "Олимпиада "Плюс"", 2, апрель 2018...
Диплом победителя VIII онлайн-олимпиады по математике "Олимпиада "Плюс"", 3, апрель 2018
Диплом победителя VIII онлайн-олимпиады по математике "Олимпиада "Плюс"", 3, апрель 2018...
Диплом победителя VIII онлайн-олимпиады по математике "Олимпиада "Плюс"", 4, апрель 2018
Диплом победителя VIII онлайн-олимпиады по математике "Олимпиада "Плюс"", 4, апрель 2018...